Electrochemical Methods and (Bio) Sensors for Rosmarinic Acid Investigation
Abstract
:1. Introduction
2. Rosmarinic Acid
3. Electroanalytical Investigation of RA
3.1. Why Electroanalysis?
3.2. Electrochemical Behavior of Rosmarinic Acid
3.3. Electrochemical Quantitative Analysis of Rosmarinic Acid
3.4. Electrochemical Methods in the Antioxidant Activity Assessment of RA and RA Containing Extracts
- (i)
- As the electrochemical methods are electron-transfer-based assays, they can be considered as direct tests, because they do not use reactive species, but they exploit the chemical-physical properties of the analytes able to participate in electrochemical reactions (redox reactions) further used to evaluate the overall reducing power of the antioxidant compounds.
- (ii)
- The suitable selection of the oxidation potential, allowed by electrochemical methods, enables a more selective measurement of antioxidant levels (which are more realistic than those found by spectrophotometric assays) and of the antioxidant activity (by the oxidation signals relative position) in complex environments, such as biological or food samples. On the other hand, using electrochemistry, direct information about the antioxidants with different antioxidant activity can be obtained by a decrease in the oxidation potential [40]. Using flow injection (FI) analysis with detection at a GCE, Blasco et al. [72] have introduced the concept of “Electrochemical Index” (EI), representing the “total polyphenolic” content obtained from electrochemistry. According to this concept, the total amount of polyphenols is obtained by nonselective oxidation of all antioxidants at a higher potential (e.g., 0.800 V in pH 7.50), whereas different fractions of them can be evaluated by modifying the oxidation potential to lower values (e.g., the fractions of polyphenols with expected intermediate antioxidant power and those with high antioxidant capacity were obtained just by changing the oxidation potential at 0.500 and 0.300 V). From a quantitative point of view, TPC was always higher than EI due to the inherent selectivity of EI in the determination of their total content in comparison with the spectrophotometric protocol. Nevertheless, the “Electrochemical Index” was well correlated with the spectrophotometrically obtained “total phenolics” (r = 0.95).
- (iii)
- Electrochemical approaches involve few instrumental requirements [40]; using the same equipment (potentiostat/galvanostat) and few resources (a set of electrodes), several methods can be applied to get various pieces of information that can help to obtain more accurate conclusions and a better understanding of the investigated phenomena/actions [73].
3.5. Electrochemical Investigation of RA Interaction with Biological Important Compounds
3.6. Dynamic Methods with Electrochemical Detection for RA and RA Containing Samples Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Carvalho Costa, D.; Costa, H.S.; Albuquerque, T.G.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Voltammetric sensors based on nanomaterials for detection of caffeic acid in food supplements. Chemosensors 2020, 8, 41. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of phenolic compounds in Greek plants of Lamiaceae familyby HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Ismail, N.I.; Sornambikai, S.; Kadir, M.R.A.; Mahmood, N.H.; Zulkifli, R.M.; Shahir, S. Evaluation of radical scavenging capacity of polyphenols found in natural Malaysian honeys by voltammetric techniques. Electroanalysis 2018, 30, 2939–2949. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [Green Version]
- Litescu, S.C.; Eremia, S.A.V.; Bertoli, A.; Pistelli, L.; Radu, G.-L. Laccase-Nafion based biosensor for the determination of polyphenolic secondary metabolites. Anal. Lett. 2010, 43, 1089–1099. [Google Scholar] [CrossRef]
- Diaconu, M.; Litescu, S.C.; Radu, G.L. Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sens. Act. B 2010, 145, 800–806. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int. 2013, 3, 251754. [Google Scholar] [CrossRef]
- Shahidi, F.; Chandrasekara, A. Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem. Rev. 2010, 9, 147–170. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends Food Sci. Technol. 2020, 95, 45–58. [Google Scholar] [CrossRef]
- Newair, E.F.; Abdel-Hamid, R.; Kilmartin, P.A. Mechanism of chicoric acid electrochemical oxidation and identification of oxidation products by liquid chromatography and mass spectrometry. Electroanalysis 2017, 29, 850–860. [Google Scholar] [CrossRef]
- Ozdokur, K.V.; Kocak, C.C. Simultaneous determination of rosmarinic acid and protocatechuic acid at poly(o-phenylenediamine)/Pt nanoparticles modified glassy carbon electrode. Electroanalysis 2019, 31, 2359–2367. [Google Scholar] [CrossRef]
- Khojasteh, A.; Mirjalili, M.H.; Hidalgo, D.; Corchete, P.; Palazon, J. New trends in biotechnological production of rosmarinic acid. Biotechnol. Lett. 2014, 36, 2393–2406. [Google Scholar] [CrossRef] [PubMed]
- Sik, B.; Kapcsándi, V.; Székelyhidi, R.; Hanczné, E.L.; Ajtony, Z. Recent advances in the analysis of rosmarinic acid from herbs in the Lamiaceae family. Nat. Prod. Commun. 2019, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Franzoi, A.C.; Dupont, J.; Spinelli, A.; Vieira, I.C. Biosensor based on laccase and an ionic liquid for determination of rosmarinic acid in plant extracts. Talanta 2009, 77, 1322–1327. [Google Scholar] [CrossRef]
- Gil, E.S.; Enache, T.A.; Oliveira-Brett, A.M. Redox behaviour of verbascoside and rosmarinic acid. Comb. Chem. High Throughput Screen. 2013, 16, 92–97. [Google Scholar] [CrossRef]
- Beiginejad, H.; Moradi, M.; Paziresh, S.; Farahani, H. Thermodynamic and mechanistic study of the electrochemical oxidation of rosmarinic acid. J. Electrochem. Soc. 2018, 165, H698–H704. [Google Scholar] [CrossRef]
- David, I.G.; Buleandră, M.; Popa, D.E.; Bîzgan, A.-M.C.; Moldovan, Z.; Badea, I.-A.; Iorgulescu, E.E.; Tekiner, T.A.; Basaga, H. Voltammetric determination of polyphenolic content as rosmarinic acid equivalent in tea samples using pencil graphite electrodes. J. Food Sci. Technol. 2016, 53, 2589–2596. [Google Scholar] [CrossRef] [Green Version]
- Topal, M.; Gulcin, I. Rosmarinic acid: A potent carbonic anhydrase isoenzymes inhibitor. Turk. J. Chem. 2014, 38, 894–902. [Google Scholar] [CrossRef]
- Peng, X.; Wang, X.; Qi, W.; Su, R.; He, Z. Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chem. 2016, 192, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Amoah, S.K.S.; Sandjo, L.P.; Kratz, J.M.; Biavatti, M.W. Rosmarinic acid—Pharmaceutical and clinical aspects. Planta Med. 2016, 82, 388–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.U.; Uddin, M.R.; Xu, H.; Kim, Y.K.; Lee, S.Y. Biotechnological applications for rosmarinic acid production in plant. Afr. J. Biotechnol. 2008, 7, 4959–4965. [Google Scholar]
- Ziyatdinova, G.K.; Budnikov, H.C. Spice Antioxidants as Objects of Analytical Chemistry. J. Anal. Chem. 2018, 73, 946–965. [Google Scholar] [CrossRef]
- Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.M.; Serra, A.T.; Pinto, R.; Freitas, M.; et al. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. 2015, 116, 398–413. [Google Scholar] [CrossRef]
- Ertas, A.; Boga, M.; Yilmaz, M.A.; Yesil, Y.; Tel, G.; Temel, H.; Hasimi, N.; Gazioglu, I.; Ozturk, M.; Ugurlu, P. A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind. Crops Prod. 2015, 67, 336–345. [Google Scholar] [CrossRef]
- Asadi, N.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B. Theoretical MD/DFT computer explorations and surface-electrochemical investigations of the zinc/iron metal cations interactions with highly active molecules from Lemon balm extract toward the steel corrosion retardation in saline solution. J. Mol. Liq. 2002, 310, 113220. [Google Scholar] [CrossRef]
- Andrade, P.; Ferreres, F.; Gil, M.I.; Tomas-Barberan, F.A. Determination of phenolic compounds in honeys with different floral origin by capillary zone electrophoresis. Food Chem. 1997, 60, 79–84. [Google Scholar] [CrossRef]
- Brondani, D.; Zapp, E.; Cruz Vieira, I.; Dupont, J.; Weber Scheeren, C. Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor. Analyst 2011, 136, 2495–2505. [Google Scholar] [CrossRef]
- Santhiago, M.; Peralta, R.A.; Neves, A.; Micke, G.A.; Vieira, I.C. Rosmarinic acid determination using biomimetic sensor based on purple acid phosphatase mimetic. Anal. Chim. Acta 2008, 613, 91–97. [Google Scholar] [CrossRef]
- Mohamadi, M.; Mostafavi, A.; Torkzadeh-Mahani, M. Voltammetric determination of rosmarinic acid on chitosan/carbon nanotube composite-modified carbon paste electrode covered with DNA. J. Electrochem. Soc. 2015, 162, B344–B349. [Google Scholar] [CrossRef]
- Eremia, S.A.V.; Radu, G.-L.; Litescu, S.-C. Monitoring of rosmarinic acid accumulation in sage cell cultures using laccase biosensor. Phytochem. Anal. 2013, 24, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, K.; Zhou, J.; Liu, J.; Ye, B. Electrochemical properties of rosmarinic acid and its analytical application. Sensor Lett. 2013, 11, 305–310. [Google Scholar] [CrossRef]
- Qu, L.; Xu, H.; Jia, W.; Jiang, H.; Xie, J. Rosmarinic acid protects against MPTP-induced toxicity and inhibits ironinduced α-synuclein aggregation. Neuropharmacology 2019, 144, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Alkam, T.; Nitta, A.; Mizoguchi, H.; Itoh, A.; Nabeshima, T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ25–35. Behav. Brain Res. 2007, 180, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Guldiken, B.; Ozkan, G.; Catalkaya, G.; Ceylan, F.D.; Yalcinkaya, I.E.; Capanoglu, E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem. Toxicol. 2018, 119, 37–49. [Google Scholar] [CrossRef]
- Osipova, V.P.; Berberova, N.T.; Gazzaeva, R.A.; Kudryavtsev, K.V. Application of new phenolic antioxidants for cryopreservation of sturgeon sperm. Cryobiology 2016, 72, 112–118. [Google Scholar] [CrossRef]
- Hsueh, C.; Wu, C.; Chen, B. Polyphenolic compounds as electron shuttles for sustainable energy utilization. Biotechnol. Biofuels 2019, 12, 271. [Google Scholar] [CrossRef] [Green Version]
- Sochor, J.; Dobes, J.; Krystofova, O.; Ruttkay-Nedecky, B.; Babula, P.; Pohanka, M.; Jurikova, T.; Zitka, O.; Adam, V.; Klejdus, B.; et al. Electrochemistry as a tool for studying antioxidant properties. Int. J. Electrochem. Sci. 2013, 8, 8464–8489. [Google Scholar]
- Blasco, A.J.; Crevillen, A.G.; Gonzalez, M.C.; Escarpa, A. Direct electrochemical sensing and detection of natural antioxidants and antioxidant capacity in vitro systems. Electroanalysis 2007, 19, 2275–2286. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Di Carlo, G.; Curulli, A.; Trani, A.; Zane, D.; Ingo, G.M. Enhanced electrochemical response of structurally relatedantioxidant at nanostructured hybrid films. Sens. Actuat. B 2014, 191, 703–710. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Budnikov, H.C. Evaluation of the antioxidant properties of spices by cyclic voltammetry. J. Anal. Chem. 2014, 69, 990–997. [Google Scholar] [CrossRef]
- Escarpa, A. Food electroanalysis: Sense and simplicity. Chem. Rec. 2012, 12, 72–91. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.S.; Couto, O.R. Flavonoid electrochemistry: A review on the electroanalytical applications. Rev. Bras. Farmacogn. 2013, 23, 542–558. [Google Scholar] [CrossRef] [Green Version]
- Dobes, J.; Zitka, O.; Sochor, J.; Ruttkay-Nedecky, B.; Babula, P.; Beklova, M.; Kynicky, J.; Hubalek, J.; Klejdus, B.; Kizek, R.; et al. Electrochemical tools for determination of phenolic compounds in plants. A review. Int. J. Electrochem. Sci. 2013, 8, 4520–4542. [Google Scholar]
- Petrucci, R.; Astolfi, P.; Greci, L.; Firuzi, O.; Saso, L.; Marrosu, G. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium. Electrochim. Acta 2007, 52, 2461–2470. [Google Scholar] [CrossRef]
- Brett, C.M.A.; Oliveira-Brett, A.M. Electrochemistry: Principles, Methods and Applications; Oxford Science Publications: Oxford, UK, 1993. [Google Scholar]
- Bilgi, M.; Sahina, E.M.; Ayranci, E. Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. J. Electroanal. Chem. 2018, 813, 67–74. [Google Scholar] [CrossRef]
- Gosser, D.K. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms; Wiley-VCH: New York, NY, USA, 1993. [Google Scholar]
- Gonçalves, D.; Couto, R.O.; Conceição, E.C.; Reis, N.S.; Gil, E.S. Voltametria de pulso diferencial (VPD) em estado sólido de manchas de cromatografia de camada delgada (CCD): Um novo método de análise para fitoativos antioxidantes. Quim. Nova 2011, 34, 330–334. [Google Scholar] [CrossRef]
- Dos Santos Maguerroski, K.; Fernandes, S.C.; Franzoi, A.C.; Vieir, I.C. Pine nut peroxidase immobilized on chitosan crosslinked with citrate and ionic liquid used in the construction of a biosensor. Enzym. Microb. Technol. 2009, 44, 400–405. [Google Scholar] [CrossRef]
- Eremia, S.A.V.; Vasilescu, I.; Radoi, A.; Litescu, S.C.; Radu, G.L. Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 2013, 110, 164–170. [Google Scholar] [CrossRef]
- Penu, R.; Vasilescu, I.; Eremia, S.A.V.; Gatea, F.; Radu, G.-L.; Litescu, S.-C. Development of a nanocomposite system and its application in biosensors construction. Cent. Eur. J. Chem. 2013, 11, 968–978. [Google Scholar] [CrossRef]
- Diaconu, M.; Litescu, S.C.; Radu, G.L. Bienzymatic sensor based on the use of redox enzymes and chitosan–MWCNT nanocomposite. Evaluation of total phenolic content in plant extracts. Microchim. Acta 2011, 172, 177–184. [Google Scholar] [CrossRef]
- Almeida, L.C.; Correia, R.D.; Squillaci, G.; Morana, A.; La Cara, F.; Correia, J.P.; Viana, A.S. Electrochemical deposition of bio-inspired laccase-polydopamine films for phenolic sensors. Electrochim. Acta 2019, 319, 462–471. [Google Scholar] [CrossRef]
- Bîzgan, A.-M.C. Determinarea Voltametrică a Unor Compuși Polifenolici cu Acțiune Antioxidantă. (Voltammetric Determination of Polyphenolic Compounds with Antioxidant Action). Master’s Thesis, University of Bucharest, Bucharest, Romania, June 2015. [Google Scholar]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 2011, 655, 9–16. [Google Scholar] [CrossRef]
- Simić, A.; Manojlović, D.; Šegan, D.; Todorović, M. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules 2007, 12, 2327–2340. [Google Scholar] [CrossRef] [Green Version]
- Chiorcea-Paquim, A.M.; Enache, A.T.; Gil, E.S.; Oliveira-Brett, A.M. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1680–1726. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Zhen, X.-T.; Dong, X.; Ye, L.-H.; Zheng, H.; Cao, J. Oxidative metabolism of typical phenolic compounds of Danshen by electrochemistry coupled to quadrupole time-of-flight tandem mass spectrometry. Food Chem. 2020, 315, 126270. [Google Scholar] [CrossRef]
- Garcia-Guzman, J.J.; Loez-Iglesias, D.; Marin, M.; Lete, C.; Lupu, S.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. Electrochemical biosensors for antioxidants. In Advanced Biosensors for Health Care Applications, 1st ed.; Inamuddin Khan, R., Mohammad, A., Asiri, A.M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 104–146. [Google Scholar]
- Stroble, J.K.; Stone, R.B.; Watkins, S.E. An overview of biomimetic sensor technology. Sens. Rev. 2009, 29, 112–119. [Google Scholar] [CrossRef]
- Lee, J.H.; Jin, H.-E.; Desai, M.S.; Ren, S.; Kim, S.; Lee, S.-W. Biomimetic sensor design. Nanoscale 2015, 7, 18379–18391. [Google Scholar] [CrossRef]
- Lu, L.; Hu, X.; Zhu, Z. Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. TrAC Trend. Anal. Chem. 2017, 87, 58–70. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, M.M.; Aleman-Nava, G.S.; Rodriguez-Delgado, J.M.; Dieck-Assad, G.; Martinez-Chapa, S.O.; Barcelo, D.; Parra, R. Laccase-based biosensors for detection of phenolic compounds. TrAC Trend. Anal. Chem. 2015, 74, 21–45. [Google Scholar] [CrossRef] [Green Version]
- Betancor, L.; Johnson, G.R.; Luckarift, H.R. Stabilized laccases as heterogeneous bioelectrocatalysts. ChemCatChem 2013, 5, 46–60. [Google Scholar] [CrossRef]
- Sýs, M.; Metelka, R.; Frangu, A.; Vytřas, K.; Arbneshi, T. Electrochemical study of Trametes Versicolor laccase compatibility to different polyphenolic substrates. Chemosensors 2017, 5, 9. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure–antioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Phys. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Cosio, M.S.; Buratti, S.; Mannino, S.; Benedetti, S. Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiatae family. Food Chem. 2006, 97, 725–731. [Google Scholar] [CrossRef]
- Blasco, A.J.; Rogerio, M.C.; González, M.C.; Escarpa, A. “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal. Chim. Acta 2005, 539, 237–244. [Google Scholar] [CrossRef]
- Hoyos-Arbeláez, J.; Vázquez, M.; Contreras-Calderón, J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chem. 2017, 221, 1371–1381. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Sužnjević, D.Ž.; Pastor, F.T.; Gorjanović, S.Ž. Polarographic study of hydrogen peroxide anodic current and its application to antioxidant activity determination. Talanta 2011, 85, 1398–1403. [Google Scholar] [CrossRef]
- Stojićević, A.S.; Pastor, F.T.; Gorjanović, S.Ž.; Šolević Knudsen, T.M.; Antić, M.P. Modification of DC polarographic antioxidant assay-Application to aromatic plants and their active principles. Flavour Fragr. J. 2020, 35, 219–226. [Google Scholar] [CrossRef]
- Labuda, J.; Bučková, M.; Heilerová, L.; Čaniová-Žiaková, A.; Brandšteterová, E.; Mattusch, J.; Wennrich, R. Detection of antioxidative activity of plant extracts at the DNA-modified screen-printed electrode. Sensors 2002, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- De Siqueira Leite, K.C.; Garcia, L.F.; Lobóna, G.S.; Thomaz, D.V.; Moreno, E.K.G.; de Carvalhoa, M.F.; Rocha, M.l.; dos Santos, W.T.P.; Gil, E.S. Antioxidant activity evaluation of dried herbal extracts: An electroanalytical approach. Rev. Bras. Farmacogn. 2018, 28, 325–332. [Google Scholar] [CrossRef]
- Flampouria, E.; Sotiropoulou, Ν.-S.D.; Mavrikou, S.; Mouzaki-Paxinou, A.-C.; Tarantilis, P.A.; Kintzios, S. Conductive polymer-based bioelectrochemical assembly for in vitro cytotoxicity evaluation: Renoprotective assessment of Salvia officinalis against carbon tetrachloride induced nephrotoxicity. BBA Gen. Subj. 2017, 1861, 2304–2314. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Ziganshina, E.R.; Cong, P.N.; Budnikov, H.C. Determination of the antioxidant capacity of the micellar extracts of spices in Brij® 35 medium by differential pulse voltammetry. J. Anal. Chem. 2016, 71, 573–580. [Google Scholar] [CrossRef]
- Filipe, H.A.L.; Sousa, C.; Marquês, J.T.; Vila-Viçosa, D.; de Granada-Flor, A.; Viana, A.S.; Santos, M.S.C.S.; Machuqueiro, M.; de Almeida, R.F.M. Differential targeting of membrane lipid domains by caffeic acid and its ester Derivatives. Free Radic. Biol. Med. 2018, 115, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Panya, A.; Kittipongpittaya, K.; Laguerre, M.; Bayrasy, C.; Lecomte, J.; Villeneuve, P.; McClements, D.J.; Decker, E.A. Interactions between α-tocopherol and rosmarinic acid and its alky esters in emulsions: Synergistic, additive, or antagonistic effect? J. Agric. Food Chem. 2012, 60, 10320–10330. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Q.; Yu, X.; Liu, Y.; Li, L.; Li, B.; Zhang, X.; Chen, S.; Liu, Z.; Zhao, X.; et al. Study of reactions of Nε-(carboxymethyl) lysine with o-benzoquinones by cyclic voltammetry. Food Chem. 2020, 307, 125554. [Google Scholar] [CrossRef]
- Li, Y.; Qi, H.; Fan, M.; Zhu, Z.; Zhan, S.; Li, L.; Li, B.; Zhang, X.; Zhao, X.; Ma, J.; et al. Quantifying the efficiency of o-benzoquinones reaction with amino acids and related nucleophiles by cyclic voltammetry. Food Chem. 2020, 317, 126454. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Sugaring-out assisted liquid-liquid extraction coupled with high performance liquid chromatography-electrochemical detection forthe determination of 17 phenolic compounds in honey. J. Chromatogr. A 2019, 1601, 104–114. [Google Scholar] [CrossRef]
- Peng, Y.; Yuan, J.; Liu, F.; Ye, J. Determination of active components in rosemary by capillary electrophoresis with electrochemical detection. J. Pharm. Biomed. Anal. 2005, 39, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Du, X.; Cheng, N.; Chen, L.; Xue, X.; Zhao, J.; Wu, L.; Cao, W. Identification of monofloral honeys using HPLC–ECD and chemometrics. Food Chem. 2016, 194, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, H.; Xue, X.; Liu, C.; He, L.; Cheng, N.; Cao, W. Identification of acacia honey treated with macroporous adsorption resins using HPLC-ECD and chemometrics. Food Chem. 2020, 309, 125656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, H.; Zhu, M.; Zhang, J.; Cheng, N.; Cao, W. Method for identifying acacia honey adulterated by resin absorption: HPLCECD coupled with chemometrics. LWT 2020, 118, 108863. [Google Scholar] [CrossRef]
- Wang, J.; Xue, X.; Du, X.; Cheng, N.; Chen, L.; Zhao, J.; Zheng, J.; Cao, W. Identification of acacia honey adulteration with rape honey using liquid chromatography–electrochemical detection and chemometrics. Food Anal. Methods 2014, 7, 2003–2012. [Google Scholar] [CrossRef]
- Chen, X.; Kotani, A.; Hakamata, H.; Wang, J.; Du, S.; Kusu, F. Three-channel column-switching high-performance liquid chromatography with electrochemical detection for determining bioactive redox components in Salvia miltiorrhiza. J. Chromatogr. A 2012, 1256, 105–113. [Google Scholar] [CrossRef]
- Chu, Q.; Tian, X.; Jiang, L.; Ye, J. Application of capillary electrophoresis to study phenolic profiles of honeybee-collected pollen. J. Agric. Food Chem. 2007, 55, 8864–8869. [Google Scholar] [CrossRef]
- Peng, L.-Q.; Cao, J.; Du, L.-J.; Zhang, Q.-D.; Shi, Y.-T.; Xu, J.-J. Analysis of phenolic acids by ionic liquid-in-water microemulsion liquid chromatography coupled with ultraviolet and electrochemical detector. J. Chromatogr. A 2017, 1499, 132–139. [Google Scholar] [CrossRef]
- Niederlander, H.A.G.; van Beek, T.A.; Bartasiute, A.; Koleva, I.I. Antioxidant activity assays on-line with liquid chromatography. J. Chromatogr. A 2008, 1210, 121–134. [Google Scholar] [CrossRef]
- David, I.G.; Popa, D.E.; Buleandra, M. Pencil graphite electrodes: A versatile tool in electroanalysis. J. Anal. Meth. Chem. 2017, 2017, 1–22. [Google Scholar] [CrossRef] [Green Version]
Sensor | Technique/Potential (V) * | Linear Range (M) | LOD (M) | Sample | Ref |
---|---|---|---|---|---|
GCE | CV | 4.95 × 10−5–4.95 × 10−4 | 1.20 × 10−6 | Spices extracts | [43] |
GCE | SWSV | 3.00 × 10−9–1.50 × 10‒6 | 1.80 × 10−9 | Prunella vulgaris | [33] |
PGE | DPV | 1.00 × 10−8 –1.00 × 10−5 | 7.93 × 10−9 | Tea infusion/TPC | [19] |
CS–CNTPE/DNA | SWSV | 4.00 × 10−8–1.50 × 10−6 | 1.40 × 10−8 | Rosemary extract | [31] |
GCE/PoPD/Pt | CA/(0.065) DPV | 1.00 × 10−6–5.50 × 10−5 2.00 × 10−6–1.00 × 10−5 | 5.00 × 10−7 7.00 × 10−7 | Melissa officinallis, Rosmarinus officinalis | [13] |
CPE/Fe(III)Zn(II) | SWV | 2.98 × 10−5–3.83 × 10−4 | 2.30× 10−6 | Melissa officinalis extracts | [30] |
CPE/RA–silica | TLC-DPV | 6.94 × 10−5–9.53 × 10−3 | 1.20× 10−5 | Rosemary extract | [51] |
CPE/Per–BMI·Tf2N–CS | SWV | 9.07 × 10−7–4.46 × 10−6 | 7.25×10−8 | Plant extracts | [52] |
CPE/Per–Au–BMI⋅PF6-CTN | SWV | 5.00 × 10−7–2.37 × 10−5 | 7.01×10−8 | Pharmaceutical samples | [29] |
CPE/Lacc–BMI⋅PF6 | SWV | 9.99 × 10−7–6.54 × 10−5 | 1.88 × 10−7 | Melissa officinalis extracts | [16] |
Au–SPE/Lacc–Naf | CA/(−0.200) | 3.00 × 10−6–1.50 × 10−5 | 2.4 × 10−6 | [7] | |
C–SPE/Lacc–Naf | CA/(−0.030) | 7.00 × 10−7–1.50 × 10−6 | 1.19 × 10−7 | Sage extracts/TPC | |
C–SPE/Lacc–Naf | CA/(−0.030) | 1.00 × 10−6–1.00 × 10−5 | 7.50 × 10−7 | Sage extracts/TPC | [32] |
C–SPE/Pt–NPs–RGO–Lacc–Naf | CA/(−0.100) | 4.50 × 10−7–2.5 × 10−6 | 1.50 × 10−7 | Tea infusion/TPC | [53] |
C–SPE/Lacc–TESBA–ITO–NPs | CA/(−0.010) | 1.06 × 10−6–1.50 × 10−5 | 9.10 × 10−7 | Propolis extracts/TPC | [54] |
Au/Lacc–CS–MWCNT | CA/(−0.020) | 9.10 × 10−7–1.21 × 10−5 | 2.33 × 10−7 | Salvia officinalis, Mentha piperita extracts/TPC | [8] |
ITO/Lacc–Tyr–CS–MWCNT | CA/(−0.050) + surfactant Tween 20 | 4.00 × 10−7–1.20 × 10−5 | 4.20 × 10−8 | Salvia, basillicum extracts/TPC | [55] |
Graphite/Lacc–PDA | CA/(0.000 V vs. SCE) | 1.00 × 10−6–2.00 × 10−5 | 9.00 × 10−8 | Chestnut shell waste extract/TPC | [56] |
Technique | Electrode/Potential (V) | Linear Range (g/mL) | LOD (g/mL) | Sample | Ref |
---|---|---|---|---|---|
CE–AD | CDE/0.900 * | 5.00 × 10−6–5.00 × 10−4 | 1.00 × 10−6 | Rosemary | [86] |
CE–AD | CDE/0.950 * | 1.00 × 10−6–1.00 × 10−4 | 1.30 × 10−8 | Honeybee-collected pollen *** | [92] |
HPLC–ECD | GCE/0.900 ** | 1.05 × 10−7–2.00 × 10−5 | 1.70 × 10−8 | Honey | [87] |
HPLC–ECD | 0.900 | 5.60 × 10−7−1.30 × 10−5 | 2.10 × 10–8 | Honey | [88] |
HPLC–ECD | GCE/1.000 ** | 5.00 × 10−8–2.50 × 10−5 | 9.20 × 10−7 (g/kg) | Honey | [85] |
3HPLC–3ECD | GCE/0.700 ** | 1.00 × 10−8–2.50 × 10−5 (M) | 3.90 × 10−15 (M) | Salvia miltiorrhiza | [91] |
IL/W MELC–ECD | GCE/0.700 ** | 5.00 × 10−6–2.50 × 10−4 | 1.01 × 10−7 | Danshen | [93] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, I.G.; Popa, D.E.; Buleandră, M.; Cheregi, M.C. Electrochemical Methods and (Bio) Sensors for Rosmarinic Acid Investigation. Chemosensors 2020, 8, 74. https://doi.org/10.3390/chemosensors8030074
David IG, Popa DE, Buleandră M, Cheregi MC. Electrochemical Methods and (Bio) Sensors for Rosmarinic Acid Investigation. Chemosensors. 2020; 8(3):74. https://doi.org/10.3390/chemosensors8030074
Chicago/Turabian StyleDavid, Iulia Gabriela, Dana Elena Popa, Mihaela Buleandră, and Mihaela Carmen Cheregi. 2020. "Electrochemical Methods and (Bio) Sensors for Rosmarinic Acid Investigation" Chemosensors 8, no. 3: 74. https://doi.org/10.3390/chemosensors8030074
APA StyleDavid, I. G., Popa, D. E., Buleandră, M., & Cheregi, M. C. (2020). Electrochemical Methods and (Bio) Sensors for Rosmarinic Acid Investigation. Chemosensors, 8(3), 74. https://doi.org/10.3390/chemosensors8030074