Application of Fecal Volatile Organic Compound Analysis in Clinical Practice: Current State and Future Perspectives
Abstract
:1. Introduction
2. Fecal Volatile Organic Compound Analytical Methods
3. Fecal VOC in Gastrointestinal DISEASES
3.1. Infectious Diseases
Other Infectious Diseases
3.2. Inflammatory Bowel Disease and Irritable Bowel Syndrome
3.3. Colorectal Cancer
3.4. Necrotizing Enterocolitis
3.5. Other Gastrointestinal Diseases
3.5.1. Celiac Disease
3.5.2. Non-Alcoholic Fatty Liver Disease
4. Extra-Intestinal Diseases
4.1. Late Onset Sepsis
4.2. Bronchopulmonary Dysplasia
5. Sampling Methods
5.1. GC-MS
5.2. Electronic Nose Device
6. Summary, Future Perspectives and Conclusions
Conflicts of Interest
References
- Nakama, H.; Zhang, B.; Zhang, X. Evaluation of the optimum cut-off point in immunochemical occult blood testing in screening for colorectal cancer. Eur. J. Cancer 2001, 37, 398–401. [Google Scholar] [CrossRef]
- Allison, J.E.; Fraser, C.G.; Halloran, S.P.; Young, G.P. Population screening for colorectal cancer means getting fit: The past, present, and future of colorectal cancer screening using the fecal immunochemical test for hemoglobin (fit). Gut Liver 2014, 8, 117–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghagolzadeh, P.; Radpour, R. New trends in molecular and cellular biomarker discovery for colorectal cancer. World J. Gastroenterol. 2016, 22, 5678–5693. [Google Scholar] [CrossRef] [PubMed]
- Slaby, O. Non-coding rnas as biomarkers for colorectal cancer screening and early detection. Adv. Exp. Med. Biol. 2016, 937, 153–170. [Google Scholar] [PubMed]
- Mroczynska, M.; Galecka, M.; Szachta, P.; Kamoda, D.; Libudzisz, Z.; Roszak, D. Beta-glucuronidase and beta-glucosidase activity in stool specimens of children with inflammatory bowel disease. Pol. J. Microbiol. 2013, 62, 319–325. [Google Scholar]
- Siddiqui, I.; Majid, H.; Abid, S. Update on clinical and research application of fecal biomarkers for gastrointestinal diseases. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Lough, F.; Perry, J.D.; Stanforth, S.P.; Dean, J.R. Detection of exogenous vocs as a novel in vitro diagnostic technique for the detection of pathogenic bacteria. TrAC Trends Anal. Chem. 2017, 87, 71–81. [Google Scholar] [CrossRef]
- Wilson, A. Recent Applications of Electronic-Nose Technologies for the Noninvasive Early Diagnosis of Gastrointestinal Diseases. Proceedings 2018, 2, 147. [Google Scholar] [CrossRef]
- Buijck, M.; Berkhout, D.J.; de Groot, E.F.; Benninga, M.A.; van der Schee, M.P.; Kneepkens, C.M.; de Boer, N.K.; de Meij, T.G. Sniffing out paediatric gastrointestinal diseases: The potential of volatile organic compounds as biomarkers for disease. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Spanel, P.; Smith, D. Quantitative selected ion flow tube mass spectrometry: The influence of ionic diffusion and mass discrimination. J. Am. Soc. Mass Spectrom. 2001, 12, 863–872. [Google Scholar] [CrossRef]
- Zrodnikov, Y.; Davis, C.E. The highs and lows of faims: Predictions and future trends for high field asymmetric waveform ion mobility spectrometry. J. Nanomed. Nanotechnol. 2012, 3, 109e. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, D.J.C.; Niemarkt, H.J.; Benninga, M.A.; Budding, A.E.; van Kaam, A.H.; Kramer, B.W.; Pantophlet, C.M.; van Weissenbruch, M.M.; de Boer, N.K.H.; de Meij, T.G.J. Development of severe bronchopulmonary dysplasia is associated with alterations in fecal volatile organic compounds. Pediatr. Res. 2018, 83, 412–419. [Google Scholar] [CrossRef] [PubMed]
- De Meij, T.G.; van der Schee, M.P.; Berkhout, D.J.; van de Velde, M.E.; Jansen, A.E.; Kramer, B.W.; van Weissenbruch, M.M.; van Kaam, A.H.; Andriessen, P.; van Goudoever, J.B.; et al. Early detection of necrotizing enterocolitis by fecal volatile organic compounds analysis. J. Pediatr. 2015, 167, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, D.J.C.; Niemarkt, H.J.; Buijck, M.; van Weissenbruch, M.M.; Brinkman, P.; Benninga, M.A.; van Kaam, A.H.; Kramer, B.W.; Andriessen, P.; de Boer, N.K.H.; et al. Detection of sepsis in preterm infants by fecal volatile organic compounds analysis: A proof of principle study. J. Pediatr. Gastroenterol. Nutr. 2017, 65, e47–e52. [Google Scholar] [CrossRef] [PubMed]
- Arasaradnam, R.P.; Ouaret, N.; Thomas, M.G.; Gold, P.; Quraishi, M.N.; Nwokolo, C.U.; Bardhan, K.D.; Covington, J.A. Evaluation of gut bacterial populations using an electronic e-nose and field asymmetric ion mobility spectrometry: Further insights into ‘fermentonomics’. J. Med. Eng. Technol. 2012, 36, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Partyka, A.; Dymerski, T.; Gebicki, J.; Namiesnik, J. Electronic noses in medical diagnostics. Curr. Med. Chem. 2017. [Google Scholar] [CrossRef]
- Arasaradnam, R.P.; Covington, J.A.; Harmston, C.; Nwokolo, C.U. Review article: Next generation diagnostic modalities in gastroenterology—Gas phase volatile compound biomarker detection. Aliment. Pharmacol. Ther. 2014, 39, 780–789. [Google Scholar] [CrossRef] [PubMed]
- McGuire, N.D.; Ewen, R.J.; de Lacy Costello, B.; Garner, C.E.; Probert, C.S.J.; Vaughan, K.; Ratcliffe, N.M. Towards point of care testing for c. Difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection. Meas. Sci. Technol. 2014, 25, 065108. [Google Scholar] [CrossRef] [PubMed]
- Tait, E.; Hill, K.A.; Perry, J.D.; Stanforth, S.P.; Dean, J.R. Development of a novel method for detection of clostridium difficile using hs-spme-gc-ms. J. Appl. Microbiol. 2014, 116, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Garner, C.E.; Smith, S.; de Lacy Costello, B.; White, P.; Spencer, R.; Probert, C.S.; Ratcliffe, N.M. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007, 21, 1675–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomers, M.K.; Smulders, Y.M. An odour of disease and decay: The nose as a diagnostic instrument. Nederlands Tijdschrift voor Geneeskunde 2015, 159, A9434. [Google Scholar] [PubMed]
- Probert, C.S.; Jones, P.R.; Ratcliffe, N.M. A novel method for rapidly diagnosing the causes of diarrhoea. Gut 2004, 53, 58–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, C.E.; Ewer, A.K.; Elasouad, K.; Power, F.; Greenwood, R.; Ratcliffe, N.M.; Costello Bde, L.; Probert, C.S. Analysis of faecal volatile organic compounds in preterm infants who develop necrotising enterocolitis: A pilot study. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Al-Kateb, H.; Cunliffe, N.; deLacy Costello, B.; Probert, C.; Ratcliffe, N. Pwe-169 analysis of faecal volatiles from young children infected with and without rotavirus. Gut 2012, 61, A364–A365. [Google Scholar] [CrossRef]
- Bond, A.; Vernon, A.; Reade, S.; Mayor, A.; Minetti, C.; Wastling, J.; Lamden, K.; Probert, C. Investigation of volatile organic compounds emitted from faeces for the diagnosis of giardiasis. J. Gastrointest. Liver Dis. 2015, 24, 281–286. [Google Scholar] [CrossRef]
- Ofori, E.; Ramai, D.; Dhawan, M.; Mustafa, F.; Gasperino, J.; Reddy, M. Community-acquired clostridium difficile: Epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies. J. Hosp. Infect. 2018, 99, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Bomers, M.K.; Menke, F.P.; Savage, R.S.; Vandenbroucke-Grauls, C.M.; van Agtmael, M.A.; Covington, J.A.; Smulders, Y.M. Rapid, accurate, and on-site detection of C. difficile in stool samples. Am. J. Gastroenterol. 2015, 110, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Garner, C.E.; Smith, S.; Bardhan, P.K.; Ratcliffe, N.M.; Probert, C.S. A pilot study of faecal volatile organic compounds in faeces from cholera patients in bangladesh to determine their utility in disease diagnosis. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1171–1173. [Google Scholar] [CrossRef] [PubMed]
- Hoekman, D.R.; Rutten, J.M.; Vlieger, A.M.; Benninga, M.A.; Dijkgraaf, M.G. Annual costs of care for pediatric irritable bowel syndrome, functional abdominal pain, and functional abdominal pain syndrome. J. Pediatr. 2015, 167, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Gralnek, I.M. Complications of diagnostic colonoscopy, upper endoscopy, and enteroscopy. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Van Rheenen, P.F.; Van de Vijver, E.; Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: Diagnostic meta-analysis. BMJ 2010, 341, c3369. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Greenwood, R.; Costello Bde, L.; Ratcliffe, N.M.; Probert, C.S. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS ONE 2013, 8, e58204. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.; Fowler, D.P.; Turner, C.; Jia, W.; Whitehead, R.N.; Griffiths, L.; Dawson, C.; Waring, R.H.; Ramsden, D.B.; Cole, J.A.; et al. Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflamm. Bowel Dis. 2013, 19, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, S.F.; McGuire, N.D.; de Lacy Costello, B.P.; Ewen, R.J.; Jayasena, D.H.; Vaughan, K.; Ahmed, I.; Probert, C.S.; Ratcliffe, N.M. The use of a gas chromatograph coupled to a metal oxide sensor for rapid assessment of stool samples from irritable bowel syndrome and inflammatory bowel disease patients. J. Breath Res. 2014, 8, 026001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Greenwood, R.; Costello, B.; Ratcliffe, N.; Probert, C.S. Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2016, 43, 596–611. [Google Scholar] [CrossRef] [PubMed]
- Aggio, R.B.; White, P.; Jayasena, H.; de Lacy Costello, B.; Ratcliffe, N.M.; Probert, C.S. Irritable bowel syndrome and active inflammatory bowel disease diagnosed by faecal gas analysis. Alimen. Pharmacol. Ther. 2017, 45, 82–90. [Google Scholar] [CrossRef] [PubMed]
- De Meij, T.G.; de Boer, N.K.; Benninga, M.A.; Lentferink, Y.E.; de Groot, E.F.; van de Velde, M.E.; van Bodegraven, A.A.; van der Schee, M.P. Faecal gas analysis by electronic nose as novel, non-invasive method for assessment of active and quiescent paediatric inflammatory bowel disease: Proof of principle study. J. Crohn’s Colitis 2014. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, N.; Lakenman, R.; Covington, J.; Savage, R.; de Groot, E.; Bomers, M.; Benninga, M.; Mulder, C.; de Boer, N.; de Meij, T. Faecal volatile organic compounds analysis using field asymmetric ion mobility spectrometry: Non-invasive diagnostics in paediatric inflammatory bowel disease. J. Breath Res. 2017, 12, 016006. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; van Gaal, N.; Zuurbier, R.P.; Covington, J.A.; Wicaksono, A.N.; Biezeveld, M.H.; Benninga, M.A.; Mulder, C.J.; de Meij, T.G. Differentiation between pediatric irritable bowel syndrome and inflammatory bowel disease based on fecal scent: Proof of principle study. Inflamm. Bowel Dis. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer statistics, 2009. CA Cancer J. Clin. 2009, 59, 225–249. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Parkin, D.M.; Steliarova-Foucher, E. Estimates of cancer incidence and mortality in europe in 2008. Eur. J. Cancer 2010, 46, 765–781. [Google Scholar] [CrossRef] [PubMed]
- Atkin, W.S.; Morson, B.C.; Cuzick, J. Long-term risk of colorectal cancer after excision of rectosigmoid adenomas. N. Engl. J. Med. 1992, 326, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Oort, F.A.; Terhaar Sive Droste, J.S.; Van Der Hulst, R.W.; Van Heukelem, H.A.; Loffeld, R.J.; Wesdorp, I.C.; Van Wanrooij, R.L.; De Baaij, L.; Mutsaers, E.R.; van der Reijt, S.; et al. Colonoscopy-controlled intra-individual comparisons to screen relevant neoplasia: Faecal immunochemical test vs. Guaiac-based faecal occult blood test. Aliment. Pharmacol. Ther. 2010, 31, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Saito, H.; Soma, Y.; Sobue, T.; Tanaka, M.; Munakata, A. Prevention of advanced colorectal cancer by screening using the immunochemical faecal occult blood test: A case-control study. Br. J. Cancer 2003, 89, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Soma, Y.; Nakajima, M.; Koeda, J.; Kawaguchi, H.; Kakizaki, R.; Chiba, R.; Aisawa, T.; Munakata, A. A case-control study evaluating occult blood screening for colorectal cancer with hemoccult test and an immunochemical hemagglutination test. Oncol. Rep. 2000, 7, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Hundt, S.; Haug, U.; Brenner, H. Comparative evaluation of immunochemical fecal occult blood tests for colorectal adenoma detection. Ann. Intern. Med. 2009, 150, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Kato, J.; Yamaji, Y.; Wada, R.; Mitsushima, T.; Shiratori, Y. A comparison of the immunochemical fecal occult blood test and total colonoscopy in the asymptomatic population. Gastroenterology 2005, 129, 422–428. [Google Scholar] [CrossRef] [PubMed]
- De Meij, T.G.; Larbi, I.B.; van der Schee, M.P.; Lentferink, Y.E.; Paff, T.; Terhaar Sive Droste, J.S.; Mulder, C.J.; van Bodegraven, A.A.; de Boer, N.K. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study. Int. J. Cancer 2014, 134, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Batty, C.A.; Cauchi, M.; Lourenco, C.; Hunter, J.O.; Turner, C. Use of the analysis of the volatile faecal metabolome in screening for colorectal cancer. PLoS ONE 2015, 10, e0130301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battersby, C.; Santhalingam, T.; Costeloe, K.; Modi, N. Incidence of neonatal necrotising enterocolitis in high-income countries: A systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F182–F189. [Google Scholar] [PubMed]
- Niemarkt, H.J.; de Meij, T.G.J.; van de Velde, M.E.; van der Schee, M.P.; van Goudoever, J.B.; Kramer, B.W.; Andriessen, P.; de Boer, N.K.H. Necrotizing enterocolitis: A clinical review on diagnostic biomarkers and the role of the intestinal microbiota. Inflamm. Bowel Dis. 2015, 21, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Tye-Din, J.; Anderson, R. Immunopathogenesis of celiac disease. Curr. Gastroenterol. Rep. 2008, 10, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global prevalence of celiac disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; De Angelis, M.; De Pasquale, I.; Ndagijimana, M.; Vernocchi, P.; Ricciuti, P.; Gagliardi, F.; Laghi, L.; Crecchio, C.; Guerzoni, M.E.; et al. Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiol. 2011, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Rizzello, C.G.; Gagliardi, F.; Ricciuti, P.; Ndagijimana, M.; Francavilla, R.; Guerzoni, M.E.; Crecchio, C.; Gobbetti, M.; De Angelis, M. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl. Environ. Microbiol. 2009, 75, 3963–3971. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.E.; Parnell, J.A.; Eksteen, B.; Raman, M.; Bomhof, M.R.; Rioux, K.P.; Madsen, K.L.; Reimer, R.A. Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: A randomized controlled trial protocol. BMC Gastroenterol. 2015, 15, 169. [Google Scholar] [CrossRef] [PubMed]
- Raman, M.; Ahmed, I.; Gillevet, P.M.; Probert, C.S.; Ratcliffe, N.M.; Smith, S.; Greenwood, R.; Sikaroodi, M.; Lam, V.; Crotty, P.; et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2013, 11, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Raman, M.; Kaufman, J.; Probert, C.S.; Smith, S.; Shaheen, A.A.M.; Rioux, K.P. M1728 evaluation of small bowel bacterial overgrowth, fecal microbiota and bacteria-associated volatile organic compounds in patients with non-alcoholic fatty liver disease. Gastroenterology 2009, 136, A-419. [Google Scholar] [CrossRef]
- Del Chierico, F.; Nobili, V.; Vernocchi, P.; Russo, A.; Stefanis, C.D.; Gnani, D.; Furlanello, C.; Zandonà, A.; Paci, P.; Capuani, G.; et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 2017, 65, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Bizzarro, M.J.; Raskind, C.; Baltimore, R.S.; Gallagher, P.G. Seventy-five years of neonatal sepsis at yale: 1928–2003. Pediatrics 2005, 116, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Boghossian, N.S.; Page, G.P.; Bell, E.F.; Stoll, B.J.; Murray, J.C.; Cotten, C.M.; Shankaran, S.; Walsh, M.C.; Laptook, A.R.; Newman, N.S.; et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J. Pediatr. 2013, 162, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- Sohn, A.H.; Garrett, D.O.; Sinkowitz-Cochran, R.L.; Grohskopf, L.A.; Levine, G.L.; Stover, B.H.; Siegel, J.D.; Jarvis, W.R. Prevalence of nosocomial infections in neonatal intensive care unit patients: Results from the first national point-prevalence survey. J. Pediatr. 2001, 139, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.S.; Alex, C.P.; Sevallius, J.M.; Murphy, D.M.; Good, M.J.; Volberding, A.M.; Hofer, L.L.; Gordon, B.J.; Maki, D.G. Cohort study of the pathogenesis and molecular epidemiology of catheter-related bloodstream infection in neonates with peripherally inserted central venous catheters. Infect. Control hosp. Epidemiol. 2008, 29, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Premru, M.; Gubina, M.; Kaufmann, M.E.; Primozic, J.; Cookson, B.D. Use of semi-quantitative and quantitative culture methods and typing for studying the epidemiology of central venous catheter-related infections in neonates on parenteral nutrition. J. Med. Microbiol. 1999, 48, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carl, M.A.; Ndao, I.M.; Springman, A.C.; Manning, S.D.; Johnson, J.R.; Johnston, B.D.; Burnham, C.A.; Weinstock, E.S.; Weinstock, G.M.; Wylie, T.N.; et al. Sepsis from the gut: The enteric habitat of bacteria that cause late-onset neonatal bloodstream infections. Clin. Infect. Dis. 2014, 58, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Madan, J.C.; Salari, R.C.; Saxena, D.; Davidson, L.; O’Toole, G.A.; Moore, J.H.; Sogin, M.L.; Foster, J.A.; Edwards, W.H.; Palumbo, P.; et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F456–F462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, V.; Torrazza, R.M.; Ukhanova, M.; Wang, X.; Sun, Y.; Li, N.; Shuster, J.; Sharma, R.; Hudak, M.L.; Neu, J. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS ONE 2013, 8, e52876. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.G.; Sim, K.; Randell, P.; Cox, M.J.; McClure, Z.E.; Li, M.S.; Donaldson, H.; Langford, P.R.; Cookson, W.O.; Moffatt, M.F.; et al. Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants. PLoS ONE 2015, 10, e0132923. [Google Scholar] [CrossRef] [PubMed]
- Soeorg, H.; Huik, K.; Parm, U.; Ilmoja, M.L.; Metelskaja, N.; Metsvaht, T.; Lutsar, I. Genetic relatedness of coagulase-negative staphylococci from gastrointestinal tract and blood of preterm neonates with late-onset sepsis. Pediatr. Infect. Dis. J. 2013, 32, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J.; Marrs, E.C.; Magorrian, S.; Nelson, A.; Lanyon, C.; Perry, J.D.; Embleton, N.D.; Cummings, S.P.; Berrington, J.E. The preterm gut microbiota: Changes associated with necrotizing enterocolitis and infection. Acta Paediatr. 2012, 101, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Taft, D.H.; Ambalavanan, N.; Schibler, K.R.; Yu, Z.; Newburg, D.S.; Deshmukh, H.; Ward, D.V.; Morrow, A.L. Center variation in intestinal microbiota prior to late-onset sepsis in preterm infants. PLoS ONE 2015, 10, e0130604. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, D.J.C.; Van Keulen, B.J.; Niemarkt, H.J.; Bessem, J.R.; de Boode, W.P.; Cossey, V.; Hoogenes, N.; Hulzebos, C.V.; Klaver, E.; Andriessen, P.; et al. Late-onset sepsis in preterm infants can be detected preclinically by fecal volatile organic compound analysis: A prospective, multicenter cohort study. Clin. Infect. Dis. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Horbar, J.D.; Carpenter, J.H.; Badger, G.J.; Kenny, M.J.; Soll, R.F.; Morrow, K.A.; Buzas, J.S. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics 2012, 129, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, B.O.; Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Reade, S.; Mayor, A.; Aggio, R.; Khalid, T.; Pritchard, D.M.; Ewer, A.K.; Probert, C.S. Optimisation of sample preparation for direct spme-gc-ms analysis of murine and human faecal volatile organic compounds for metabolomic studies. J. Anal. Bioanal. Tech. 2014, 5, 184. [Google Scholar]
- Berkhout, D.J.; Benninga, M.A.; van Stein, R.M.; Brinkman, P.; Niemarkt, H.J.; de Boer, N.K.; de Meij, T.G. Effects of sampling conditions and environmental factors on fecal volatile organic compound analysis by an electronic nose device. Sensors 2016, 16, 1967. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Consedine, N.S.; Ladwig, I.; Reddig, M.K.; Broadbent, E.A. The many faeces of colorectal cancer screening embarrassment: Preliminary psychometric development and links to screening outcome. Br. J. Health Psychol. 2011, 16, 559–579. [Google Scholar] [CrossRef] [PubMed]
- Consedine, N.S.; Reddig, M.K.; Ladwig, I.; Broadbent, E.A. Gender and ethnic differences in colorectal cancer screening embarrassment and physician gender preferences. Oncol. Nurs. Forum 2011, 38, E409–E417. [Google Scholar] [CrossRef] [PubMed]
- Breathcloud. Available online: https://www.breathcloud.org/en/ (accessed on 16 March 2018).
- Bhattacharyya, D.; Kumar, P.; Mohanty, S.K.; Smith, Y.R.; Misra, M. Detection of four distinct volatile indicators of colorectal cancer using functionalized titania nanotubular arrays. Sensors 2017, 17, 1795. [Google Scholar] [CrossRef] [PubMed]
- De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
Analytical Technique | Advantages | Disadvantages |
---|---|---|
eNose device | Real-time measurements possible Easy to use High-throughput analysis possible Low purchase and measurement costs Portable and suitable for bedside use Sensitivity in ppb range | Identification of specific individual VOCS not possible Inter-device outcome comparison not possible Over time sensor drift |
GC-MS | Identification of specific individual VOCs Sensitivity possible in ppb range Reproducible | Time consuming and labor intensive Expensive Requires highly trained operating personnel High maintenance requirements System immobile Real-time measurements not possible Not suitable for clinical use |
FAIMS | Sensitivity in ppm range Mobile system and suitable for clinical use Easy to use Low cost | Identification of specific individual VOCs not possible Real-time measurements not possible |
SIFT-MS | Real-time measurements possible Fast Sensitivity in ppb range Mobile system | Identification of specific individual VOCs is not possible |
Disease | Ref. | Case/Control No. | Analytical Technique | VOC Biomarker a,b | Sensitivity | Specificity | AUC (95% CI) |
---|---|---|---|---|---|---|---|
Clostridium difficile | Bomers et al. (2015) | 26/50 | FAIMS | VOC profile | 92.3% | 86.0% | 0.93 (0.85–1.00) |
Tait et al. (2014) | 77/23 | GC-MS | ↑ 2-fluoro-4-methylphenol (10 µg/mL) ↑ p-cresol (0.59 µg/mL) ↑ isocaproic acid (87 µg/mL) | 83.1% | 100% | - - | |
Garner et al. (2007) | 22/30 | GC-MS | * 2-ethanol; * toluene; * 6-methyl-3,5-heptadiene-2-one; * hexanoic acid | - - | - - | - - | |
Probert et al. (2004) | 6/38 | GC-MS | ↑ 5-methyl-2-furancarboxyaldehyde | 83% | 97% | - - | |
McGuire et al. (2014) | 50/50 | GC-MS | VOC profile | 85% | 80% | - - | |
Campylobacter jejuni | Garner et al. (2007) | 31/30 | GC-MS | ↑ 1-butoxy-2-propanol; * 3-methyl furan; * dimethylsulfide | - - | - - | - - |
Probert et al. (2004) | GC-MS | * Terpenes; * hydrocarbons | 100% | 92% | - - | ||
Cholera | Garner et al. (2009) | 6/3 | GC-MS | ↑ dimethyl disulfide; ↑ p-menth-1-en-8-ol | - - | - - | - - |
Giardiasis | Bond et al. (2015) | 16/17 | GC-MS | ↓ acetone (16.423 vs. 18.268) c ↓ 2-butanone (17.454 vs. 18.889) c ↑ 2-methylphenol ↑ 4-methylphenol (20.522 vs. 19.355) c | - - | - - | Tetramethylocatane: 0.93 1-propanol: 0.85 Acetic acid: 0.82 Pentamethylheptane: 0.81 Acetone: 0.80 |
Rotavirus | Al-Kateb et al. (2012) | 27/26 | GC-MS | ↑ aldehydes; ↑ 2-3-butanedione | - - | - - | - - |
Probert et al. (2004) | 5/38 | GC-MS | ↑ ethyl dodecanoate | 100% | 97% | - - |
Disease 1 | Ref. | Study No. | Analytical Technique | VOC Biomarker a | Sensitivity | Specificity | AUC (95% CI) |
---|---|---|---|---|---|---|---|
Adult IBD and IBS | Ahmed et al. (2013) | 110 IBD (62 CD and 48 UC) 30 IBS 109 HC | GC-MS | CD: ↑ aldehydes; ↑ ketones UC: ↑ 1-propanol, 2-methyl; ↑ undecane; ↑ methoxy-phenyl-oxime IBS: ↑ Esters of SCFAs; ↑ cyclohexanecarbocylic acid and its derivatives | IBS vs. IBD: 96% IBS vs. CD: 94% IBS vs. UC: 96% IBS vs. HC: 90% | IBS vs. IBD: 80% IBS vs. CD: 82% IBS vs. UC: 80% IBS vs. HC: 80% | IBS vs. IBD: 0.98 IBS vs. CD: 0.97 IBS vs. UC: 0.96 IBS vs. HC: 0.94 |
Walton et al. (2013) | 42 IBD (22 CD and 20 UC) 26 IBS 19 HC | GC-MS | CD: ↑ esters; ↑ indole; ↑ alcohol derivatives of SCFAs | - - | - - | - - | |
Shepherd et al. (2014) | 34 IBS 101 IBD (42 CD and 59 UC) 46 HC | GC-MOS | VOC profile | IBS vs. IBD: 76% | IBS vs. IBD: 88% | - - | |
Ahmed et al. (2016) | 217 IBD (117 CD and 100 UC) 109 HC | GC-MS | a-CD: ↑ heptanal; ↑ 1-octen-3-ol; ↑ 2-piperidinone; ↑ 6-methyl-2- heptanone; ↑ decane; ↓ methanethiol; ↓ 3-methyl-phenol; ↓ alpha-pinene a-UC: ↑ Bicyclohexane; ↑ 4-methylene-1-methylethyl | - - | - - | - - | |
Aggio et al. (2017) | 33 a-IBD 50 i-IBD 28 IBS 41 HC | GC-MS | VOC profiles | a-IBD vs. IBS: 93% IBS vs. HC: 91% IBD vs. HC: 78% | a-IBD vs. IBS: 90% IBS vs. HC: 54% IBD vs. HC: 79% | a-CD vs. IBS: 87% (84–89%) IBS vs. HC: 78% (76–80%) | |
Pediatric IBD and IBS | de Meij et al. (2014) | 55 IBD (29 CD and 26 UC) 28 HC | eNose | VOC profiles | a-UC vs. HC: 100% a-CD vs. HC: 86% r-UC vs. HC: 94% r-CD vs. HC: 94% a-CD vs. a-UC: 97% r-CD vs. r-UC: 88% | a-UC vs. HC: 100% a-CD vs. HC 67% r-UC vs. HC: 94% r-CD vs. HC: 92% a-CD vs. a-UC: 92% r-CD vs. r-UC: 72% | a-UC vs. HC: 1.00 (±0.00) a-CD vs. HC: 0.85 (±0.05) r-UC vs. HC: 0.94 (±0.05) r-CD vs. HC: 0.94 (±0.06) a-CD vs. a-UC: 0.96 (±0.03) r-CD vs. r-UC: 0.81 (±0.08) |
van Gaal et al. (2017) | 36 IBD (23 CD and 13 UC) 24 HC | FAIMS | VOC profiles | IBD vs. HC: 79% CD vs. HC: 83% UC vs. HC: 77% CD vs. UC: 65% | IBD vs. HC: 78% CD vs. HC: 83% UC vs. HC: 75% CD vs. UC: 62% | IBD vs. HC: 0.76 (±0.14) CD vs. HC: 0.90 (±0.10) UC vs. HC: 0.74 (±0.19) CD vs. UC: 0.67 (± 0.19) | |
Bosch et al. (2018) | 30 IBD (15 CD and 15 UC) 15 IBS 30 HC | FAIMS | VOC profiles | IBS vs. IBD: 100% IBS vs. HC: 60% IBD vs. HC: 93% | IBS vs. IBD: 87% IBS vs. HC: 63% IBD vs. HC: 97% | IBD vs. IBS: 0.94 (0.88–1) IBS vs. HC: 0.59 (0.41–0.77) IBD vs. HC: 0.96 (0.9–1) | |
CRC | de Meij et al. (2014) | 40 CRC 60 AA 57 HC | eNose | VOC profiles | CRC vs. HC: 85% AA vs. HC: 62% AA vs. CRC: 75% | CRC vs. HC: 87% AA vs. HC: 86% AA vs. CRC: 73% | CRC vs. HC: 0.92 (±0.03) AA vs. HC: 0.79 (±0.04) AA vs. CRC: 0.82 (±0.04) |
Batty et al. (2015) | 31 High risk (AA + CRC) 31 Low risk (HC) | SIFT-MS | ↑ hydrogen sulfide; ↑ dimethyl sulfide; ↑ dimethyl disulfide | High vs. low risk: 72% | High vs. low risk: 78% | - - | |
NEC | Garner et al. (2009) | 6 NEC 7 HC | GC-MS | * 2-ethylhexyl acetic ester; * decanoic acid ethyl ester; * dodecanoic acid ethyl ester; * hexadecanoic acid ethyl ester | - - | - - | - - |
de Meij et al. (2015) | 13 NEC 31 sepsis 14 HC | eNose | VOC profiles | NEC vs. HC †: 88.9% NEC vs. sepsis †: 88.9% | NEC vs. HC †: 88.9% NEC vs. sepsis †: 56.5% | NEC vs. HC †: 0.99 (±0.04) NEC vs. sepsis †: 0.64 (±0.18) | |
Celiac disease | Di Cagno et al. (2009) | 7 t-CD 7 u-CD 7 HC | GC-MS | u-CD: ↑ alcohols; ↑ aldehydes; ↑ sulfur compounds; ↑ hydrocarbons t-CD: ↑ SCFA | - - | - - | - - |
Di Cagno et al. (2011) | 19 t-CD 15 HC | GC-MS | ↑ Alcohols; ↓ Esters; ↓ Sulfur compounds; ↓ Ketones ↓ hydrocarbons ↓ aldehydes; ↓ aromatic organic compounds; ↓ heptane; ↓ SCFA | - - | - - | - - | |
Adult NAFLD | Bailey et al. (2009) | 7 suspected NAFLD 9 HC | GC-MS | VOC profile | - - | - - | - - |
Raman et al. (2013) | 30 NAFLD 30HC | GC-MS | ↑ Short chain aliphatic alcohols; ↑ carboxylic acids | - - | - - | - - | |
Pediatric NAFLD | Del Chierico et al. (2017) | 27 NAFLD 26 NASH 8 obese no steatosis 54 HC | GC-MS | NAFLD/NASH/obese: ↑ alcohols; ↑ acids; ↑ aldehydes; ↑ ketones; ↑ amines; ↑ esters; ↓ aromatic hydrocarbons; ↓ hydrazines | - - | - - | - - |
Disease 1 | Ref. | Case/Control No. | Analytical Technique | VOC Biomarker a | Sensitivity | Specificity | AUC (95% CI) |
---|---|---|---|---|---|---|---|
LOS | Berkhout et al. (2017) | 36/40 | eNose | VOC profile | T-1: 64.3% T-2: 75.0% T-3: 57.1% | T-1: 64.3% T-2: 70.8% T-3: 61.5% | T-1: 70.4 (49.6–91.3) T-2: 77.7 (62.7–92.7) T-3: 70.2 (52.2–88.3) |
Berkhout et al. (2018) | 127/127 | FAIMS | VOC profile | - - | - - | S. aureus T-3: 0.85 S. aureus T-2: 0.70 S. aureus T-1: 0.80 E. coli T-3: 0.88 E. coli T-2: 0.99 E. coli T-1: 0.86 S. epidermidis T-3: 0.90 S. epidermidis T-2: 0.78 S. epidermidis T-1: 0.63 | |
BPD | Berkhout et al. (2018) | 15/15 | eNose | VOC profile | T7: 43.5% T14: 60.0% T21: 66.7% T28: 69.2% | T7: 54.5% T14: 73.3% T21: 73.3% T28: 69.2% | T7: 0.58 (0.33–0.83) T14: 0.72 (0.54 0.90) T21: 0.71 (0.52–0.90) T28: 0.78 (0.59–0.96) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Manouni el Hassani, S.; Berkhout, D.J.C.; Bosch, S.; Benninga, M.A.; De Boer, N.K.H.; De Meij, T.G.J. Application of Fecal Volatile Organic Compound Analysis in Clinical Practice: Current State and Future Perspectives. Chemosensors 2018, 6, 29. https://doi.org/10.3390/chemosensors6030029
El Manouni el Hassani S, Berkhout DJC, Bosch S, Benninga MA, De Boer NKH, De Meij TGJ. Application of Fecal Volatile Organic Compound Analysis in Clinical Practice: Current State and Future Perspectives. Chemosensors. 2018; 6(3):29. https://doi.org/10.3390/chemosensors6030029
Chicago/Turabian StyleEl Manouni el Hassani, Sofia, Daniel J. C. Berkhout, Sofie Bosch, Marc A. Benninga, Nanne K. H. De Boer, and Tim G. J. De Meij. 2018. "Application of Fecal Volatile Organic Compound Analysis in Clinical Practice: Current State and Future Perspectives" Chemosensors 6, no. 3: 29. https://doi.org/10.3390/chemosensors6030029
APA StyleEl Manouni el Hassani, S., Berkhout, D. J. C., Bosch, S., Benninga, M. A., De Boer, N. K. H., & De Meij, T. G. J. (2018). Application of Fecal Volatile Organic Compound Analysis in Clinical Practice: Current State and Future Perspectives. Chemosensors, 6(3), 29. https://doi.org/10.3390/chemosensors6030029