Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach toward Smart Nutrient Deployment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nitrate and Nitrite Signal Assessment
2.2. Synthetic Fertilizer Formulations for Interference Factorial Design Assays
3. Results and Discussion
3.1. Nitrate and Nitrite Signal Assessment
- (i)
- nitrite interferes in the measurements of a low (A1) and high (A2) nitrate concentration sample;
- (ii)
- phosphate interferes in a nitrate (B1) and nitrate/nitrite (B2) sample;
- (iii)
- potassium interferes in a nitrate (C1) and a nitrate/nitrite (C2) sample;
- (iv)
- a phosphate/potassium solution interferes with a nitrate (D1) and a nitrate/nitrite (D2) sample (Supplementary Information Figures S1–S4).
3.2. Interference Factorial Design Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. World Fertilizer Trends and Outlook to 2018; FAO: Rome, Italy, 2015. [Google Scholar]
- Markets, R. Liquid Fertilizer Market: Global Industry Analysis, Trends, Market Size & Forecasts to 2023. Available online: https://www.researchandmarkets.com/reports/4397153/liquid-fertilizer-market-global-industry (accessed on 27 September 2017).
- Magen, H. Fertigation: An overview of some practical aspects. In Fertilizer News; The Fertilizer Association of India: New Delhi, India, 1995. [Google Scholar]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; Van der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef] [PubMed]
- Landis, T.D.; Pinto, J.R.; Davis, A.S. Fertigation—Injecting Soluble Fertilizers into the Irrigation System. In Forest Nursery Notes; U.S. Department of Agriculture, Forest Service, Natural Resources Conservation Service, National Agroforestry Center: Lincoln, NE, USA, 2009. [Google Scholar]
- Wang, X.; Xing, A.Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef]
- De la Torre, M.L.; Grande, J.A.; Aroba, J.; Andujar, J.M. Optimization of fertirrigation efficiency in strawberry crops by application of fuzzy logic techniques. J. Environ. Monit. 2005, 7, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Richard, G.; Snyder, A.M.S. Fertigation: The Basics of Injecting Fertilizer for Field-Grown Tomatoes; Mississippi State University: Mississippi State, MS, USA, 2016. [Google Scholar]
- Alencar, C.A.B.D.; Da Cunha, F.F.; Martins, C.E.; Cóser, A.C.; Da Rocha, W.S.D. Irrigação de pastagem: Atualidade e recomendações para uso e manejo. Rev. Bras. Zootec. 2009, 38, 98–108. [Google Scholar] [CrossRef]
- Perea, R.G.; García, I.F.; Arroyo, M.M.; Díaz, J.A.R.; Poyato, E.C.; Montesinos, P. Multiplatform application for precision irrigation scheduling in strawberries. Agric. Water Manag. 2017, 183, 194–201. [Google Scholar] [CrossRef]
- Ciavatta, S.F.; Silva, M.R.D.; Simões, D. Fertirrigação na produção de mudas de Eucalyptus grandis nos períodos de inverno e verão. Cerne 2014, 20, 217–222. [Google Scholar] [CrossRef]
- Noori, O.; Panda, S.S. Site-specific management of common olive: Remote sensing, geospatial, and advanced image processing applications. Comput. Electron. Agric. 2016, 127, 680–689. [Google Scholar] [CrossRef]
- Bortolini, L. A low environmental impact system for fertirrigation of maize with cattle slurry. Contemp. Eng. Sci. 2016, 9, 201–213. [Google Scholar] [CrossRef]
- Ruzicka, J. From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies. Talanta 2016, 158, 299–305. [Google Scholar]
- Trojanowicz, M.; Kolacinska, A.K. Recent advances in flow injection analysis. Analyst 2016, 141, 2085–2139. [Google Scholar] [CrossRef]
- Chan, S.; Halimi, A.; Zhu, F.; Gyongy, I.; Henderson, R.K.; Bowman, R.; McLaughlin, S.; Buller, G.S.; Leach, J. Long-range depth imaging using a single-photon detector array and non-local data fusion. Sci. Rep. 2019, 9, 8075. [Google Scholar] [CrossRef] [PubMed]
- Masrie, M.; Rosman, M.S.A.; Sam, R.; Janin, Z. Detection of nitrogen, phosphorus, and potassium (NPK) nutrients of soil using optical transducer. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, 28–30 November 2017. [Google Scholar]
- Pagliano, E.; Meija, J.; Mester, Z. High-precision quadruple isotope dilution method for simultaneous determination of nitrite and nitrate in seawater by GCMS after derivatization with triethyloxonium tetrafluoroborate. Anal. Chim. Acta 2014, 824, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guadagnini, L.; Tonelli, D. Carbon electrodes unmodified and decorated with silver nanoparticles for the determination of nitrite, nitrate and iodate. Sens. Actuators B Chem. 2013, 188, 806–814. [Google Scholar] [CrossRef]
- Aydın, A.; Ercan, Ö.; Taşcıoğlu, S. A novel method for the spectrophotometric determination of nitrite in water. Talanta 2005, 66, 1181–1186. [Google Scholar] [CrossRef]
- Sakamoto, C.M.; Johnson, K.S.; Coletti, L.J. Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnol. Oceanogr. Methods 2009, 7, 132–143. [Google Scholar] [CrossRef]
- Xi, Y.; Templeton, E.J.; Salin, E.D. Rapid simultaneous determination of nitrate and nitrite on a centrifugal microfluidic device. Talanta 2010, 82, 1612–1615. [Google Scholar] [CrossRef]
- Li, D.; Ma, Y.; Duan, H.; Deng, W.; Li, D. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens. Bioelectron. 2018, 99, 389–398. [Google Scholar] [CrossRef]
- Parveen, S.; Pathak, A.; Gupta, B.D. Fiber optic SPR nanosensor based on synergistic effects of CNT/Cu-nanoparticles composite for ultratrace sensing of nitrate. Sens. Actuators B Chem. 2017, 246, 910–919. [Google Scholar] [CrossRef]
- Liu, R.-T.; Tao, L.-Q.; Liu, B.; Tian, X.-G.; Mohammad, M.A.; Yang, Y.; Ren, T.-L. A Miniaturized On-Chip Colorimeter for Detecting NPK Elements. Sensors 2016, 16, 1234. [Google Scholar] [CrossRef]
- Masayuki, Y.; Takuya, O.; Ichirou, Y. An optical sensor for analysis of soil nutrients by using LED light sources. Meas. Sci. Technol. 2007, 18, 2197. [Google Scholar]
- Varghese, B.P.; Pillai, A.B.; Naduvil, M.K. Fiber optic sensor for the detection of ammonia, phosphate and iron in water. J. Opt. 2013, 42, 78–82. [Google Scholar] [CrossRef]
- Martins, R.C. WO2018060967 Big Data Self-Learning Artificial Intelligence Methodology for the Accurate Quantification and Classification of Spectral Information Under Complex Variability and Multi-Scale Interference. 2018. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018060967&_cid=P10-K1GHNT-90866-1 (accessed on 8 October 2019).
- Gogé, F.; Joffre, R.; Jolivet, C.; Ross, I.; Ranjard, L. Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database. Chemom. Intell. Lab. Syst. 2012, 110, 168–176. [Google Scholar] [CrossRef]
- Xu, Y.; Zomer, S.; Brereton, R.G. Support Vector Machines: A Recent Method for Classification in Chemometrics. Crit. Rev. Anal. Chem. 2006, 36, 177–188. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Mohua, G.G.; Karanassios, V. Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One. In Advanced Applications for Artificial Neural Networks; IntechOpen: London, UK, 2017. [Google Scholar]
- Feinholz, M.E.; Flora, S.J.; Brown, S.W.; Zong, Y.; Lykke, K.R.; Yarbrough, M.A.; Johnson, B.C.; Clark, D.K. Stray light correction algorithm for multichannel hyperspectral spectrographs. Appl. Opt. 2012, 51, 3631–3641. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, N.B.; Blake, T.A.; Gassman, P.L. Application of extended inverse scatter correction to mid-infrared reflectance spectra of soil. J. Chemom. 2005, 19, 271–281. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Helms, J.R.; Mao, J.; Stubbins, A.; Schmidt-Rohr, K.; Spencer, R.G.M.; Hernes, P.J.; Mopper, K. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching. Aquat. Sci. 2014, 76, 353–373. [Google Scholar] [CrossRef]
- Gutmann, H.; Lewin, M.; Perlmutter-Hayman, B. Ultraviolet absorption spectra of chlorine, bromine, and bromine chloride in aqueous solution. J. Phys. Chem. 1968, 72, 3671–3673. [Google Scholar] [CrossRef]
- Fehnel, E.A.; Carmack, M. The Ultraviolet Absorption Spectra of Organic Sulfur Compounds. I. Compounds Containing the Sulfide Function. J. Am. Chem. Soc. 1949, 71, 84–93. [Google Scholar]
- Tomišić, V.; Butorac, V.; Viher, J.; Simeon, V. Comparison of the Temperature Effect on the π∗←n and π∗←π Electronic Transition Bands of NO3−(aq). J. Solut. Chem. 2005, 34, 613–616. [Google Scholar] [CrossRef]
- Perkampus, H.-H. UV-VIS Atlas of Organic Compounds; Wiley-VCH: Weinheim, Germany, 1992. [Google Scholar]
- Ogura, N.; Hanya, T. Nature of Ultra-Violet Absorption of Sea Water. Nature 1966, 212, 758. [Google Scholar] [CrossRef]
- Directive, C. On the Quality of Water Intended for Human Consumption. Off. J. Eur. Communities 1998, 330, 32–54. [Google Scholar]
- Barman, D.; Naik, S.K. Effect of substrate, nutrition and growth regulator on productivity and mineral composition of leaf and pseudobulb of Cymbidium hybrid Baltic Glacier Mint Ice. J. Plant Nutr. 2017, 40, 784–794. [Google Scholar] [CrossRef]
Composition | C (mgL−1) | Σ Concentration (mgL−1 per Nutrient) | |
---|---|---|---|
T0 | HNO3 | 135.3 | 135.3 |
T1 | Ca(NO3)2 | 9368 | |
(NH4)(NO3) | 1702 | 11,071 | |
T2 | KNO3 | 3387 | 3387 |
KNO3 | 9948 | ||
KH2PO4 | 4793 | ||
K2SO4 | 116.0 | 14,857 | |
KH2PO4 | 3854 | 3854 |
ID | V T0 (mL) | V T1 (mL) | V T2 (mL) | V H2O (mL) |
---|---|---|---|---|
1 | 1.00 | 0.80 | 1.00 | 0.20 |
2 | 0.80 | 0.80 | 1.00 | 0.40 |
3 | 0.60 | 0.80 | 1.00 | 0.60 |
4 | 0.40 | 0.80 | 1.00 | 0.80 |
5 | 0.20 | 0.80 | 1.00 | 1.00 |
6 | 0.00 | 0.80 | 1.00 | 1.20 |
7 | 1.00 | 0.60 | 1.00 | 0.40 |
8 | 0.80 | 0.60 | 1.00 | 0.60 |
9 | 0.60 | 0.60 | 1.00 | 0.80 |
10 | 0.40 | 0.60 | 1.00 | 1.00 |
11 | 0.20 | 0.60 | 1.00 | 1.20 |
12 | 0.00 | 0.60 | 1.00 | 1.40 |
Interferent | ||||
---|---|---|---|---|
Sample | NO2− | PO43− | K+ | PO43− and K+ |
NO3− | A1 and A2 | B1 | C1 | D1 |
NO3− and NO2− | - | B2 | C2 | D2 |
Composition 1 | Ionic Specie | C (gmL−1) | Σ Concentration (Per Ionic Specie) | |
---|---|---|---|---|
T0 | HNO3 | NO3− | 1.353 × 10−4 | NO3− = 1.353 × 10−4 |
T1 | Ca(NO3)2 | NO3− | 9.368 × 10−3 | |
(NH4)(NO3) | NO3− | 1.702 × 10−3 | NO3− = 1.107 × 10−2 | |
T2 | KNO3 | NO3− | 3.387 × 10−3 | NO3− = 3.387 × 10−3 |
KNO3 | K+ | 9.948 × 10−3 | ||
KH2PO4 | K+ | 4.793 × 10−3 | ||
K2SO4 | K+ | 1.160 × 10−4 | K+ = 1.486 × 10−2 | |
KH2PO4 | P5+ | 3.854 × 10−3 | P5+ = 3.854 × 10−3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro-Silva, F.; Jorge, P.A.S.; Martins, R.C. Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach toward Smart Nutrient Deployment. Chemosensors 2019, 7, 51. https://doi.org/10.3390/chemosensors7040051
Monteiro-Silva F, Jorge PAS, Martins RC. Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach toward Smart Nutrient Deployment. Chemosensors. 2019; 7(4):51. https://doi.org/10.3390/chemosensors7040051
Chicago/Turabian StyleMonteiro-Silva, Filipe, Pedro A. S. Jorge, and Rui C. Martins. 2019. "Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach toward Smart Nutrient Deployment" Chemosensors 7, no. 4: 51. https://doi.org/10.3390/chemosensors7040051
APA StyleMonteiro-Silva, F., Jorge, P. A. S., & Martins, R. C. (2019). Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach toward Smart Nutrient Deployment. Chemosensors, 7(4), 51. https://doi.org/10.3390/chemosensors7040051