Functional Nanomaterial-Based Gas Sensors and Humidity Sensors
Conflicts of Interest
References
- Verma, G.; Gupta, A. Next-generation chemiresistive wearable breath sensors for non-invasive healthcare monitoring: Advances in composite and hybrid materials. Small 2025, 21, 2411495. [Google Scholar] [CrossRef]
- Baek, J.W.; Shin, E.; Lee, J.; Kim, D.H.; Choi, S.J.; Kim, I.D. Present and future of emerging catalysts in gas sensors for breath analysis. ACS Sens. 2024, 10, 33–53. [Google Scholar] [CrossRef]
- Lu, G.; Ji, T.; He, S.; Ai, F.; Yan, L.; Hu, J. Recent progress of exhaled gas-based diagnosis based on field effect transistor sensors. Adv. Funct. Mater. 2024, 35, 2309111. [Google Scholar] [CrossRef]
- Tan, C.; Cao, Y.; Xie, N.; Zhang, M.; Liu, L.; Yu, H.; Wang, C.; Jiang, Y.; Wu, Y.; Yuan, Z.; et al. Intelligent respiratory rate detection using disposable paper-based humidity sensor and precise peak-seeking algorithm. Sens. Actuators B Chem. 2025, 436, 137738. [Google Scholar] [CrossRef]
- Zu, Y.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Electrospun nanofiber-based humidity sensors: Materials, devices, and emerging applications. J. Mater. Chem. A 2024, 12, 27157–27179. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, G.; Shen, Y.; Yang, H.; Xu, K. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150. [Google Scholar] [CrossRef]
- Yang, R.; Yuan, Z.; Jiang, C.; Zhang, X.; Qiao, Z.; Zhang, J.; Liang, J.; Wang, S.; Duan, Z.; Wu, Y.; et al. Ultrafast hydrogen detection system using vertical thermal conduction structure and neural network prediction algorithm based on sensor response process. ACS Sens. 2025, 10, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yuan, Z.; Ma, D.; Yang, R.; Shan, C.; Wang, S.; Duan, Z.; Wu, Y.; Jiang, Y.; Tai, H. Ultrafast (0.3 s) integrated hydrogen leakage sensor system empowered by concentration prediction algorithm. Chem. Eng. J. 2025, 520, 166395. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, C.; Jiang, X.; Yuan, T.; Gao, W.; Yin, J.; Jin, Q.; Li, M.; Jian, J.; Zou, J. Stable room temperature H2 sensor based on Pd-Mg alloy nanofilm. J. Alloys Compd. 2025, 1038, 182842. [Google Scholar] [CrossRef]
- Gond, R.; Shukla, P.; Prakash, B.; Rawat, B. Vertically Aligned MoS2/ZnO Heterostructure for Highly Selective NH3 Sensing at Room Temperature. ACS Appl. Electron. Mater. 2024, 6, 2728–2738. [Google Scholar] [CrossRef]
- Li, D.; Han, D.; Chen, Y.; Hong, Y.; Duan, Q.; Wang, H.; He, X.; Zhao, L.; Wang, W.; Sang, S. GaN/rGO nanocomposite gas sensor for enhanced NH3 sensing performances at room temperature. Sens. Actuators B Chem. 2024, 403, 135209. [Google Scholar] [CrossRef]
- Chen, C.; Tu, Q.; Zhou, X.; Xu, J.; Lv, C.; Ke, X.; Li, H.; Chen, L.; Liu, X. Flexible, stable and self-powered two-dimensional layered nanocomposites (PANI@MoS2) for trace ammonia gas detection. Adv. Compos. Hybrid Mater. 2024, 8, 98. [Google Scholar] [CrossRef]
- Li, Y.; Chen, P.; Zeng, W.; Li, X.; Wang, Q. MOF-derived Co3O4 decorated SnO2 nanosheets for NH3 sensor fabricated by carrier gas regulation. Chem. Eng. J. 2025, 519, 165001. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, Q.; Duan, Z.; Xie, C.; Duan, X.; Li, S.; Ye, Z.; Jiang, Y.; Tai, H. Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature. Sens. Actuators B Chem. 2022, 363, 131790. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Tang, T.; Cheng, Y.; Cheng, L.; Wang, X.; Haidry, A.A.; Jannat, A.; Ou, J.Z. Room-temperature optoelectronic NO2 sensing using two-dimensional gallium oxyselenides. ACS Appl. Nano Mater. 2024, 7, 3229–3238. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Yang, Y.; Zhou, L.; Liu, Y.; Liu, W.; Sun, Y.; Guo, Y.; Ji, Y. Eco-friendly triboelectric nanogenerator for self-powering stacked In2O3 nanosheets/PPy nanoparticles-based NO2 gas sensor. Nano Energy 2024, 128, 109978. [Google Scholar] [CrossRef]
- Li, S.; Yu, L.; Zhang, C.; Li, X.; Cao, L.; Du, H.; Fan, X. Controllable synthesis of heterostructured CuO-ZnO microspheres for NO2 gas sensors. Sens. Actuators B Chem. 2024, 417, 136179. [Google Scholar] [CrossRef]
- Kodan, S.; Kumar, A.; Sanger, A.; Arora, A.; Malik, V.K.; Chandra, R. Vertically aligned MoSe2-WS2 nanoworms heterojunction towards room temperature NO2 gas sensors. Sens. Actuators B Chem. 2024, 407, 135481. [Google Scholar] [CrossRef]
- Sun, X.; Tang, M.; Yu, M.; Fan, Y.; Qin, C.; Cao, J.; Wang, Y. UV-activated CH4 gas sensor based on Pd@Ni/ZnO microspheres. Mater. Today Commun. 2024, 40, 109551. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Jin, X.; Sun, G.; Cao, J.; Wang, Y. Effectively improved CH4 sensing performance of In2O3 porous hollow nanospheres by doping with Cd. Langmuir 2024, 40, 24740–24749. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Sun, X.; Wang, Y.; Li, M.; Cao, J.; Qin, C. Enhanced CH4 sensing performances of g-C3N4 modified ZnO nanospheres sensors under visible-light irradiation. Mater. Res. Bull. 2023, 165, 112290. [Google Scholar] [CrossRef]
- Xue, L.; Ren, Y.; Li, Y.; Xie, W.; Chen, K.; Zou, Y.; Wu, L.; Deng, Y. Pt-Pd nanoalloys functionalized mesoporous SnO2 spheres: Tailored synthesis, sensing mechanism, and device integration. Small 2023, 19, 2302327. [Google Scholar] [CrossRef]
- Deb, M.; Lu, C.; Zan, H. Achieving room-temperature ppb-level H2S detection in a Au-SnO2 sensor with low voltage enhancement effect. ACS Sens. 2024, 9, 4568–4577. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, H.; Li, Q.; Song, Y.; An, F.; Wang, H.; Wang, S.; Zhu, L.; Zhang, D.; Yang, Z. High Performance H2S Sensor Based on Ordered Fe2O3/Ti3C2 Nanostructure at Room Temperature. ACS Sens. 2024, 9, 5926–5935. [Google Scholar] [CrossRef]
- Chen, H.; Lv, L.; Xue, K.; Zhang, P.; Du, L.; Cui, G. Oral Exhalation H2S Sensor Based on Cu2O/ZnO Heterostructures. ACS Sens. 2025, 10, 2579–2588. [Google Scholar] [CrossRef]
- Zheng, M.; Cheng, Y.; Zhang, X.; Liu, H.; Xu, H.; Dai, X.; Shi, G.; Rao, Y.; Gu, L.; Wang, M.; et al. Atomic ru species driven SnO2-based sensor for highly sensitive and selective detection of H2S in the ppb-Level. ACS Sens. 2025, 10, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yu, L.; Li, R.; Zhao, F.; Guo, L.; Wang, P.; Cao, W.; Ding, Z.; Qiao, Z. Layer-tunable synthesis of tetragonal Pr-doped SnO2 nanoplates for enhanced sensitive SO2 sensor. Sens. Actuators B Chem. 2024, 409, 135629. [Google Scholar] [CrossRef]
- Gond, R.; Barala, S.; Shukla, P.; Bassi, G.; Kumar, S.; Kumar, M.; Kumar, M.; Rawat, B. Fe2O3-functionalized MoS2 nanostructure sensor for high-sensitivity and low-level SO2 detection. ACS Sens. 2025, 10, 3412–3422. [Google Scholar] [CrossRef]
- Zhou, L.; Niu, C.; Hu, Y.; Zhang, H.; Shao, X.; Ding, Z.; Zhang, D. High-performance SO2 gas sensor based on MXene/LaFeO3 nanotubes by electrospinning technology. J. Mater. Sci. Mater. Electron. 2024, 35, 1309. [Google Scholar] [CrossRef]
- Nath, V.G.; Tomar, S.; Rao, N.N.; Kovilakath, M.S.N.; John, N.S.; Bhattacharjee, S.; Lee, S.C.; Subramanian, A. Unraveling the synergy of interfacial engineering in in situ prepared NiO/NdNiO3 for ppb-level SO2 sensing: Mechanistic and first-principles insights. Small 2025, 21, 2502192. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Chen, X.; Ding, X.; Tang, K.; Zhao, X.; Liu, F. Room temperature ethanol sensor based on ZnO nanoparticles modified by WSe2 nanosheets. Sens. Actuators B Chem. 2023, 382, 133530. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Sun, J.; Ding, Y.; Wang, Q. MoO3/Ti3C2Tx MXene nanocomposites with rapid response for enhanced ethanol-sensing at a low temperature. Sens. Actuators B Chem. 2023, 378, 133216. [Google Scholar] [CrossRef]
- Liu, C.; Li, D.; Tang, W. Enhanced ethanol sensors based on MOF-derived ZnO/Co3O4 bimetallic oxides with high selectivity and improved stability. Vacuum 2023, 214, 112185. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; Wang, Q.; Song, P. MOFs-derived In2O3/ZnO/Ti3C2Tx MXene ternary nanocomposites for ethanol gas sensing at room temperature. Sens. Actuators B Chem. 2023, 393, 134122. [Google Scholar] [CrossRef]
- Verma, A.; Yadav, B.C. 2D/2D nanostructured system based on WO3/WS2 for acetone sensor and breath analyzer. ACS Appl. Nano Mater. 2023, 6, 5493–5507. [Google Scholar] [CrossRef]
- Du, Y.; Lian, N.; Liu, W.; Zhang, Z.; Huo, J.; Chen, X.; Guo, J.; Cui, P.; Wei, L.; Du, Z.; et al. Self-assembled organic monolayer functionalized MIL-88B for selective acetone detection at room temperature. Moore More 2024, 1, 15. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, S.; Liu, Y.; Zhang, A.; Yao, Z.; Tian, Y.; Li, H.; Ning, Y.; Li, F.; Qu, F.; et al. Pt-modified BiVO4 nanosheets for enhanced acetone sensing. Sens. Actuators B Chem. 2023, 389, 133853. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, S.; Zheng, W.; Wang, H.; Li, H.; Yu, M.; Chang, Z.; Bu, X.; Liu, H. Facile engineering of metal-organic framework derived SnO2-ZnO composite based gas sensor toward superior acetone sensing performance. Chem. Eng. J. 2023, 469, 143927. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, S.; Huang, B.; Wang, N.; Li, X. UV-enhanced formaldehyde sensor using hollow In2O3@TiO2 double-layer nanospheres at room temperature. ACS Appl. Mater. Interfaces 2023, 15, 4329–4342. [Google Scholar] [CrossRef]
- Huang, J.; Ma, Z.; Li, J.; Zhang, Z.; Tang, J.; Cao, X.; Xu, W.; Zhao, X.; Yang, Y.; Pan, X.; et al. Au Nanocage/In2O3 nanoparticle-based hybrid structures for formaldehyde sensors. ACS Appl. Nano Mater. 2023, 6, 7855–7863. [Google Scholar] [CrossRef]
- Yang, X.; Shi, Y.; Xie, K.; Wang, J.; Wang, Y.; Zheng, Y.; Fang, S.; Zhang, Y. Engineering of in-plane SnO2-Sn3O4 hierarchical nanoflower heterojunctions for enhanced formaldehyde sensing. Appl. Surf. Sci. 2023, 614, 156110. [Google Scholar] [CrossRef]
- Sima, Z.; Song, P.; Wang, Q. Ag nanoparticles decorated ZnSnO3 hollow cubes for enhanced formaldehyde sensing performance at low temperature. Appl. Surf. Sci. 2023, 614, 156215. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, Y.; Liu, B.; Duan, Z.; Zhang, Y.; Yuan, Z.; Tai, H. Enhancing the carbon dioxide sensing performance of LaFeO3 by Co doping. Sens. Actuators B Chem. 2024, 402, 135136. [Google Scholar] [CrossRef]
- Amarnath, M.; Gurunathan, K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. J. Alloys Compd. 2021, 857, 157584. [Google Scholar] [CrossRef]
- González-Garnica, M.; Galdámez-Martínez, A.; Malagón, F.; Ramos, C.D.; Santana, G.; Abolhassani, R.; Kumar Panda, P.; Kaushik, A.; Mishra, Y.K.; Karthik, T.V.K.; et al. One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance. Sens. Actuators B Chem. 2021, 337, 129765. [Google Scholar] [CrossRef]
- Thomas, T.; Kumar, Y.; Ramos Ramón, J.A.; Agarwal, V.; Sepúlveda Guzmán, S.; Reshmi, R.; Pushpan, S.; Loredo, S.L.; Sanal, K.C. Porous silicon/α-MoO3 nanohybrid based fast and highly sensitive CO2 gas sensors. Vacuum 2021, 184, 109983. [Google Scholar] [CrossRef]
- Wei, C.; Zhu, M.; Zhou, Z.; Zhao, S.; Mao, J.; Yin, D.; Li, J.; Wang, Y.; Hao, J. Two-dimensional Bi2O2S based high-sensitivity and rapid-response humidity sensor for respiratory monitoring and Human-Machine Interaction. Chem. Eng. J. 2024, 485, 149805. [Google Scholar] [CrossRef]
- Lu, J.; Xu, X.; Zhang, H.; Huang, M.; Wang, Y.; Feng, Z.; Wang, Y. All-printed MXene/WS2-based flexible humidity sensor for multi-scenario applications. Sens. Actuators B Chem. 2025, 422, 136605. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Li, Z.; Zhao, Q.; Wang, H.; Chen, J.; Zheng, D.; Yang, G.; Liu, B. A fast response humidity sensor based on MXene-SWCNTs for the monitoring of respiration. Sens. Actuators B Chem. 2024, 410, 135655. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Liu, F.; Gu, T.; Wang, B.; He, J.; Wang, C.; Meng, X.; Sun, P.; Lu, G. Multilayer fluorine-free MoBTx MBene with hydrophilic structural-modulating for the fabrication of a low-resistance and high-resolution humidity sensor. Adv. Sci. 2024, 11, 2404178. [Google Scholar] [CrossRef]
- Eom, T.H.; Lee, S.E.; Kim, Y.J.; Choi, S.; Nam, G.B.; Ryu, J.E.; Lee, T.H.; Yang, J.W.; Cho, S.H.; Kim, S.J.; et al. Fast responding and highly selective chemoresistive humidity sensor based on hydrated V2O5 nanobelts for real-time breath monitoring. Sens. Actuators B Chem. 2024, 401, 135034. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Observing mixed chemical reactions at the positive electrode in the high-performance self-powered electrochemical humidity sensor. ACS Nano 2024, 18, 34158–34170. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Li, H.; Huang, Y.; Zhang, B.; Liang, J.; Zhou, X.; Tian, Y.; Li, Q. The sensing selectivity of gas sensors based on different Sn-doped indium oxide films. Chemosensors 2025, 13, 169. [Google Scholar] [CrossRef]
- Petrushenko, S.I.; Fijalkowski, M.; Adach, K.; Fedonenko, D.; Shepotko, Y.M.; Dukarov, S.V.; Sukhov, V.M.; Khrypunova, A.L.; Klochko, N.P. Low-temperature, highly sensitive ammonia sensors based on nanostructured copper iodide layers. Chemosensors 2025, 13, 29. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Feng, H.; Dai, Q.; Zhao, Q.; Duan, Z.; Guo, S.; Yang, L.; Hou, M.; Xia, Y. Electrostatic self-assembly of heterostructured In2O3/Ti3C2Tx nanocomposite for high-selectivity NO2 gas sensing at room temperature. Chemosensors 2025, 13, 249. [Google Scholar] [CrossRef]
- Cao, R.; Lu, Z.; Hu, J.; Zhang, Y. Carbon-based FET-type gas sensor for the detection of ppb-level benzene at room temperature. Chemosensors 2024, 12, 179. [Google Scholar] [CrossRef]
- Laera, A.M.; Cassano, G.; Burresi, E.; Protopapa, M.L.; Penza, M. Flexible humidity sensor based on chemically reduced graphene oxide. Chemosensors 2024, 12, 245. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, C.; Li, L.; Cui, J.; Yuan, X.; Hao, D.; Wang, H. A stable and fast-response multifunctional humidity sensor based on a polyanionic liquid containing bromide ions. Chemosensors 2025, 13, 79. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Yao, H.; Wang, P.; Zhu, M.; Shi, X.; Xu, S. Recent advances in metal oxide semiconductor heterojunctions for the detection of volatile organic compounds. Chemosensors 2024, 12, 244. [Google Scholar] [CrossRef]
- Gao, Z.; Mao, M.; Ma, J.; Han, J.; Feng, H.; Lou, W.; Wang, Y.; Ma, T. Modeling of chemiresistive gas sensors: From microscopic reception and transduction processes to macroscopic sensing behaviors. Chemosensors 2025, 13, 227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Duan, Z. Functional Nanomaterial-Based Gas Sensors and Humidity Sensors. Chemosensors 2026, 14, 25. https://doi.org/10.3390/chemosensors14010025
Duan Z. Functional Nanomaterial-Based Gas Sensors and Humidity Sensors. Chemosensors. 2026; 14(1):25. https://doi.org/10.3390/chemosensors14010025
Chicago/Turabian StyleDuan, Zaihua. 2026. "Functional Nanomaterial-Based Gas Sensors and Humidity Sensors" Chemosensors 14, no. 1: 25. https://doi.org/10.3390/chemosensors14010025
APA StyleDuan, Z. (2026). Functional Nanomaterial-Based Gas Sensors and Humidity Sensors. Chemosensors, 14(1), 25. https://doi.org/10.3390/chemosensors14010025

