Electrochemical Immunosensors and Aptasensors
1. Introduction
2. The Special Issue
Acknowledgments
References
- Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classifications. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Turner, A.; Karube, I.; Wilson, G.S. Biosensors: Fundamentals and Applications; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Cunningham, A.J. Introduction to Bioanalytical Sensors; John Wiley & Sons: West Sussex, UK, 1998. [Google Scholar]
- Bartlett, P.N. Bioelectrochemistry, Fundamentals, Experimental Techniques and Applications; John Wiley & Sons: West Sussex, UK, 2008. [Google Scholar]
- Heineman, W.R.; Halsall, H.B. Antibodies-production, functions and applications in biosensors strategies for electrochemical immunoassay. Anal. Chem. 1985, 57, 1321A–1331A. [Google Scholar] [CrossRef] [PubMed]
- Killard, A.J.; Deasy, B.; O’Kennedy, R.; Smyth, M.R. Antibodies: Production, functions and applications in biosensors. TrAC Trends Anal. Chem. 1995, 14, 257–266. [Google Scholar] [CrossRef]
- Rusling, J.F. Nanomaterials-based electrochemical immunosensors for proteins. Chem Rec. 2012, 12, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tierk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Mascini, M. Affinity electrochemical biosensors for pollution control. Pure Appl. Chem. 2001, 73, 23–30. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Arduini, F.G.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. TrAC Trends Anal. Chem. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Ilkhani, H.; Ravalli, A.; Marrazza, G. Design of an affibody-based recognition strategy for human epidermal growth factor receptor 2 (HER2) detection by electrochemical biosensors. Chemosensors 2016, 4, 23. [Google Scholar] [CrossRef]
- Hamidi-Asl, E.; Dardenne, V.; Pilehvar, S.; Blust, R.; De Wael, V. Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells. Chemosensors 2016, 4, 16. [Google Scholar] [CrossRef]
- Bosco, A.; Ambrosetti, E.; Mavri, J.; Capaldo, P.; Casalis, L. Miniaturized aptamer-based assays for protein detection. Chemosensors 2016, 4, 18. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Guanine quadruplex electrochemical aptasensors. Chemosensors 2016, 4, 13. [Google Scholar] [CrossRef]
- Vasilescu, A.; Wang, Q.; Li, M.; Boukherroub, R.; Szunerits, S. Aptamer-based electrochemical sensing of lysozyme. Chemosensors 2016, 4, 10. [Google Scholar] [CrossRef]
- Qi, W.; Wu, D.; Xu, G.; Nsabimana, J.; Nsabimana, A. Aptasensors based on stripping voltammetry. Chemosensors 2016, 4, 12. [Google Scholar] [CrossRef]
- De Moraes, A.C.M.; Kubota, L.T. Recent trends in field-effect transistors-based immunosensors. Chemosensors 2016, 4, 20. [Google Scholar] [CrossRef]
- Sharma, A.; Goud, K.Y.; Hayat, A.; Bhand, S.; Marty, J.L. Recent Advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors 2017, 5, 1. [Google Scholar] [CrossRef]
- Ruiz-Valdepenas Montiel, V.; Torrente-Rodríguez, R.M.; Campuzano, S.; Pellicanò, A.; Reviejo, Á.J.; Cosio, M.S.; Pingarrón, J.M. Simultaneous determination of the main peanut allergens in foods using disposable amperometric magnetic beads-based immunosensing platforms. Chemosensors 2016, 4, 11. [Google Scholar] [CrossRef]
- Foguel, M.V.; Giordano, G.F.; de Sylos, C.M.; Carlos, I.Z.; Ferreira, A.A.P.; Benedetti, A.V.; Yamanaka, H. A low-cost label-free AFB1 impedimetric immunosensor based on functionalized CD-trodes. Chemosensors 2016, 4, 17. [Google Scholar] [CrossRef]
- Gaetani, C.; Ambrosi, E.; Ugo, P.; Moretto, L.M. Electrochemical immunosensor for detection of IgY in food and food supplements. Chemosensors 2017, 5, 10. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugo, P.; Moretto, L.M. Electrochemical Immunosensors and Aptasensors. Chemosensors 2017, 5, 13. https://doi.org/10.3390/chemosensors5020013
Ugo P, Moretto LM. Electrochemical Immunosensors and Aptasensors. Chemosensors. 2017; 5(2):13. https://doi.org/10.3390/chemosensors5020013
Chicago/Turabian StyleUgo, Paolo, and Ligia M. Moretto. 2017. "Electrochemical Immunosensors and Aptasensors" Chemosensors 5, no. 2: 13. https://doi.org/10.3390/chemosensors5020013
APA StyleUgo, P., & Moretto, L. M. (2017). Electrochemical Immunosensors and Aptasensors. Chemosensors, 5(2), 13. https://doi.org/10.3390/chemosensors5020013