Chip-Based Nanospray Ionisation Mass Spectrometry for the Routine Analysis of Intact Reactive Phosphine Ligands and Phosphino Organometallic Complexes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Ligands


3.2. Neutral Complexes

3.3. Cationic Complexes
3.4. Anionic and Anion Bridged Complexes


4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DART | direct analysis in real time |
| DCM | dichloromethane |
| DESI | desorption electrospray ionisation |
| DPPE | 1,2-Bis(diphenylphosphino)ethane |
| ESI | electrospray ionisation |
| HESI | heated electrospray ionisation |
| MeCN | acetonitrile |
| MeOH | methanol |
| MS | mass spectrometry |
| RI | relative intensity |
| THF | tetrahydrofuran |
References
- Kapuśniak, L.; Plessow, P.N.; Trzybiński, D.; Woźniak, K.; Hofmann, P.H.; Jolly, P.I. A mild one-pot reduction of phosphine(V) oxides affording phosphines(III) and their metal catalysts. Organometallics 2021, 40, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xu, Y.; Wang, X.; Liu, W.; Lu, D. Investigation of the mechanisms of palladium-catalyzed C–H acetoxylation and methoxylation by electrospray ionization mass spectrometry. Organometallics 2013, 32, 3780–3783. [Google Scholar] [CrossRef]
- Devaraj, K.; Sollert, C.; Juds, C.; Gates, P.J.; Pilarski, L.T. Ru-catalysed C-H silylation of unprotected gramines, tryptamines and their congeners. Chem. Commun. 2016, 52, 5868–5871. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J.R.; Hofman, E.J.; Keister, J.B.; Diver, S.T. Kinetics and mechanism of isocyanide-promoted carbene insertion into the aryl substituent of an N-Heterocyclic carbene ligand in ruthenium-based metathesis catalysts. Organometallics 2017, 36, 3043–3052. [Google Scholar] [CrossRef]
- Harper, M.J.; Arthur, C.J.; Crosby, J.; Emmett, E.J.; Falconer, R.L.; Fensham-Smith, A.J.; Gates, P.J.; Leman, T.; McGrady, J.E.; Bower, J.F.; et al. Oxidative addition, transmetalation, and reductive elimination at a 2,2′-bipyridyl-ligated gold center. J. Am. Chem. Soc. 2018, 140, 4440–4445. [Google Scholar] [CrossRef]
- Gregg, Z.R.; Griffiths, J.R.; Diver, S.T. Conformational control of initiation rate in Hoveyda–Grubbs precatalysts. Organometallics 2018, 37, 1526–1533. [Google Scholar] [CrossRef]
- Brunel, P.; Lhardy, C.; Mallet-Ladeira, S.; Monot, J.; Martin-Vaca, B.; Bourissou, D. Palladium pincer complexes featuring an unsymmetrical SCN indene-based ligand with a hemilabile pyridine sidearm. Dalton Trans. 2019, 48, 9801–9806. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; Bautista, F.M.; López-Tenllado, F.J.; Romero, A.A.; Luna, D. A review on green hydrogen valorization by heterogeneous catalytic hydrogenation of captured CO2 into value-added products. Catalysts 2022, 12, 1555. [Google Scholar] [CrossRef]
- Huang, J.; Ho, D.B.; Gaube, G.; Celuszak, H.; Becica, J.; Thomas, G.T.; Schley, N.D.; Leitch, D.C. A thermally stable, alkene-free palladium source for oxidative addition complex formation and high-turnover catalysis. Organometallics 2024, 43, 2403–2412. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, M.; Li, Y.; Wang, L.; Duan, Z. Reactions of benzyl phosphine oxide/sulfide with (COCl)2: Synthesis of novel acyl chloride-substituted chlorophosphonium ylides. J. Org. Chem. 2024, 89, 14305–14314. [Google Scholar] [CrossRef]
- Cheesman, B.T.; Gates, P.J.; Castle, T.C.; Cosgrove, T.; Prescott, S.W. Linear and star architecture methacrylate-functionalised PDMS. Mater. Today Commun. 2015, 3, 122–129. [Google Scholar] [CrossRef]
- Klosin, J.; Fontaine, P.P.; Figueroa, R. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions. Acc. Chem. Res. 2015, 48, 2004–2016. [Google Scholar] [CrossRef]
- Teator, A.J.; Lastovickova, D.N.; Bielawski, C.W. Switchable Polymerization Catalysts. Chem. Rev. 2016, 116, 1969–1992. [Google Scholar] [CrossRef]
- Musgrave, R.A.; Hailes, R.L.N.; Schäfer, A.; Russell, A.D.; Gates, P.J.; Manners, I. New reactivity at the silicon bridge in sila[1]ferrocenophanes. Dalton Trans. 2018, 47, 2759–2768. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gupta, P.; Rončević, I.; Mycroft, C.; Gates, P.J.; Parker, A.W.; Anderson, H.L. Solution-phase stabilization of a cyclocarbon by catenane formation. Science 2025, 389, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cai, P.; Zhou, H.-C.; Madrahimov, S.T. Bridging homogeneous and heterogeneous catalysis: Phosphine-functionalized metal-organic frameworks. Angew. Chem. Int. Ed. 2024, 63, e202315075. [Google Scholar] [CrossRef]
- Wei, X.; Li, B.; Liu, Q.; Xiong, S.; Wang, P.; Wang, Z.; Cheng Gu, C. Phosphine-catalytic synthesis of covalent organic frameworks: Accessing structural crystallinity and applicable processability. Adv. Funct. Mater. 2025, e18013. [Google Scholar] [CrossRef]
- Stewart, I.I.; Horlick, G. Developments in the electrospray mass spectrometry of inorganic species. Trends Anal. Chem. 1996, 15, 80–90. [Google Scholar] [CrossRef]
- Hop, C.E.C.A.; Bakhtiar, R. Electrospray ionization mass spectrometry: Part III: Applications in inorganic chemistry and synthetic polymer chemistry. J. Chem. Educ. 1996, 73, A162–A169. [Google Scholar] [CrossRef]
- Colton, R.; Dakternieks, D. An electrospray mass spectrometric study of some mercury phosphine complexes. Inorg. Chim. Acta 1993, 208, 173–177. [Google Scholar] [CrossRef]
- Henderson, W.; Olsen, G.M. Application of electrospray mass spectrometry to the characterization of hydroxymethylphosphonium salts, -phosphines, and their oxide, sulfide and selenide derivatives. Polyhedron 1996, 15, 2105–2115. [Google Scholar] [CrossRef]
- Joshi, A.; Killeen, C.; Thiessen, T.; Zijlstra, H.S.; McIndoe, J.S. Handling considerations for the mass spectrometry of reactive organometallic compounds. J. Mass Spectrom. 2022, 57, e4807. [Google Scholar] [CrossRef]
- Yunker, L.P.E.; Stoddard, R.L.; McIndoe, J.S. Practical approaches to the ESI-MS analysis of catalytic reactions. J. Mass Spectrom. 2014, 49, 1–8. [Google Scholar] [CrossRef]
- Killeen, C.; Kropp, A.; Chagunda, I.C.; Jackson, E.C.; McIndoe, J.S. The amenability of different solvents to electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 2024, 506, 117349. [Google Scholar] [CrossRef]
- Lubben, A.T.; McIndoe, J.S.; Weller, A.S. Coupling an electrospray ionization mass spectrometer with a glovebox: A straightforward, powerful, and convenient combination for analysis of air-sensitive organometallics. Organometallics 2008, 27, 3303–3306. [Google Scholar] [CrossRef]
- Dyson, P.J.; McIndoe, J.S. Analysis of organometallic compounds using ion trap mass spectrometry. Inorg. Chim. Acta 2003, 354, 68–74. [Google Scholar] [CrossRef]
- Borges, D.L.G.; Sturgeon, R.E.; Welz, B.; Curtius, A.J.; Mester, Z. Ambient mass spectrometric detection of organometallic compounds using direct analysis in real time. Anal. Chem. 2009, 81, 9834–9839. [Google Scholar] [CrossRef] [PubMed]
- Groenewold, G.S.; Appelhans, A.D.; McIlwain, M.E.; Gresham, G.L. Characterization of coordination complexes by desorption electrospray mass spectrometry with a capillary target. Int. J. Mass Spectrom. 2011, 301, 136–142. [Google Scholar] [CrossRef]
- Mazzotta, M.G.; Young, J.O.E.; Evans, J.W.; Dopierala, L.A.; Claytor, Z.A.; Smith, A.C.; Snyder, C.; Tice, N.C.; Smith, D.L. Direct analysis in real time mass spectrometry of fused ring heterocyclic organometallic compounds. Anal. Methods 2015, 7, 4003–4007. [Google Scholar] [CrossRef]
- Goryainov, S.V.; Esparza, C.; Kulikova, L.N.; Borisova, A.R.; Kumandin, P.A.; Antonova, A.S.; Rystsova, E.O.; Oshakbaev, M.T.; Omarova, G.T.; Polovkov, N.Y. DART mass spectrometry in the analysis of organometallic complexes. J. Anal. Chem. 2021, 76, 1520–1524. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, Y.; Chen, Q.; Hu, M.; Helmy, R.; Sherer, E.C.; Welch, C.J.; Chen, H. Capture of reactive monophosphine-ligated palladium(0) intermediates by mass spectrometry. J. Am. Chem. Soc. 2015, 137, 14035–14038. [Google Scholar] [CrossRef]
- Pavlov, J.; Zheng, Z.; Douce, D.; Bajic, S.; Attygalle, A.B. Helium-plasma-ionization mass spectrometry of metallocenes and their derivatives. J. Am. Soc. Mass Spectrom. 2021, 32, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Wilm, M.S.; Mann, M. Electrospray and Taylor-cone theory, Dole’s beam of macromolecules at last? Int. J. Mass Spectrom. Ion Proc. 1994, 136, 167–180. [Google Scholar] [CrossRef]
- Wilm, M.S.; Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 1996, 68, 1–8. [Google Scholar] [CrossRef]
- Griffiths, W.J. Nanospray mass spectrometry in protein and peptide chemistry. In Proteomics in Functional Genomics, EXS; Jollès, P., Jörnvall, H., Eds.; Birkhäuser: Basel, Switzerland, 2000; Volume 88, pp. 69–79. [Google Scholar] [CrossRef]
- Corkery, L.J.; Pang, H.; Schneider, B.S.; Covey, T.R.; Siu, K.W.M. Automated nanospray using chip-based emitters for the quantitative analysis of pharmaceutical compounds. J. Am. Soc. Mass Spectrom. 2005, 16, 363–369. [Google Scholar] [CrossRef][Green Version]
- Hartwig, J.F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: New York, NY, USA, 2010. [Google Scholar]
- Schlatzer, T.; Breinbauer, R. Synthesis of hydrophilic phosphorus ligands and their application in aqueous-phase metal-catalyzed reactions. Adv. Synth. Catal. 2021, 363, 668–687. [Google Scholar] [CrossRef]
- Mechrouk, V.; Bissessar, D.; Egly, J.; Parmentier, J.; Bellemin-Laponnaz, S. Synthesis and characterization of transition metal complexes supported by phosphorus ligands obtained using hydrophosphination of cyclic internal alkenes. Molecules 2024, 29, 3946. [Google Scholar] [CrossRef]
- Kozieł, S.; Komarnicka, U.K.; Ziółkowska, A.; Skórska-Stania, A.; Pucelik, B.; Płotek, M.; Sebastian, V.; Bieńko, A.; Stochel, G.; Kyzioł, A. Anticancer potency of novel organometallic Ir(III) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorg. Chem. Front. 2020, 7, 3386–3401. [Google Scholar] [CrossRef]
- Engelbrecht, Z.; Meijboom, R.; Cron, M.J. The ability of silver(I) thiocyanate 4-methoxyphenyl phosphine to induce apoptotic cell death in esophageal cancer cells is correlated to mitochondrial perturbations. BioMetals 2018, 31, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Fleissner, S.; Pittenauer, E.; Kirchner, K. Electrospray ionization tandem mass spectrometric study of selected phosphine-based ligands for catalytically active organometallics. J. Am. Soc. Mass Spectrom. 2023, 34, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Blades, A.T.; Ikonomou, M.G.; Kebarle, P. Mechanism of electrospray mass spectrometry. Electrospray as an electrolysis cell. Anal. Chem. 1991, 63, 2109–2114. [Google Scholar] [CrossRef]
- de la Mora, J.F.; van Berkel, G.J.; Enke, C.G.; Cole, R.B.; Martinez-Sanchez, M.; Fenn, J.B. Electrochemical processes in electrospray ionization mass spectrometry. J. Mass Spectrom. 2000, 35, 939–952. [Google Scholar] [CrossRef]
- Gates, P.J.; Lopes, N.P. Characterisation of flavonoid aglycones by negative ion chip-based nanospray tandem mass spectrometry. Int. J. Anal. Chem. 2012, 259217. [Google Scholar] [CrossRef]
- Edgar, K.; Johnson, B.F.G.; Lewis, J.; Williams, I.G.; Wilson, J.M. Mass spectra of inorganic molecules. Part III. Some transition-metal carbonyl halide and thiol compounds. J. Chem. Soc. A Inorg. Phys. Theor. 1967. [Google Scholar] [CrossRef]
- Demarque, D.P.; Crotti, A.E.M.; Vessecchi, R.; Lopes, J.L.C.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016, 33, 432–455. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gates, P.J. Chip-Based Nanospray Ionisation Mass Spectrometry for the Routine Analysis of Intact Reactive Phosphine Ligands and Phosphino Organometallic Complexes. Chemosensors 2026, 14, 52. https://doi.org/10.3390/chemosensors14020052
Gates PJ. Chip-Based Nanospray Ionisation Mass Spectrometry for the Routine Analysis of Intact Reactive Phosphine Ligands and Phosphino Organometallic Complexes. Chemosensors. 2026; 14(2):52. https://doi.org/10.3390/chemosensors14020052
Chicago/Turabian StyleGates, Paul J. 2026. "Chip-Based Nanospray Ionisation Mass Spectrometry for the Routine Analysis of Intact Reactive Phosphine Ligands and Phosphino Organometallic Complexes" Chemosensors 14, no. 2: 52. https://doi.org/10.3390/chemosensors14020052
APA StyleGates, P. J. (2026). Chip-Based Nanospray Ionisation Mass Spectrometry for the Routine Analysis of Intact Reactive Phosphine Ligands and Phosphino Organometallic Complexes. Chemosensors, 14(2), 52. https://doi.org/10.3390/chemosensors14020052

