Chemical Reagents for Sensor Design and Development
1. Introduction
2. The Special Issue
Acknowledgments
Conflicts of Interest
References
- Pietrzak, M. Sensors and bioselective reagents. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2013. [Google Scholar] [CrossRef]
- Sanna, E.; Martínez, L.; Rotger, C.; Blasco, S.; González, J.; García-España, E.; Costa, A. Squaramide-based reagent for selective chromogenic sensing of Cu(II) through a zwitterion radical. Org. Lett. 2010, 12, 3840–3843. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pu, H.; Fu, Z.; Sui, X.; Chang, J.; Chen, J.; Mao, S. Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors. Environ. Sci. Nano 2018, 5, 1990–1999. [Google Scholar] [CrossRef]
- Kruse, P. Review on water quality sensors. J. Phys. D Appl. Phys. 2018, 51, 203002. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, J.; Lin, Y.; Wang, J. CHAPTER 14-Nanoparticle-based biosensors and bioassays. In Electrochemical Sensors, Biosensors and their Biomedical Applications; Academic Press/Elsevier: Cambridge, MA, USA, 2008; pp. 441–457. [Google Scholar]
- Kumar, N.; Senapati, S.; Kumar, S.; Kumar, J.; Panda, S. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors. J. Phys. Conf. Ser. 2016, 704, 012013. [Google Scholar] [CrossRef]
- Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-Ol-Ajdad, A.; Kalantarinejad, R.; Heitzinger, C. A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens. Bioelectron. 2019, 142, 111527. [Google Scholar] [CrossRef]
- Hilterhaus, L.; Lipka, T.; Wahn, L.; Trieu, H.K.; Muller, J. Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators. J. Nanophotonics 2013, 7, 073793. [Google Scholar]
- Zhu, J.; Mao, Q.; Gao, L.; Song, G. Localized surface plasmon resonance light-scattering detection of Hg(II) with 3-aminopropyl-triethoxysilane assisted synthesis of highly stabilized Ag nanoclusters. Analyst 2013, 138, 1637–1640. [Google Scholar] [CrossRef]
- Dixit, C.K. Surface regeneration of gold-coated chip for highly-reproducible surface plasmon resonance immunoassays. J. Biosens. Bioelectron. 2014, 52, 1000149. [Google Scholar]
- Saravanan, P.; Jayamoorthy, K.; Kumar, S.A. Switch-On fluorescence and photo-induced electron transfer of 3-amino-propyltriethoxysilane to ZnO: Dual applications in sensors and antibacterial activity. Sens. Actuators B Chem. 2015, 221, 784–791. [Google Scholar] [CrossRef]
- Saravanana, P.; Jayamoorthy, K.; Anandakumar, S. Fluorescence quenching of APTES by Fe2O3 nanoparticles-Sensor and antibacterial applications. J. Lumin. 2016, 178, 241–248. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Jiang, L.; Chu, P.K.; Dong, Y.; Wei, Q. A sandwich-type electrochemical immunosensor based on the biotin-streptavidin-biotin structure for detection of human immunoglobulin G. Sci. Rep. 2016, 6, 22694. [Google Scholar] [CrossRef] [PubMed]
- Guler, M.; Turkoglu, V.; Kivanc, M.R. A novel enzymatic glucose biosensor and nonenzymatic hydrogen peroxide sensor based on 3-aminopropyl- triethoxysilane functionalized reduced graphene oxide. Electroanalysis 2017, 29, 2507–2515. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Sheng, K.; Chen, C.; Zhou, X.; Dong, B.; Bai, X.; Zhang, S.; Lu, G.; Song, H. APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment. J. Mater. Chem. A 2018, 6, 10976–10989. [Google Scholar] [CrossRef]
- Vallejos, S.; Fohlerová, Z.; Tomić, M.; Gràcia, I.; Figueras, E.; Cané, C. Room temperature ethanol microsensors based on silanized tungsten oxide nanowires. Proceedings 2018, 2, 790. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, M.; Rieu, M.; Stambouli, V.; Tournier, G.; Viricelle, J.P.; Pijolat, C. Ambient temperature selective ammonia gas sensor based on SnO2-APTES modifications. Sens. Actuators B Chem. 2018, 256, 440–447. [Google Scholar] [CrossRef]
- Hijazi, M.; Rieu, M.; Stambouli, V.; Tournier, G.; Viricelle, J.P.; Pijolat, C. Modified SnO2-APTES gas sensor for selective ammonia detection at room temperature. Mater. Today Proc. 2019, 6, 319–322. [Google Scholar] [CrossRef]
- Thermo Scientific. Fluoraldehyde™ OO-phthaldialdehyde Reagent Solution. Available online: https://www.thermofisher.com/order/catalog/product/26025#/26025 (accessed on 20 May 2020).
- Lin, J.H.; Chang, C.W.; Tseng, W.L. Fluorescent sensing of homocysteine in urine: Using fluorosurfactant-capped gold nanoparticles and o-phthaldialdehyde. Analyst 2009, 135, 104–110. [Google Scholar] [CrossRef]
- Lai, Y.J.; Tseng, W.L. Gold nanoparticle extraction followed by o-phthaldialdehyde derivatization for fluorescence sensing of different forms of homocysteine in plasma. Talanta 2012, 91, 103–109. [Google Scholar] [CrossRef]
- Nedeljko, P.; Turel, M.; Lobnik, A. Turn-on fluorescence detection of glutathione based on o-phthaldialdehyde-assisted SiO2 particles. J. Sens. 2018, 1692702. [Google Scholar] [CrossRef]
- Tsiasioti, A.; Tzanavaras, P.D. Automated fluorimetric sensor for hydrazine determination in water samples based on the concept of zone fluidics. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticles as mediator for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food Drug Anal. 2017, 25, 1000–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.B.; Jeong, S.H.; Chun, H.; Kim, Y.S. Selective colorimetric detection of dissolved ammonia in water via modified Berthelot’s reaction on porous paper. Sens. Actuators B Chem. 2018, 266, 167–175. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Cheng, K.; Yang, X.; Li, Q.Y.; Zhang, H.; Ma, Z.; Lu, H.; Wu, H.; Wang, X.J. A benzothiadiazole-based fluorescent sensor for selective detection of oxalyl chloride and phosgene. Org. Chem. Front. 2017, 4, 1719–1725. [Google Scholar] [CrossRef]
- Cao, Z.; Yao, B.; Qin, C.; Yang, R.; Guo, Y.; Zhang, Y.; Wu, Y.; Bi, L.; Chen, Y.; Xie, Z.; et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light. Sci. Appl. 2019, 8, 107. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, E.P.C. Chemical Reagents for Sensor Design and Development. Chemosensors 2020, 8, 35. https://doi.org/10.3390/chemosensors8020035
Lai EPC. Chemical Reagents for Sensor Design and Development. Chemosensors. 2020; 8(2):35. https://doi.org/10.3390/chemosensors8020035
Chicago/Turabian StyleLai, Edward P. C. 2020. "Chemical Reagents for Sensor Design and Development" Chemosensors 8, no. 2: 35. https://doi.org/10.3390/chemosensors8020035
APA StyleLai, E. P. C. (2020). Chemical Reagents for Sensor Design and Development. Chemosensors, 8(2), 35. https://doi.org/10.3390/chemosensors8020035