Next Article in Journal
Theoretical Analysis of MIR-Based Differential Photoacoustic Spectroscopy for Noninvasive Glucose Sensing
Previous Article in Journal
Black Crust-Induced Spalling of Marble: An Multi Analytical Study on the Danbi Stone Carvings
Previous Article in Special Issue
Synthesis of CSA-Capped Poly(aniline-co-aniline-2-sulfonic acid) Spherical Nanoparticles for Gas Sensor Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Functional Nanomaterial-Based Gas Sensors and Humidity Sensors

School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Chemosensors 2026, 14(1), 25; https://doi.org/10.3390/chemosensors14010025
Submission received: 3 December 2025 / Accepted: 15 January 2026 / Published: 16 January 2026
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Gas and humidity (water molecules) are important components of the environment and human respiration, which are closely related to human life and production. For example, the detection of toxic and flammable gases is of great significance for protecting the environment, ensuring safe production and human health. In addition, with the development of modern medical technology, the non-invasive early diagnosis of diseases can be achieved by analyzing the composition of exhaled gases [1,2,3], and respiratory behavior can be monitored by utilizing the high-humidity characteristics of exhaled gas [4,5,6]. It is widely agreed that the detection of gases and humidity relies on advanced gas and humidity sensors, most of which rely on gas molecules or water molecules that adsorb on the surface of sensitive functional materials, converting them into easy-to-process signals (such as resistance, capacitance, voltage, and frequency). Combining the advantages of the small size effects and rich functionality of nanomaterials, the design and development of sensitive functional nanomaterials are key to constructing high-performance gas and humidity sensors. As a result, in recent years various functional nanomaterials have blossomed and been used to develop high-performance gas and humidity sensors, such as Pd, Pd-Ni, and Pd-Mg nanofilms for H2 sensors [7,8,9]; MoS2/ZnO, GaN/reduced graphene oxide (rGO), polyaniline@MoS2, and Co3O4/SnO2 nanomaterials for NH3 sensors [10,11,12,13]; Ag2Te, GaSe0.31O0.69, In2O3/polypyrrole, CuO-ZnO, and MoSe2-WS2 nanomaterials for NO2 sensors [14,15,16,17,18]; Pd@Ni/ZnO, Cd-doped In2O3, ZnO/g-C3N4, and Pt-Pd/SnO2 for CH4 sensors [19,20,21,22]; Au/SnO2, Fe2O3/Ti3C2, Cu2O/ZnO, and Ru@SnO2 nanomaterials for H2S sensors [23,24,25,26]; Pr-doped SnO2, Fe2O3-MoS2, Ti3C2Tx/LaFeO3, and NiO/NdNiO3 nanomaterials for SO2 sensors [27,28,29,30]; ZnO/WSe2, MoO3/Ti3C2Tx, ZnO/Co3O4, and In2O3/ZnO/Ti3C2Tx nanomaterials for ethanol sensors [31,32,33,34]; WO3/WS2, MIL-88B@3-aminopropyltrimethoxysilane, Pt-modified BiVO4, and SnO2-ZnO nanomaterials for acetone sensors [35,36,37,38]; In2O3@TiO2, Au/In2O3, SnO2-Sn3O4, and Ag-modified ZnSnO3 nanomaterials for formaldehyde sensors [39,40,41,42]; LaCo0.1Fe0.9O3, NiO-In2O3, Au-ZnO, and p-Si/MoO3 nanomaterials for CO2 sensors [43,44,45,46]; and Bi2O2S, Ti3C2Tx/WS2, Ti3C2Tx/single-walled carbon nanotubes, MoBTx, V2O5, and KCl/carbon black/halloysite nanotubes for humidity sensors [47,48,49,50,51,52]. As mentioned above, precious metals and oxide materials have been used in the field of gas sensors for many years but still receive much attention due to the continuous development of nanomaterial technology. In addition, emerging two-dimensional materials, such as MXene, have received widespread attention in the field of gas and humidity sensors.
In this context, this Special Issue aims to showcase recent studies on gas and humidity sensors, including 12 research articles and 2 review articles. Among them, Sheng et al. fabricated a Sn-doped In2O3-based gas sensor using magnetron sputtering and rapid annealing processes. The results demonstrated that the Sn-doped In2O3 gas sensor had a good selective response to ethanol; the reason for this selectivity is explained in combination with density functional theory [53]. Usually, researchers mainly focus on the gas sensing characteristics of gas sensors at room temperature (~25 °C) and high temperatures. Petrushenko et al. reported a CuI gas sensor using a successive ionic layer adsorption and reaction method, achieving good NH3 sensing responses at low temperatures (5 °C) [54]. The CuI gas sensor based on a polyethylene terephthalate substrate has demonstrated good flexibility and humidity resistance and is expected to be used for respiratory NH3 detection. Guo et al. reported a In2O3/Ti3C2Tx gas sensor using an electrostatic self-assembly method, achieving high-selectivity NO2 detection at room temperature [55]. In addition to resistive gas sensors based on gas sensing functional nanomaterials, Prof. Zhang’s group proposed a field effect transistor-type gas sensor using carbon nanotubes as a channel material and ZnO/WS2 as gate sensing materials, achieving ppb-level benzene detection at room temperature [56]. In terms of humidity sensors, Laera et al. reported a flexible humidity sensor based on chemically rGO [57]. Zhang et al. reported a stable and fast-response humidity sensor based on a polyanionic liquid containing bromide ions, demonstrating multifunctional applications related to respiratory rates, speech recognition, and non-contact switches [58]. In addition, Prof. Shi’s group discusses the recent advances in metal oxide semiconductor heterojunctions for the detection of volatile organic compounds [59]. Regarding the gas sensing mechanism of chemiresistive gas sensors, Prof. Ma’s group provide a comprehensive overview of the modeling approaches for chemiresistive gas sensors [60].
I would like to express my sincere gratitude to all the authors for their significant contributions to this Special Issue, as well as to Ms. Polaris Zhang (Contact Editor) and all the reviewers for their hard work.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Verma, G.; Gupta, A. Next-generation chemiresistive wearable breath sensors for non-invasive healthcare monitoring: Advances in composite and hybrid materials. Small 2025, 21, 2411495. [Google Scholar] [CrossRef]
  2. Baek, J.W.; Shin, E.; Lee, J.; Kim, D.H.; Choi, S.J.; Kim, I.D. Present and future of emerging catalysts in gas sensors for breath analysis. ACS Sens. 2024, 10, 33–53. [Google Scholar] [CrossRef]
  3. Lu, G.; Ji, T.; He, S.; Ai, F.; Yan, L.; Hu, J. Recent progress of exhaled gas-based diagnosis based on field effect transistor sensors. Adv. Funct. Mater. 2024, 35, 2309111. [Google Scholar] [CrossRef]
  4. Tan, C.; Cao, Y.; Xie, N.; Zhang, M.; Liu, L.; Yu, H.; Wang, C.; Jiang, Y.; Wu, Y.; Yuan, Z.; et al. Intelligent respiratory rate detection using disposable paper-based humidity sensor and precise peak-seeking algorithm. Sens. Actuators B Chem. 2025, 436, 137738. [Google Scholar] [CrossRef]
  5. Zu, Y.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Electrospun nanofiber-based humidity sensors: Materials, devices, and emerging applications. J. Mater. Chem. A 2024, 12, 27157–27179. [Google Scholar] [CrossRef]
  6. Lu, Y.; Yang, G.; Shen, Y.; Yang, H.; Xu, K. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150. [Google Scholar] [CrossRef]
  7. Yang, R.; Yuan, Z.; Jiang, C.; Zhang, X.; Qiao, Z.; Zhang, J.; Liang, J.; Wang, S.; Duan, Z.; Wu, Y.; et al. Ultrafast hydrogen detection system using vertical thermal conduction structure and neural network prediction algorithm based on sensor response process. ACS Sens. 2025, 10, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
  8. Huang, T.; Yuan, Z.; Ma, D.; Yang, R.; Shan, C.; Wang, S.; Duan, Z.; Wu, Y.; Jiang, Y.; Tai, H. Ultrafast (0.3 s) integrated hydrogen leakage sensor system empowered by concentration prediction algorithm. Chem. Eng. J. 2025, 520, 166395. [Google Scholar] [CrossRef]
  9. Yang, C.; Zhu, C.; Jiang, X.; Yuan, T.; Gao, W.; Yin, J.; Jin, Q.; Li, M.; Jian, J.; Zou, J. Stable room temperature H2 sensor based on Pd-Mg alloy nanofilm. J. Alloys Compd. 2025, 1038, 182842. [Google Scholar] [CrossRef]
  10. Gond, R.; Shukla, P.; Prakash, B.; Rawat, B. Vertically Aligned MoS2/ZnO Heterostructure for Highly Selective NH3 Sensing at Room Temperature. ACS Appl. Electron. Mater. 2024, 6, 2728–2738. [Google Scholar] [CrossRef]
  11. Li, D.; Han, D.; Chen, Y.; Hong, Y.; Duan, Q.; Wang, H.; He, X.; Zhao, L.; Wang, W.; Sang, S. GaN/rGO nanocomposite gas sensor for enhanced NH3 sensing performances at room temperature. Sens. Actuators B Chem. 2024, 403, 135209. [Google Scholar] [CrossRef]
  12. Chen, C.; Tu, Q.; Zhou, X.; Xu, J.; Lv, C.; Ke, X.; Li, H.; Chen, L.; Liu, X. Flexible, stable and self-powered two-dimensional layered nanocomposites (PANI@MoS2) for trace ammonia gas detection. Adv. Compos. Hybrid Mater. 2024, 8, 98. [Google Scholar] [CrossRef]
  13. Li, Y.; Chen, P.; Zeng, W.; Li, X.; Wang, Q. MOF-derived Co3O4 decorated SnO2 nanosheets for NH3 sensor fabricated by carrier gas regulation. Chem. Eng. J. 2025, 519, 165001. [Google Scholar] [CrossRef]
  14. Yuan, Z.; Zhao, Q.; Duan, Z.; Xie, C.; Duan, X.; Li, S.; Ye, Z.; Jiang, Y.; Tai, H. Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature. Sens. Actuators B Chem. 2022, 363, 131790. [Google Scholar] [CrossRef]
  15. Chen, Y.; Li, Z.; Tang, T.; Cheng, Y.; Cheng, L.; Wang, X.; Haidry, A.A.; Jannat, A.; Ou, J.Z. Room-temperature optoelectronic NO2 sensing using two-dimensional gallium oxyselenides. ACS Appl. Nano Mater. 2024, 7, 3229–3238. [Google Scholar] [CrossRef]
  16. Zhang, H.; Zhang, D.; Yang, Y.; Zhou, L.; Liu, Y.; Liu, W.; Sun, Y.; Guo, Y.; Ji, Y. Eco-friendly triboelectric nanogenerator for self-powering stacked In2O3 nanosheets/PPy nanoparticles-based NO2 gas sensor. Nano Energy 2024, 128, 109978. [Google Scholar] [CrossRef]
  17. Li, S.; Yu, L.; Zhang, C.; Li, X.; Cao, L.; Du, H.; Fan, X. Controllable synthesis of heterostructured CuO-ZnO microspheres for NO2 gas sensors. Sens. Actuators B Chem. 2024, 417, 136179. [Google Scholar] [CrossRef]
  18. Kodan, S.; Kumar, A.; Sanger, A.; Arora, A.; Malik, V.K.; Chandra, R. Vertically aligned MoSe2-WS2 nanoworms heterojunction towards room temperature NO2 gas sensors. Sens. Actuators B Chem. 2024, 407, 135481. [Google Scholar] [CrossRef]
  19. Sun, X.; Tang, M.; Yu, M.; Fan, Y.; Qin, C.; Cao, J.; Wang, Y. UV-activated CH4 gas sensor based on Pd@Ni/ZnO microspheres. Mater. Today Commun. 2024, 40, 109551. [Google Scholar] [CrossRef]
  20. Wang, X.; Li, Y.; Jin, X.; Sun, G.; Cao, J.; Wang, Y. Effectively improved CH4 sensing performance of In2O3 porous hollow nanospheres by doping with Cd. Langmuir 2024, 40, 24740–24749. [Google Scholar] [CrossRef]
  21. Zhang, H.; Wang, Y.; Sun, X.; Wang, Y.; Li, M.; Cao, J.; Qin, C. Enhanced CH4 sensing performances of g-C3N4 modified ZnO nanospheres sensors under visible-light irradiation. Mater. Res. Bull. 2023, 165, 112290. [Google Scholar] [CrossRef]
  22. Xue, L.; Ren, Y.; Li, Y.; Xie, W.; Chen, K.; Zou, Y.; Wu, L.; Deng, Y. Pt-Pd nanoalloys functionalized mesoporous SnO2 spheres: Tailored synthesis, sensing mechanism, and device integration. Small 2023, 19, 2302327. [Google Scholar] [CrossRef]
  23. Deb, M.; Lu, C.; Zan, H. Achieving room-temperature ppb-level H2S detection in a Au-SnO2 sensor with low voltage enhancement effect. ACS Sens. 2024, 9, 4568–4577. [Google Scholar] [CrossRef]
  24. Qiu, C.; Zhang, H.; Li, Q.; Song, Y.; An, F.; Wang, H.; Wang, S.; Zhu, L.; Zhang, D.; Yang, Z. High Performance H2S Sensor Based on Ordered Fe2O3/Ti3C2 Nanostructure at Room Temperature. ACS Sens. 2024, 9, 5926–5935. [Google Scholar] [CrossRef]
  25. Chen, H.; Lv, L.; Xue, K.; Zhang, P.; Du, L.; Cui, G. Oral Exhalation H2S Sensor Based on Cu2O/ZnO Heterostructures. ACS Sens. 2025, 10, 2579–2588. [Google Scholar] [CrossRef]
  26. Zheng, M.; Cheng, Y.; Zhang, X.; Liu, H.; Xu, H.; Dai, X.; Shi, G.; Rao, Y.; Gu, L.; Wang, M.; et al. Atomic ru species driven SnO2-based sensor for highly sensitive and selective detection of H2S in the ppb-Level. ACS Sens. 2025, 10, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
  27. Zhang, H.; Yu, L.; Li, R.; Zhao, F.; Guo, L.; Wang, P.; Cao, W.; Ding, Z.; Qiao, Z. Layer-tunable synthesis of tetragonal Pr-doped SnO2 nanoplates for enhanced sensitive SO2 sensor. Sens. Actuators B Chem. 2024, 409, 135629. [Google Scholar] [CrossRef]
  28. Gond, R.; Barala, S.; Shukla, P.; Bassi, G.; Kumar, S.; Kumar, M.; Kumar, M.; Rawat, B. Fe2O3-functionalized MoS2 nanostructure sensor for high-sensitivity and low-level SO2 detection. ACS Sens. 2025, 10, 3412–3422. [Google Scholar] [CrossRef]
  29. Zhou, L.; Niu, C.; Hu, Y.; Zhang, H.; Shao, X.; Ding, Z.; Zhang, D. High-performance SO2 gas sensor based on MXene/LaFeO3 nanotubes by electrospinning technology. J. Mater. Sci. Mater. Electron. 2024, 35, 1309. [Google Scholar] [CrossRef]
  30. Nath, V.G.; Tomar, S.; Rao, N.N.; Kovilakath, M.S.N.; John, N.S.; Bhattacharjee, S.; Lee, S.C.; Subramanian, A. Unraveling the synergy of interfacial engineering in in situ prepared NiO/NdNiO3 for ppb-level SO2 sensing: Mechanistic and first-principles insights. Small 2025, 21, 2502192. [Google Scholar] [CrossRef] [PubMed]
  31. Yu, X.; Chen, X.; Ding, X.; Tang, K.; Zhao, X.; Liu, F. Room temperature ethanol sensor based on ZnO nanoparticles modified by WSe2 nanosheets. Sens. Actuators B Chem. 2023, 382, 133530. [Google Scholar] [CrossRef]
  32. Zhang, S.; Song, P.; Sun, J.; Ding, Y.; Wang, Q. MoO3/Ti3C2Tx MXene nanocomposites with rapid response for enhanced ethanol-sensing at a low temperature. Sens. Actuators B Chem. 2023, 378, 133216. [Google Scholar] [CrossRef]
  33. Liu, C.; Li, D.; Tang, W. Enhanced ethanol sensors based on MOF-derived ZnO/Co3O4 bimetallic oxides with high selectivity and improved stability. Vacuum 2023, 214, 112185. [Google Scholar] [CrossRef]
  34. Zhang, S.; Ding, Y.; Wang, Q.; Song, P. MOFs-derived In2O3/ZnO/Ti3C2Tx MXene ternary nanocomposites for ethanol gas sensing at room temperature. Sens. Actuators B Chem. 2023, 393, 134122. [Google Scholar] [CrossRef]
  35. Verma, A.; Yadav, B.C. 2D/2D nanostructured system based on WO3/WS2 for acetone sensor and breath analyzer. ACS Appl. Nano Mater. 2023, 6, 5493–5507. [Google Scholar] [CrossRef]
  36. Du, Y.; Lian, N.; Liu, W.; Zhang, Z.; Huo, J.; Chen, X.; Guo, J.; Cui, P.; Wei, L.; Du, Z.; et al. Self-assembled organic monolayer functionalized MIL-88B for selective acetone detection at room temperature. Moore More 2024, 1, 15. [Google Scholar] [CrossRef]
  37. Xiao, Y.; Hu, S.; Liu, Y.; Zhang, A.; Yao, Z.; Tian, Y.; Li, H.; Ning, Y.; Li, F.; Qu, F.; et al. Pt-modified BiVO4 nanosheets for enhanced acetone sensing. Sens. Actuators B Chem. 2023, 389, 133853. [Google Scholar] [CrossRef]
  38. Zhang, H.; Guo, S.; Zheng, W.; Wang, H.; Li, H.; Yu, M.; Chang, Z.; Bu, X.; Liu, H. Facile engineering of metal-organic framework derived SnO2-ZnO composite based gas sensor toward superior acetone sensing performance. Chem. Eng. J. 2023, 469, 143927. [Google Scholar] [CrossRef]
  39. Zhang, S.; Sun, S.; Huang, B.; Wang, N.; Li, X. UV-enhanced formaldehyde sensor using hollow In2O3@TiO2 double-layer nanospheres at room temperature. ACS Appl. Mater. Interfaces 2023, 15, 4329–4342. [Google Scholar] [CrossRef]
  40. Huang, J.; Ma, Z.; Li, J.; Zhang, Z.; Tang, J.; Cao, X.; Xu, W.; Zhao, X.; Yang, Y.; Pan, X.; et al. Au Nanocage/In2O3 nanoparticle-based hybrid structures for formaldehyde sensors. ACS Appl. Nano Mater. 2023, 6, 7855–7863. [Google Scholar] [CrossRef]
  41. Yang, X.; Shi, Y.; Xie, K.; Wang, J.; Wang, Y.; Zheng, Y.; Fang, S.; Zhang, Y. Engineering of in-plane SnO2-Sn3O4 hierarchical nanoflower heterojunctions for enhanced formaldehyde sensing. Appl. Surf. Sci. 2023, 614, 156110. [Google Scholar] [CrossRef]
  42. Sima, Z.; Song, P.; Wang, Q. Ag nanoparticles decorated ZnSnO3 hollow cubes for enhanced formaldehyde sensing performance at low temperature. Appl. Surf. Sci. 2023, 614, 156215. [Google Scholar] [CrossRef]
  43. Duan, X.; Jiang, Y.; Liu, B.; Duan, Z.; Zhang, Y.; Yuan, Z.; Tai, H. Enhancing the carbon dioxide sensing performance of LaFeO3 by Co doping. Sens. Actuators B Chem. 2024, 402, 135136. [Google Scholar] [CrossRef]
  44. Amarnath, M.; Gurunathan, K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. J. Alloys Compd. 2021, 857, 157584. [Google Scholar] [CrossRef]
  45. González-Garnica, M.; Galdámez-Martínez, A.; Malagón, F.; Ramos, C.D.; Santana, G.; Abolhassani, R.; Kumar Panda, P.; Kaushik, A.; Mishra, Y.K.; Karthik, T.V.K.; et al. One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance. Sens. Actuators B Chem. 2021, 337, 129765. [Google Scholar] [CrossRef]
  46. Thomas, T.; Kumar, Y.; Ramos Ramón, J.A.; Agarwal, V.; Sepúlveda Guzmán, S.; Reshmi, R.; Pushpan, S.; Loredo, S.L.; Sanal, K.C. Porous silicon/α-MoO3 nanohybrid based fast and highly sensitive CO2 gas sensors. Vacuum 2021, 184, 109983. [Google Scholar] [CrossRef]
  47. Wei, C.; Zhu, M.; Zhou, Z.; Zhao, S.; Mao, J.; Yin, D.; Li, J.; Wang, Y.; Hao, J. Two-dimensional Bi2O2S based high-sensitivity and rapid-response humidity sensor for respiratory monitoring and Human-Machine Interaction. Chem. Eng. J. 2024, 485, 149805. [Google Scholar] [CrossRef]
  48. Lu, J.; Xu, X.; Zhang, H.; Huang, M.; Wang, Y.; Feng, Z.; Wang, Y. All-printed MXene/WS2-based flexible humidity sensor for multi-scenario applications. Sens. Actuators B Chem. 2025, 422, 136605. [Google Scholar] [CrossRef]
  49. Wang, Y.; Hu, C.; Li, Z.; Zhao, Q.; Wang, H.; Chen, J.; Zheng, D.; Yang, G.; Liu, B. A fast response humidity sensor based on MXene-SWCNTs for the monitoring of respiration. Sens. Actuators B Chem. 2024, 410, 135655. [Google Scholar] [CrossRef]
  50. Liu, Y.; Tian, Y.; Liu, F.; Gu, T.; Wang, B.; He, J.; Wang, C.; Meng, X.; Sun, P.; Lu, G. Multilayer fluorine-free MoBTx MBene with hydrophilic structural-modulating for the fabrication of a low-resistance and high-resolution humidity sensor. Adv. Sci. 2024, 11, 2404178. [Google Scholar] [CrossRef]
  51. Eom, T.H.; Lee, S.E.; Kim, Y.J.; Choi, S.; Nam, G.B.; Ryu, J.E.; Lee, T.H.; Yang, J.W.; Cho, S.H.; Kim, S.J.; et al. Fast responding and highly selective chemoresistive humidity sensor based on hydrated V2O5 nanobelts for real-time breath monitoring. Sens. Actuators B Chem. 2024, 401, 135034. [Google Scholar] [CrossRef]
  52. Zhang, M.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Observing mixed chemical reactions at the positive electrode in the high-performance self-powered electrochemical humidity sensor. ACS Nano 2024, 18, 34158–34170. [Google Scholar] [CrossRef] [PubMed]
  53. Sheng, H.; Li, H.; Huang, Y.; Zhang, B.; Liang, J.; Zhou, X.; Tian, Y.; Li, Q. The sensing selectivity of gas sensors based on different Sn-doped indium oxide films. Chemosensors 2025, 13, 169. [Google Scholar] [CrossRef]
  54. Petrushenko, S.I.; Fijalkowski, M.; Adach, K.; Fedonenko, D.; Shepotko, Y.M.; Dukarov, S.V.; Sukhov, V.M.; Khrypunova, A.L.; Klochko, N.P. Low-temperature, highly sensitive ammonia sensors based on nanostructured copper iodide layers. Chemosensors 2025, 13, 29. [Google Scholar] [CrossRef]
  55. Guo, Y.; Zhang, Z.; Feng, H.; Dai, Q.; Zhao, Q.; Duan, Z.; Guo, S.; Yang, L.; Hou, M.; Xia, Y. Electrostatic self-assembly of heterostructured In2O3/Ti3C2Tx nanocomposite for high-selectivity NO2 gas sensing at room temperature. Chemosensors 2025, 13, 249. [Google Scholar] [CrossRef]
  56. Cao, R.; Lu, Z.; Hu, J.; Zhang, Y. Carbon-based FET-type gas sensor for the detection of ppb-level benzene at room temperature. Chemosensors 2024, 12, 179. [Google Scholar] [CrossRef]
  57. Laera, A.M.; Cassano, G.; Burresi, E.; Protopapa, M.L.; Penza, M. Flexible humidity sensor based on chemically reduced graphene oxide. Chemosensors 2024, 12, 245. [Google Scholar] [CrossRef]
  58. Zhang, S.; Wei, C.; Li, L.; Cui, J.; Yuan, X.; Hao, D.; Wang, H. A stable and fast-response multifunctional humidity sensor based on a polyanionic liquid containing bromide ions. Chemosensors 2025, 13, 79. [Google Scholar] [CrossRef]
  59. Zhang, S.; Zhang, H.; Yao, H.; Wang, P.; Zhu, M.; Shi, X.; Xu, S. Recent advances in metal oxide semiconductor heterojunctions for the detection of volatile organic compounds. Chemosensors 2024, 12, 244. [Google Scholar] [CrossRef]
  60. Gao, Z.; Mao, M.; Ma, J.; Han, J.; Feng, H.; Lou, W.; Wang, Y.; Ma, T. Modeling of chemiresistive gas sensors: From microscopic reception and transduction processes to macroscopic sensing behaviors. Chemosensors 2025, 13, 227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Duan, Z. Functional Nanomaterial-Based Gas Sensors and Humidity Sensors. Chemosensors 2026, 14, 25. https://doi.org/10.3390/chemosensors14010025

AMA Style

Duan Z. Functional Nanomaterial-Based Gas Sensors and Humidity Sensors. Chemosensors. 2026; 14(1):25. https://doi.org/10.3390/chemosensors14010025

Chicago/Turabian Style

Duan, Zaihua. 2026. "Functional Nanomaterial-Based Gas Sensors and Humidity Sensors" Chemosensors 14, no. 1: 25. https://doi.org/10.3390/chemosensors14010025

APA Style

Duan, Z. (2026). Functional Nanomaterial-Based Gas Sensors and Humidity Sensors. Chemosensors, 14(1), 25. https://doi.org/10.3390/chemosensors14010025

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop