Recent Advances in Benzodiazepine Electroanalysis
Abstract
1. Introduction
2. Benzodiazepines Analysis
2.1. Alprazolam (ALP)
2.2. Bromazepam (BZP)
2.3. Clonazepam (CLZP)
2.4. Diazepam (DZP)
2.5. Flunitrazepam (FNZP)
2.6. Lorazepam (LZP)
2.7. Midazolam (MDZ)
2.8. Nitrazepam (NZP)
2.9. Olanzapine (OLP)
2.10. Oxazepam (OZP)
2.11. Tetrazepam (TZP)
2.12. Multidrug Studies
2.12.1. Biological Samples
2.12.2. Pharmaceutical Formulations
2.12.3. Beverages
Analyte (BZD) | Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|---|
ALP BZP DZP NDZP | m-AgSAE | DPV/ PBS pH 11/~−1.06 B-R buffer pH 2.00/~−0.35 0.10 mol/L NaOH/~−1.22 B-R buffer pH 10.20/~−1.10 | 6.00 × 10−7–1.00 × 10−4 6.00 × 10−7–1.00 × 10−4 4.00 × 10−7–1.00 × 10−4 6.00 × 10−7–1.00 × 10−4 | 3.54 × 10−7 3.73 × 10−7 9.00 × 10−8 1.28 × 10−7 | Synthetic urine | [95] |
DZP OZP | MIP-MMWCNTs-COOH/PGE | DPV/ABS pH 6.00/ DZP: −0.89 OZP: −1.10 | 9.83 × 10−8–2.00 × 10−4 4.88 × 10−8–1.50 × 10−4 | 5.97 × 10−8 2.10 × 10−8 | Spiked urine, tablets | [96] |
NZP | eLLI/macroITIES eLLI/microITIES | ITV/0.01 mol/L NaCl, 0.01 mol/L HCl, pH 2.00 | 1.00 × 10−5–3.0 × 10−5 2.00 × 10−6–3.00 × 10−5 | 2.15 × 10−6 (+) 1.86 × 10−6 (−) 4.20 × 10−7 (+) 3.80 × 10−7 (−) | Spiked urine, blood, pharmaceuticals | [97] |
7-amino-NZP | eLLI/macroITIES eLLI/microITIES | ITV/0.01 mol/L NaCl, 0.01 mol/L HCl, pH 2.00 | 1.00 × 10−5–3.0 × 10−5 2.00 × 10−6–3.00 × 10−5 | 7.10 × 10−7 (+) 1.23 × 10−6 (−) 2.10 × 10−7 (+) 4.20 × 10−7 (−) | Spiked urine, blood | |
ALP CDZO CLZP DZP OZP | p(DA-CS)-AuNPs/GCE | DPV PBS pH 7.00/−0.33 PBS pH 6.00/−0.42 PBS pH 10.00/−0.58 PBS pH 8.00/−0.52 PBS pH 7.00/−0.32 | 5.00 × 10−8–4.20 × 10−7 7.50 × 10−8–4.00 × 10−7 2.80 × 10−7–6.50 × 10−7 2.00 × 10−8–1.40 × 10−7 6.30 × 10−8–1.39 × 10−6 | 5.00 × 10−8 7.50 × 10−8 2.80 × 10−7 2.00 × 10−8 6.30 × 10−8 | Human serum | [99] |
ALP CDZO CLZP DZP OZP | p(DA-FA)/GCE | DPV/0.10 mol/L NaOH ~−0.40 ~−0.25 ~−0.16 ~−0.40 ~−0.40 | 3.10 × 10−8–5.20 × 10−8 3.00 × 10−8–7.10 × 10−8 2.50 × 10−8–9.00 × 10−7 2.70 × 10−8–4.10 × 10−8 2.50 × 10−8–4.70 × 10−8 | 3.10 × 10−8 3.00 × 10−8 2.50 × 10−8 2.70 × 10−8 2.50 × 10−8 | Human plasma | [100] |
ALP CDZO CLZP DZP OZP ALP CDZO CLZP DZP OZP ALP CDZO CLZP DZP OZP | AgNPs/N-GQD/Cs/Au | DPV/0.10 mol/L NaOH Oxidation ALP, CDZO, DZP, OZP: 0.50; CLZP: 0.60 DPV SWV | 5.60 × 10−5–1.56 × 10−4 5.20 × 10−5–2.50 × 10−4 8.40 × 10−5–6.25 × 10−4 5.40 × 10−5–1.42 × 10−4 5.40 × 10−5–4.54 × 10−4 3.80 × 10−6–2.47 × 10−4 6.19 × 10−5–9.90 × 10−4 3.80 × 10−6–4.95 × 10−4 7.70 × 10−6–4.95 × 10−4 6.30 × 10−8–1.39 × 10−6 7.30 × 10−5–1.92 × 10−4 7.04 × 10−5–2.50 × 10−4 5.40 × 10−5–1.00 × 10−3 5.60 × 10−5–4.54 × 10−4 5.60 × 10−5–2.94 × 10−4 | 5.60 × 10−5 5.20 × 10−5 8.40 × 10−5 5.40 × 10−5 5.40 × 10−5 3.80 × 10−6 6.19 × 10−5 3.80 × 10−6 7.70 × 10−6 6.30 × 10−8 7.30 × 10−6 7.04 × 10−5 5.40 × 10−5 5.60 × 10−5 5.60 × 10−5 | Electrolyte Human plasma Electrolyte | [102] |
BZDs | Ab-LSG | DPV/5.00 mmol/L [Fe(CN)6]3−/4− in 0.10 mol/L PBS + 0.10 mol/L KCl/~−0.05 | 1 pg/mL–500 ng/mL | 9.7 ng/mL | Saliva | [103] |
ALP BZP | BDDE | DPV/ALP: B-R buffer pH 5.00/−0.84; BZP: B-R buffer pH 11.00/−1.10 | 8.00 × 10−7–1.00 × 10−4 1.00 × 10−6–1.00 × 10−4 | 6.40 × 10−7 3.10 × 10−7 | Pharmaceuticals | [42] |
ALP BZP | CPE | DPV/B-R buffer:methanol (9:1) pH 3.00/ALP: −0.78; BZP: ~−0.50 | 8.00 × 10−7–1.00 × 10−4 8.00 × 10−7–1.00 × 10−4 | LoQ: 4.20 × 10−7 3.80 × 10−7 | Pharmaceuticals | [43] |
ALP CLZP DZP | Graphite SPE | SWV/B-R buffer pH 7.00 Standard solution ALP: ~−0.6 to ~−0.7 CLZP: ~−0.55, ~−0.75, ~−0.9 DZP: ~−0.75 to − ~0.9 | 2.50 × 10−8–1.00 × 10−6 7.50 × 10−7–6.00 × 10−4 2.50 × 10−8–1.00 × 10−6 | 1.40 × 10−8 7.50 × 10−7 3.60 × 10−8 | Pharmaceuticals | [35] |
ALP CLZP DZP | Deoxygenated solution ALP: ~−0.75, ~−0.97 CLZP: ~−0.55, ~−0.95 DZP: ~−0.85 | 1.50 × 10−5–2.00 × 10−4 1.00 × 10−6–2.00 × 10−4 5.00 × 10−6–3.00 × 10−4 | 1.10 × 10−5 7.50 × 10−7 3.11 × 10−6 | Beverages | ||
DZP MDZ | LSG-PEI | SWV/B-R buffer pH 4.00/DZP:~−1.15; MDZ:~−1.05 | 2.50 × 10−6–2.50 × 10−5 2.50 × 10−5–1.00 × 10−4 | 6.60 × 10−7 6.10 × 10−7 | Beverages | [104] |
CLNZ DCZP FBZM FPZM | eLLI | ITV/B-R buffer pH 2.00 | 2.00 × 10−6–5.00 × 10−5 2.00 × 10−6–5.00 × 10−5 2.00 × 10−6–5.00 × 10−5 2.00 × 10−6–5.00 × 10−5 | 1.40 × 10−7 1.60 × 10−7 2.40 × 10−7 1.90 × 10−7 | Beverages | [105] |
DZP FNZP LZP | ET | CV/B-R buffer pH 10.00/PCA, DWT | 3.50 × 10−5–1.10 × 10−4 3.20 × 10−5–9.60 × 10−4 3.10 × 10−5–9.30 × 10−5 | 6.00 × 10−6 5.60 × 10−6 4.60 × 10−6 | Electrolyte | [106] |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3,4-MDMA | 3,4-methylenedioxymethamphetamine |
Ab-LSG | Antibody–Laser-Scribed Graphene |
AD | Alzheimer’s Disease |
AgFs-IL | Ag Fibers and Ionic Liquid nanocomposite |
AgNDs/GNs | Ag Nanodendrimers supported by Graphene Nanosheets |
Apt-AgNPs-EPMAD | Aptamer-Ag Nanoparticles–Electrochemical Paper-based Multiplex Analytical Device |
AgNPs/N-GQD/Cs/Au | Ag Nanoparticles-Nitrogen doped Graphene Quantum Dots deposited onto Chitosan modified gold electrode |
AGO-CuNPs/SPCE | Amine-functionalized Graphene Oxide sheets reinforced through Cu Nanoparticles modified Screen Printed Carbon Electrode |
(Ag-Pt)NPs/GNs | Ag-Pt core–shell Nanoparticles supported on Graphene Nanosheets |
AuNPs/p(L-Ala)/pre-PGE | Au Nanoparticles poly(L-alanine) pre-anodized Pencil Graphite Electrode |
AuNPs-rGO | Au Nanoparticles reduced Graphene Oxide nanocomposite |
AuNPs/SiNPs-CPE | Au Nanoparticles-Silica Nanoparticles modified Carbon Paste Electrode |
ALP | Alprazolam |
BDDE | Boron-Doped Diamond Electrode |
BIA-SWAdSV | Batch Injection Analysis coupled with Square Wave Adsorptive Stripping Voltammetry |
BiPPGE | Bismuth-modified Pretreated Pencil Graphite Electrode |
BMBPBP/CdS-QDs/MWCNTs/Au | 1, 4 Bis(N Methyl) Benzene bis(N Phenyl, N Benzoylphosphoramidate)/Cadmium Sulfide Quantum Dots/Multi-Walled Carbon Nanotubes modified gold electrode |
B-R | Britton-Robinson |
B-rGO/p(ASP) | Boron doped reduced Graphene Oxide–poly(Aspartic acid) |
BZP | Bromazepam |
C60–CNT/IL | Fullerene-functionalized Carbon Nanotubes and Ionic Liquid (1-butyl-3-methylimidazolium tetrafluoroborate) |
C3N4/CNH-MSN | C3N4 decorated Copper Nitrate Hydroxide-containing Mesoporous Silica Nanoparticles |
CECs | Contaminants of Emerging Concern |
CDZO | Chlordiazepoxide |
CLNZ | Clonazolam |
CLZP | Clonazepam |
CNFs/SPE | Carbon Nanofiber-Modified Screen-Printed Electrodes |
CNS | Central Nervous System |
CoOOH-rGO/SPCE | Cobalt Oxyhydroxide nanoflakes and reduced Graphene Oxide modified Screen Printed Carbon Electrode |
CPE | Carbon Paste Electrode |
Cu/POT/ISM | Copper/Poly(3-Octylthiophene)/Ion Selective Membrane |
CuO-rGNR/IL/CPE | CuO/reduced Graphene Nanoribbons nanocomposites and Ionic Liquid (1-ethyl 3-methyl imidazolinium chloride) modified Carbon Paste Electrode |
CV | Cyclic Voltammetry |
DCZP | Diclazepam |
DPAd(C)SV | Differential Pulse Adsorptive (Cathodic) Stripping Voltammetry |
DPV | Differential Pulse Voltammetry |
DZP | Diazepam |
DWT | Discrete Wavelet Transform |
Eβ-CD/B-rGO | Electropolymerized β-Cyclodextrin and Boron-doped reduced Graphene Oxide |
EIS | Electrochemical Impedance Spectroscopy |
eLLI | electrified Liquid–Liquid Interface |
EPGCE | Electrochemically Pretreated Glassy Carbon Electrode |
ET | Electronic Tongue |
Fe3O4/R-SH/Pd | 2-mercaptoethanol on triazine functionalized iron oxide magnetic nanoparticles Pd nanocomposite |
FeCu-LDH@MXene | FeCu-Layered Double Hydroxides Mxene nanocomposite |
FI-DPA | Flow Injection–Differential Pulse Amperometry |
FNZP | Flunitrazepam |
FBZM | Flubromazolam |
FPZM | Flualprazolam |
GABA | Gamma-Aminobutyric Acid |
GCE | Glassy Carbon Electrode |
GO-HNT | Graphene Oxide functionalized Halloysite Nanotubes |
GO/Lys | Graphene Oxide-Lysine composite |
GOx/GluHD/FeSPC | Glucose Oxidase and Glucose Hydrogel Droplets Modified Iron-Sparked Graphite Electrode |
HA/RDE | Hydrodynamic Amperometry at Rotating Disk Electrode |
HPLC-ED | High Performance Liquid Chromatography with Electrochemical Detection |
ISE | Ion Selective Electrode |
ITIES | Interface between Two Electrolyte Solutions |
ITV | Ion Transfer Voltammetry |
kcat | catalytic rate constant |
LC-HRMS | Liquid Chromatography-High Resolution Mass Spectrometry |
LDHs | Layered Double Hydroxides |
LI-AuNP-rGO | Laser-induced Au Nanoparticles reduced Graphene Oxide nanocomposite |
LLE | Liquid–Liquid Extraction |
LoD | Limit of Detection |
LoQ | Limit of Quantification |
LSG-PEI | Laser-scribed graphene device fabricated on Polyetherimide substrate |
LSV | Linear Sweep Voltammetry |
LUB-rGOSPE | Lubricin-modified reduced Graphene Oxide Screen-Printed Electrode |
LZP | Lorazepam |
m-AgSAE | Meniscus Modified Silver Solid Amalgam Electrode |
MB-Ag@Pd/EμPAD | urchin-like Methylene Blue doped silver core shell palladium nano-hybrids Electrochemical microfluidic Paper-based Analytical Device |
MDZ | Midazolam |
MIP | Molecularly Imprinted Polymer |
MIP-CPE | Molecularly Imprinted Polymer-based Carbon Paste Electrode |
MIP@SiO2-MPA-AuZnCeSeS-QDs/SPCE | SiO2-encapsulated-3-Mercaptopropionic Acid-capped AuZnCeSeS Quantum Dots overcoated with a Molecularly Imprinted Polymer on Screen-Printed Carbon Electrodes |
MIP-MMWCNTs-COOH/PGE | Magnetic carboxylated Multi-Walled Carbon Nanotubes modified Pencil Graphite Electrode covered with a Molecularly Imprinted Polymer |
MIP-MWCNTs-COOH/CPE | Molecularly Imprinted Polymer grafted on carboxylated Multi-Walled Carbon Nanotubes modified Carbon Paste Electrode |
MWCNTs | Multi-Walled Carbon Nanotubes |
MWCNTs/GC/CPE | Multi-Walled Carbon Nanotubes/Glassy Carbon/Carbon Paste Electrode |
MWCNTs/PEDOT:PSS | Multi-Walled Carbon Nanotubes/Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) |
NaTKBor | Buffer containing sodium acetate, ammonium acetate, KCl, KSCN, and borax |
NC@N,S@GQDs | Nanocellulose and Nitrogen, Sulfur co-doped Graphene Quantum Dots |
NiO/SWCNTs/CPE | NiO/Single-Walled Carbon Nanotubes modified Carbon Paste Electrode |
N,P-CNOs/GNP/PGE | N, P-doped Carbon Nanoonions and Graphene Nanoplates modified Pencil Graphite Electrode |
NDZP | Nordiazepam |
NZP | Nitrazepam |
OLP | Olanzapine |
OLP-TPB/DOP/PVC | Olanzapine-Tetraphenyl Boron/Dioctylphthalate/Polyvinylchloride |
OZP | Oxazepam |
PAD | Paper-Based Analytical Device |
PBS | Phosphate-Buffer Solution |
PCA | Principal Component Analysis |
p(DA-CS)-AuNPs | Poly (Dopamine-Chitosan)–gold Nanoparticles |
p(DA-FA) | Poly (Dopamine-Folic Acid) |
pMela/MWCNT-COOH | Poly Melamine and carboxylated Multi-Walled Carbon Nanotubes |
PTA | Phosphotungstic Acid |
POC | Point-of-Care |
PtB/Au | Platinum Black modified gold microelectrode |
QDs | Quantum Dots |
S-CQDs/Fe2O3 | Sulfur-Doped Carbon Quantum Dots chemically incorporated with iron oxide nanoparticles |
Si@GNRs/EμPAD | Silica-Coated Gold Nanorods drop-casted on an electrochemical microfluidic-paper-based device |
SbFSPE | Antimony Film Screen-Printed Electrode |
SPE | Screen-Printed Electrode |
SS-HLLME | Switchable Solvent-Based Homogeneous Liquid–Liquid Microextraction |
SWV | Square Wave Voltammetry |
SWAdASV | Square Wave Adsorptive Anodic Stripping Voltammetry |
SWAdSV | Square Wave Adsorptive Stripping Voltammetry |
TiO2@CuO-N-rGO/p(L-Cys) | TiO2@CuO hybrid nanoparticles-N-doped reduced Graphene Oxide-poly(L-Cysteine) |
TMP | Temazepam |
TPB | Tetraphenyl Borate |
TZP | Tetrazepam |
References
- Balon, R.; Starcevic, V. Role of Benzodiazepines in Anxiety Disorders. In Anxiety Disorder: Rethinking and Understanding Recent Discoveries, 1st ed.; Kim, Y.K., Ed.; Springer Nature: Singapore, 2020; Volume 1191, pp. 367–387. [Google Scholar] [CrossRef]
- Offidani, E.; Guidi, J.; Tomba, E.; Fava, G.A. Efficacy and Tolerability of Benzodiazepines versus Antidepressants in Anxiety Disorders: A Systematic Review and Meta-Analysis. Psychother. Psychosom. 2013, 82, 355–362. [Google Scholar] [CrossRef]
- Lader, M. Benzodiazepines revisited—Will we ever learn? Addiction 2011, 106, 2086–2109. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alsayegh, A.A.; Abusudah, W.F.; Almohmadi, N.H.; Eldahshan, O.A.; Ahmed, E.A.; Batiha, G.E.S. Insights on Benzodiazepines’ Potential in Alzheimer’s Disease. Life Sci. 2023, 320, 121532. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Nix, C.A.; Hollier, J.; Sagrera, C.E.; Delacroix, B.M.; Abubakar, T.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Benzodiazepines: Uses, Dangers, and Clinical Considerations. Neurol. Int. 2021, 13, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Freire, I.; Brunetti, P.; Cabarcos-Fernández, P.; Fernández-Liste, A.; Tabernero-Duque, M.; Bermejo-Barrera, A. Determination of Benzodiazepines in Pericardial Fluid by Gas Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 45–52. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Nix, C.A.; Odisho, A.S.; Babin, C.P.; Derouen, A.G.; Lutfallah, S.C.; Cornett, E.M.; Murnane, K.S.; Kaye, A.M.; Kaye, A.D. Novel Designer Benzodiazepines: Comprehensive Review of Evolving Clinical and Adverse Effects. Neurol. Int. 2022, 14, 648–663. [Google Scholar] [CrossRef]
- Hirschtritt, M.E.; Olfson, M.; Kroenke, K. Balancing the Risks and Benefits of Benzodiazepines. JAMA 2021, 325, 347–348. [Google Scholar] [CrossRef] [PubMed]
- Honeychurch, K.C.; Hart, J.P. Electrochemical Detection of Benzodiazepines, Following Liquid Chromatography, for Applications in Pharmaceutical, Biomedical and Forensic Investigations. Insciences J. 2014, 4, 1–18. [Google Scholar] [CrossRef]
- Arora, N.; Dhiman, P.; Kumar, S.; Singh, G.; Monga, V. Recent Advances in Synthesis and Medicinal Chemistry of Benzodiazepines. Bioorg. Chem. 2020, 97, 103668. [Google Scholar] [CrossRef]
- Silberman, E.; Balon, R.; Starcevic, V.; Shader, R.; Cosci, F.; Fava, G.A.; Nardi, A.E.; Salzman, C.; Sonino, N. Benzodiazepines: It’s Time to Return to the Evidence. Br. J. Psychiatry 2021, 218, 125–127. [Google Scholar] [CrossRef]
- Jain, B.; Jain, R.; Nowak, P.M.; Ali, N.; Ansari, M.N.; Kabir, A.; Chandravanshi, L.P.; Sharma, S. Comparison of Various Sample Preparation Methods for Benzodiazepines in Terms of the Principles of White Analytical Chemistry. TrAC Trends Anal. Chem. 2024, 171, 117524. [Google Scholar] [CrossRef]
- Persona, K.; Madej, K.; Knihnicki, P.; Piekoszewski, W. Analytical Methodologies for the Determination of Benzodiazepines in Biological Samples. J. Pharm. Biomed. Anal. 2015, 113, 239–264. [Google Scholar] [CrossRef]
- Qriouet, Z.; Qmichou, Z.; Bouchroutrouch, N.; Mahi, H.; Cherrah, Y.; Sefrioui, H. Analytical Methods Used for the Detection and Quantification of Benzodiazepines. J. Anal. Meth. Chem. 2019, 2019, 2035492. [Google Scholar] [CrossRef]
- Yafout, M.; Mouss, R.A.; Bouchafra, H.; Zarayby, L.; El-Otmani, I.S. Overview of the Bioanalytical Methods Used for the Determination of Benzodiazepines in Biological Samples and Their Suitability for Emergency Toxicological Analysis. J. Pharmacol. Toxicol. Meth. 2023, 123, 107294. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Zhang, Y.; Bian, Y.; Liu, Y.-J.; Ren, A.; Zhou, Y.; Shi, D.; Feng, X.-S. Benzodiazepines in Complex Biological Matrices: Recent Updates on Pretreatment and Detection Methods. J. Pharm. Anal. 2023, 13, 442–462. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, I.S.; Vázquez-Garrido, I.; Islas, G.; Flores-Aguilar, J.F. New Trends in the Methodologies of Determination of Benzodiazepine Residues in Biological Samples. Separations 2025, 12, 95. [Google Scholar] [CrossRef]
- Piergiovanni, M.; Cappiello, A.; Famiglini, G.; Termopoli, V.; Palma, P. Determination of Benzodiazepines in Beverages Using Green Extraction Methods and Capillary HPLC-UV Detection. J. Pharm. Biomed. Anal. 2018, 154, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Montesano, C.; Babino, P.; Carboni, S.; Napoletano, S.; De Sangro, G.; Di Rosa, F.; Gregori, A.; Curini, R.; Sergi, M. Finding Evidence at a Crime Scene: Sensitive Determination of Benzodiazepine Residues in Drink and Food Paraphernalia by HPLC-HRMS/MS. Forensic Chem. 2021, 23, 100327. [Google Scholar] [CrossRef]
- Gupta, N.; Thakur, R.S.; Patel, D.K. Detection, Quantification and Degradation Kinetic for Five Benzodiazepines Using VAUS-ME-SFO/LC-MS/MS Method for Water, Alcoholic and Non-Alcoholic Beverages. Talanta 2023, 260, 124572. [Google Scholar] [CrossRef]
- Miri, M.S.; Badakhshan, D.; Akhgari, M.; Ghadipasha, M. Chemical Components Analysis of Handmade Alcoholic Beverages with Special Focus on Psychoactive Drugs as Adulterants. MethodsX 2025, 14, 103230. [Google Scholar] [CrossRef]
- Yen, Y.-T.; Lin, Y.-S.; Chen, T.-H.; Chyueh, S.-C.; Chang, H.-T. A Carbon-Dot Sensing Probe for Screening of Date Rape Drugs: Nitro-containing Benzodiazepines. Sens. Actuators B Chem. 2020, 305, 127441. [Google Scholar] [CrossRef]
- Poves-Ruiz, I.; Azuaje-Hualde, E.; Corchado-Gonzalez, I.; Basabe-Desmonts, L.; Benito-Lopez, F. Autonomous Microfluidic Device for the Naked-Eye Detection of Benzodiazepines in Adulterated Beverages. Anal. Chim. Acta 2025, 1368, 344309. [Google Scholar] [CrossRef]
- Balamurugan, T.S.T.; Kwaczyński, K.; Rizwan, M.; Poltorak, L. Current Trends in Rapid Electroanalytical Screening of Date Rape Drugs in Beverages. TrAC Trends Anal. Chem. 2024, 175, 117712. [Google Scholar] [CrossRef]
- Nunes, C.N.; dos Anjos, V.E.; Quinaia, S.P. Determination of Diazepam and Clonazepam in Natural Water—A Voltammetric Study. Electroanalysis 2018, 30, 109–118. [Google Scholar] [CrossRef]
- Cunha, D.L.; de Araujo, F.G.; Marques, M. Psychoactive Drugs: Occurrence in Aquatic Environment, Analytical Methods, and Ecotoxicity—A Review. Environ. Sci. Pollut. Res. 2017, 24, 24076–24091. [Google Scholar] [CrossRef]
- Guo, H.; Chen, J.; Jiang, G.; Mei, Y.; Gong, Z.; Liu, M.; Li, J.; Gan, J. Determination of 14 Benzodiazepine Multiresidues in Aquaculture Environment by Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry. Molecules 2025, 30, 775. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.N.; Pauluk, L.E.; dos Anjos, V.E.; Lopes, M.C.; Quinaia, S.P. New Approach to the Determination of Contaminants of Emerging Concern in Natural Water: Study of Alprazolam Employing Adsorptive Cathodic Stripping Voltammetry. Anal. Bioanal. Chem. 2015, 407, 6171–6179. [Google Scholar] [CrossRef]
- Barhoum, A.; Naseef, A.; Ahmed, Y.M.; Zahran, M.K.; Alhashemi, Y.; Mohamed, M.S.; Rizk, M.S.; Abdel-Haleem, F.M. Modern Designs of Electrochemical Sensor for Accurate Drug Analysis in Pharmaceutical and Biological Samples: Principles, Nanofabrication, and key challenges. Mater. Chem. Phys. 2025, 337, 130588. [Google Scholar] [CrossRef]
- Honeychurch, K.C. Review of Electroanalytical-Based Approaches for the Determination of Benzodiazepines. Biosensors 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A.R. Recent Biosensing Advances in the Rapid Detection of Illicit Drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. [Google Scholar] [CrossRef]
- Anzar, N.; Suleman, S.; Parvez, S.; Narang, J. A Review on Illicit Drugs and Biosensing Advances for its Rapid Detection. Process Biochem. 2022, 113, 113–124. [Google Scholar] [CrossRef]
- Dagar, M.; Yadav, S.; Sai, V.V.R.; Satija, J.; Bhatia, H. Emerging Trends in Point-of-Care Sensors for Illicit Drugs Analysis. Talanta 2022, 238, 123048. [Google Scholar] [CrossRef]
- Loftsson, T. 1,4-Benzodiazepines: Chemical Stability and Cyclodextrin Solubilization. J. Drug Deliv. Sci. Tec. 2021, 66, 102936. [Google Scholar] [CrossRef]
- Schram, J.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. Electrochemical Classification of Benzodiazepines: A Comprehensive Approach Combining Insights from Voltammetry and Liquid Chromatography—Mass Spectrometry. Talanta 2024, 279, 126623. [Google Scholar] [CrossRef]
- Naggar, A.H.; El Kaoutit, M.; Naranjo-Rodriguez, I.; El-Sayed, A.Y.; de Cisneros, J.L.H.H. Voltammetric and Spectroscopic Investigation of the Interaction Between 1,4-Benzodiazepines and Bovine Serum Albumin. J. Solut. Chem. 2016, 45, 1659–1678. [Google Scholar] [CrossRef]
- Narang, J.; Malhotra, N.; Singhal, C.; Mathur, A.; Anoop Krishna, P.N.; Pundir, C.S. Detection of Alprazolam with a Lab on Paper Economical Device Integrated with Urchin Like Ag@ Pd Shell Nano-Hybrids. Mater. Sci. Eng. C 2017, 80, 728–735. [Google Scholar] [CrossRef]
- Mazurków, J.M.; Montiel, N.F.; Van Echelpoel, R.; Kusior, A.; De Wael, K. The Potential of Electrochemical Sensors to Unveil Counterfeits: Xanax as a Case Study. Electrochim. Acta 2024, 494, 144458. [Google Scholar] [CrossRef]
- Boonmee, W.; Samoson, K.; Yodrak, J.; Thiagchanya, A.; Phonchai, A.; Limbut, W. Adsorptive Cathodic Stripping Voltammetry for Quantification of Alprazolam. Molecules 2021, 26, 2958. [Google Scholar] [CrossRef]
- Suleman, S.; Anzar, N.; Patil, S.; Ansari, S.; Jahan, F.; Narang, J. Development of an Electrochemical Paper Based Multiplex Analytical Device for the Detection of “Illicit Drugs” Employing Silver Nanoparticles. Mater. Chem. Phys. 2025, 338, 130649. [Google Scholar] [CrossRef]
- Phua, C.H.; Saisahas, K.; Soleh, A.; Promsuwan, K.; Saichanapan, J.; Limbut, W. Electrode Modified with Reduced Graphene Oxide Decorated with Gold Nanoparticles co-induced by Laser for Electrochemical Alprazolam Sensor. Microchem. J. 2023, 195, 109380. [Google Scholar] [CrossRef]
- Samiec, P.; Švorc, Ľ.; Stanković, D.M.; Vojs, M.; Marton, M.; Navrátilová, Z. Mercury-Free and Modification-Free Electroanalytical Approach Towards Bromazepam and Alprazolam Sensing: A Facile and Efficient Assay for their Quantification in Pharmaceuticals Using Boron-Doped Diamond Electrodes. Sens. Actuators B Chem. 2017, 245, 963–971. [Google Scholar] [CrossRef]
- Samiec, P.; Navrátilová, Z. Electrochemical Behaviour of Bromazepam and Alprazolam and their Determination in the Pharmaceutical Tablets Lexaurin and Xanax on Carbon Paste Electrode. Monatsh. Chem. 2017, 148, 449–455. [Google Scholar] [CrossRef]
- Sadrabadi, E.A.; Khosravi, F.; Benvidi, A.; Shiralizadeh Dezfuli, A.; Khashayar, P.; Khashayar, P.; Azimzadeh, M. Alprazolam Detection Using an Electrochemical Nanobiosensor Based on AuNUs/Fe-Ni@rGO Nanocomposite. Biosensors 2022, 12, 945. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Gawad, S.A.; Arab, H.H. Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents. Chemosensors 2022, 10, 74. [Google Scholar] [CrossRef]
- Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Silver Nanofibers/Ionic Liquid Nanocomposite Based Electrochemical Sensor for Detection of Clonazepam via Electrochemically Amplified Detection. Microchem. J. 2019, 145, 1185–1190. [Google Scholar] [CrossRef]
- Abedi, F.; Rajabi, H.R.; Roushani, M.; Rafiee, Z.; Rahmati, E. Mesoporous silica nanoparticles decorated with C3N4 framework as a novel electrocatalyst for the design of a selective clonazepam sensor. J. Mater. Res. Technol. 2024, 29, 5731–5740. [Google Scholar] [CrossRef]
- Honeychurch, K.C.; Brooks, J.; Hart, J.P. Development of a Voltammetric Assay Using Screen-Printed Electrodes for Clonazepam and its Application to Beverage and Serum Samples. Talanta 2016, 147, 510–515. [Google Scholar] [CrossRef]
- Lotfi, S.; Veisi, H. Electrochemical Determination of Clonazepam Drug Based on Glassy Carbon Electrode Modified with Fe3O4/R-SH/Pd Nanocomposite. Mater. Sci. Eng. C 2019, 103, 109754. [Google Scholar] [CrossRef]
- Russo, J.M.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Guijt, R.; Silva, S.M.; Greene, G.W. A Simple Electrochemical Swab Assay for the Rapid Quantification of Clonazepam in Unprocessed Saliva Enabled by Lubricin Antifouling Coatings. ChemElectroChem 2020, 7, 2851–2858. [Google Scholar] [CrossRef]
- Shahparast, S.; Asadpour-Zeynali, K. Development of a Novel and Highly Sensitive Electrochemical Sensor Based on FeCu-LDH@MXene Nanocomposite for the Selective Determination of Clonazepam. Microchem. J. 2025, 211, 113095. [Google Scholar] [CrossRef]
- Garima; Sachdev, A.; Matai, I. An Electrochemical Sensor Based on Cobalt Oxyhydroxide Nanoflakes/Reduced Graphene Oxide Nanocomposite for Detection of Illicit Drug-Clonazepam. J. Electroanal. Chem. 2022, 919, 116537. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Khaloo, S.S.; Mirzaie, R.A. Klonopin Assay Using Modified Electrode with Multiwalled Carbon Nanotubes and poly Melamine Nanocomposite. Mater. Sci. Eng. C 2019, 99, 121–128. [Google Scholar] [CrossRef]
- Majidi, M.R.; Ghaderi, S.; Asadpour-Zeynali, K.; Dastangoo, H. Synthesis of Dendritic Silver Nanostructures Supported by Graphene Nanosheets and its Application for Highly Sensitive Detection of Diazepam. Mater. Sci. Eng. C 2015, 57, 257–264. [Google Scholar] [CrossRef]
- Dehghanzade, M.; Alipour, E. Voltammetric Determination of Diazepam Using a Bismuth Modified Pencil Graphite Electrode. Anal. Methods 2016, 8, 1995–2004. [Google Scholar] [CrossRef]
- Rahimi-Nasrabadi, M.; Khoshroo, A.; Mazloum-Ardakani, M. Electrochemical Determination of Diazepam in Real Samples Based on Fullerene-Functionalized Carbon Nanotubes/Ionic Liquid Nanocomposite. Sens. Actuators B Chem. 2017, 240, 125–131. [Google Scholar] [CrossRef]
- Hassan, S.A.; ElDin, N.B.; Zaazaa, H.E.; Moustafa, A.A.; Mahmoud, A.M. Point-of-Care Diagnostics for Drugs of Abuse in Biological Fluids: Application of a Microfabricated Disposable Copper Potentiometric Sensor. Microchim. Acta 2020, 187, 491. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Borges, I.; Goularte, R.B.; Vanoni, C.R.; Lima, A.R.S.; Scheide, M.R.; Mezalira, D.Z.; Vitali, L.; Stulzer, H.K.; Jost, C.L. Exploiting the synergistic effects of combined carbon-based materials for rape drug diazepam electrochemical sensing: Application to simulated casework matrices. Electroanalysis 2024, 36, e202300231. [Google Scholar] [CrossRef]
- Narang, J.; Singhal, C.; Mathur, A.; Khanuja, M.; Varshney, A.; Garg, K.; Dahiya, T.; Pundir, C.S. Lab on paper chip integrated with Si@GNRs for electroanalysis of diazepam. Anal. Chim. Acta 2017, 980, 50–57. [Google Scholar] [CrossRef]
- Adegoke, O.; Oyinlola, K.; Adeniyi, K.O.; Achadu, O.J.; Yang, Z.; Daeid, N.N. An Organic-Inorganic Polyacrylamide-Based Surface Imprinted Quantum Dots for the Impedimetric and Voltammetric Detection of Diazepam in Saliva with Smartphone Readout. Talanta 2025, 285, 127400. [Google Scholar] [CrossRef]
- Antunovic, V.; Tesanovic, S.; Peruskovic, D.; Stevanovic, N.; Baosic, R.; Mandic, S.; Lolic, A. Development of a Flow Injection System for Differential Pulse Amperometry and Its Application for Diazepam Determination. J. Anal. Meth. Chem. 2018, 2018, 6121489. [Google Scholar] [CrossRef] [PubMed]
- Antunovic, V.; Baosic, R.; Lolic, A. Voltammetric Determination of Diazepam on Antimony Film Screen-Printed Electrode in Pharmaceutical Formulations. Curr. Pharm. Anal. 2021, 17, 945–950. [Google Scholar] [CrossRef]
- Haššo, M.; Kekeľáková, A.; Hanko, M.; Švorc, Ľ. Powerful Analytical Platform for Diazepam Determination in Pharmaceuticals and Alcoholic Drinks Based on Batch Injection Analysis Coupled with Adsorptive Stripping Voltammetry. J. Electrochem. Soc. 2024, 171, 047517. [Google Scholar] [CrossRef]
- Corsato, P.C.R.; de Lima, L.F.; Paschoarelli, M.V.; de Araujo, W.R. Electrochemical sensing at the fingertips: Wearable glove-based sensors for detection of 4-nitrophenol, picric acid and diazepam. Chemosphere 2024, 363, 142771. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Sharma, S.; Kaur, J.; Mehta, S.K. Graphene Oxide/Lysine Composite—A Potent Electron Mediator for Detection of Diazepam. Anal. Methods 2018, 10, 5038–5046. [Google Scholar] [CrossRef]
- Hosseini, M.R.M.; Motaharioan, A. Electroanalytical Determination of Diazepam in Tablet and Human Serum Samples Using a Multiwalled Carbon Nanotube Embedded Molecularly Imprinted Polymer-Modified Carbon Paste Electrode. RSC Adv. 2015, 5, 81650–81659. [Google Scholar] [CrossRef]
- Sohouli, E.; Ghalkhani, M.; Rostami, M.; Rahimi-Nasrabadi, M.; Ahmadi, F. A Noble Electrochemical Sensor Based on TiO2@CuO-N-rGO and Poly (L-Cysteine) Nanocomposite Applicable for Trace Analysis of Flunitrazepam. Mater. Sci. Eng. C 2020, 117, 111300. [Google Scholar] [CrossRef]
- Asiabar, B.M.; Karimi, M.A.; Tavallali, H.; Rahimi-Nasrabadi, M. Application of MnFe2O4 and AuNPs modified CPE as a sensitive flunitrazepam electrochemical sensor. Microchem. J. 2021, 161, 105745. [Google Scholar] [CrossRef]
- Ghanbari, M.H.; Norouzi, Z.; Ghanbari, M.M. Using a Nanocomposite Nonsist of Boron-Noped Reduced Graphene Oxide and Electropolymerized β-Cyclodextrin for Flunitrazepam Electrochemical Sensor. Microchem. J. 2020, 156, 104994. [Google Scholar] [CrossRef]
- Tseliou, F.; Pappas, P.; Spyrou, K.; Hrbac, J.; Prodromidis, M.I. Lab-on-a-Screen-Printed Electrochemical Cell for Drop-Volume Voltammetric Screening of Flunitrazepam in Untreated, Undiluted Alcoholic and Soft Drinks. Biosens. Bioelectron. 2019, 132, 136–142. [Google Scholar] [CrossRef]
- Mohammadnia, M.S.; Naghian, E.; Ghalkhani, M.; Nosratzehi, F.; Adib, K.; Zahedi, M.M.; Nasrabadi, M.R.; Ahmadi, F. Fabrication of a New Electrochemical Sensor Based on Screen-Printed Carbon Electrode/Amine-Functionalized Graphene Oxide-Cu Nanoparticles for Rohypnol Direct Determination in Drink Sample. J. Electroanal. Chem. 2021, 880, 114764. [Google Scholar] [CrossRef]
- Poulladofonou, G.; Freris, C.; Economou, A.; Kokkinos, C. Wearable electronic finger for date rape drugs screening: From “do-it-yourself” fabrication to self-testing. Anal. Chem. 2022, 94, 4087–4094. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Qiu, Y.; Zhang, X.; Kong, J. Detection of FlunitrazepamIn Biological Fluids and Beverages: A Review. ChemistrySelect 2023, 8, e202301659. [Google Scholar] [CrossRef]
- Chenarani, S.; Ebrahimi, M.; Arabali, V.; Beyramadi, S.A. Determination of Lorazepam Using the Electrocatalytic Effect of NiO/SWCNTs Modified Carbon Paste Electrode as a Powerful Sensor. Top. Catal. 2022, 65, 733–738. [Google Scholar] [CrossRef]
- Vafadar, M.; Zarei, E.; Asghari, A. Electrochemical Measurement of Noscapine and Lorazepam Using a Carbon Paste Electrode Modified with Multi-walled Carbon Nanotubes and Natural Deep Eutectic Solvent. Iran. J. Pharm. Res. 2021, 20, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.S.; Mahmoud, A.M.; Elghobashy, M.R.; Zaazaa, H.E.; Sedik, G.A. Eco-Friendly Electrochemical Sensor for Determination of Conscious Sedating Drug “Midazolam’’ Based on Au-NPs@Silica Modified Carbon Paste Electrode. Talanta 2024, 267, 125238. [Google Scholar] [CrossRef]
- Panahi, Y.; Motaharian, A.; Hosseini, M.R.M.; Mehrpour, O. High Sensitive and Selective Nano-Molecularly Imprinted Polymer Based Electrochemical Sensor for Midazolam Drug Detection in Pharmaceutical Formulation and Human Urine Samples. Sens. Actuat. B Chem. 2018, 273, 1579–1586. [Google Scholar] [CrossRef]
- Rocha, R.G.; Silva, P.W.; Sousa, R.M.F.; Junior, M.C.; Santana, M.H.P.; Munoz, R.A.A.; Richter, E.M. Investigation of Midazolam Electro-Oxidation on Boron Doped Diamond Electrode by Voltammetric Techniques and Density Functional Theory Calculations: Application in Beverage Samples. Talanta 2020, 207, 120319. [Google Scholar] [CrossRef] [PubMed]
- Fritea, L.; Bănică, F.; Costea, T.O.; Moldovan, L.; Iovan, C.; Cavalu, S. A gold nanoparticles—Graphene based electrochemical sensor for sensitive determination of nitrazepam. J. Electroanal. Chem. 2018, 830–831, 63–71. [Google Scholar] [CrossRef]
- Shahraki, S.; Ahmar, H.; Nejati-Yazdinejad, M. Electrochemical Determination of Nitrazepam by Switchable Solvent Based Liquid-Liquid Microextraction Combined with Differential Pulse Voltammetry. Microchem. J. 2018, 142, 229–235. [Google Scholar] [CrossRef]
- Kaur, G.; Garima; Prakash, V.; Gupta, S.; Chaudhary, M.K.; Mehta, S.K.; Sharma, S. Graphene Oxide Functionalized Halloysite Nanotubes for Voltammetric Determination of Psychoactive Drug from Alcoholic and Non-Alcoholic Drinks. FlatChem 2025, 49, 100794. [Google Scholar] [CrossRef]
- Muthusankar, G.; Sangili, A.; Chen, S.-M.; Karkuzhali, R.; Sethupathi, M.; Gopu, G.; Karthick, S.; Devi, R.K.; Sengottuvelan, N. In Situ Assembly of Sulfur-Doped Carbon Quantum Dots Surrounded Iron(III) Oxide Nanocomposite; A Novel Electrocatalyst for Highly Sensitive Detection of Antipsychotic Drug Olanzapine. J. Mol. Liq. 2018, 268, 471–480. [Google Scholar] [CrossRef]
- Tüzün, Ü.N.; Yıldız, C.; Eskiköy Bayraktepe, D.; Polatt, K.; Yazan, Z. Electrochemical Fabrication of poly(L-Alanine)-Gold Nanoparticle Nanocomposite-Modified Electrode: Application for Determination and Mechanism of Antipsychotic Drug Olanzapine. Monatsh. Chem. 2023, 154, 95–104. [Google Scholar] [CrossRef]
- Khalilzadeh, A.; Soleymanpour, A.; Zarei, K.N. P-Doped Carbon Nano-Onions and Graphene Nanoplate Modified Pencil Graphite Electrode to Determine Trace Amounts of Olanzapine in Biological Environments. Microchem. J. 2024, 205, 111334. [Google Scholar] [CrossRef]
- Rouhani, M.; Soleymanpour, A. A New Selective Carbon Paste Electrode for Potentiometric Analysis of Olanzapine. Measurement 2019, 140, 472–478. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Mahnashi, M.H.; Alkahtani, S.A.; El-Wekil, M.M. Nitrogen and Sulfur Co-Doped Graphene Quantum Dots/Nanocellulose Nanohybrid for Electrochemical Sensing of Anti-Schizophrenic Drug Olanzapine in Pharmaceuticals and Human Biological Fluids. Int. J. Biol. Macromol. 2020, 165, 2030–2037. [Google Scholar] [CrossRef]
- Cardozo, J.C.; da Silva, D.R.; Martínez-Huitle, C.A.; Quiroz, M.A.; dos Santos, E.V. The Versatile Behavior of Diamond Electrodes—Electrochemical Examination of the Anti-Psychotic Drug Olanzapine (OL) Oxidation as a Model Organic Aqueous Solution. Electrochim. Acta 2022, 411, 140063. [Google Scholar] [CrossRef]
- Bacil, R.P.; Garcia, P.H.M.; de Araujo, W.R.; Serrano, S.H.P. Mechanism and Kinetics of Olanzapine and Quetiapine Oxidations at Glassy Carbon Electrode. Electrochim. Acta 2021, 368, 137683. [Google Scholar] [CrossRef]
- Shukla, R.P.; Belmaker, R.H.; Bersudsky, Y.; Ben Yoa, H. A Platinum Black-Modified Microelectrode for in situ Olanzapine Detection in Microliter Volumes of Undiluted Serum. J. Neural Transm. 2020, 127, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Behzad, L.; Gholivand, M.B.; Shamsipur, M.; Gholivand, K.; Barati, A.; Gholami, A. Highly Sensitive Voltammetric Sensor Based on Immobilization of Bisphosphoramidate-Derivative and Quantum Dots onto Multi-Walled Carbon Nanotubes Modified Gold Electrode for the Electrocatalytic Determination of Olanzapine. Mater. Sci. Eng. C 2016, 60, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, R.P. Use of sodium tetraphenyl boron for fabrication of potentiometric membrane sensor for the assay of olanzapine in pharmaceuticals and human urine. App. Chem. Eng. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ehrlich, H. Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene. J. Electroanal. Chem. 2018, 823, 61–66. [Google Scholar] [CrossRef]
- Behravan, M.; Aghaie, H.; Giahi, M.; Maleknia, L. A glassy carbon electrode modified with boron-doped graphene oxide/polyaspartic acid for electrochemical determination of oxazepam. Iran. J. Catal. 2022, 12, 353–363. [Google Scholar] [CrossRef]
- Ma, H.; Tian, Q. Application of Nitrogen-Doped Carbon Particles Modified Electrode for Electrochemical Determination of Tetrazepam as Muscle Relaxant Drug. Int. J. Electrochem. Sci. 2023, 18, 100084. [Google Scholar] [CrossRef]
- Samiec, P.; Navrátilová, Z.; Fischer, J. Voltammetry of benzodiazepines on meniscus-modified silver solid amalgam electrode. Monatsh. Chem. 2016, 147, 127–134. [Google Scholar] [CrossRef]
- Vahidifar, M.; Es’haghi, Z. Magnetic Nanoparticle-Reinforced Dual-Template Molecularly Imprinted Polymer for the Simultaneous Determination of Oxazepam and Diazepam Using an Electrochemical Approach. J. Anal. Chem. 2022, 77, 625–639. [Google Scholar] [CrossRef]
- Stelmaszczyk, P.; Kwaczyński, K.; Rudnicki, K.; Skrzypek, S.; Wietecha-Posłuszny, R.; Poltorak, L. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Microchim. Acta 2023, 190, 182. [Google Scholar] [CrossRef] [PubMed]
- Shahinfard, H.; Shabani-Nooshabadi, M.; Reisi-Vanani, A.; Darabi, R. Electrochemical Sensor Based on CuO/reduced Graphene Nanoribbons and Ionic Liquid for Simultaneous Determination of Tramadol, Olanzapine and Acetaminophen. Carbon Lett. 2023, 33, 1433–1444. [Google Scholar] [CrossRef]
- Ashrafi, H.; Hasanzadeh, M.; Ansarin, K.; Ozkan, S.A.; Jouyban, A. Application of Chitosan as Biocompatible Polysaccharide in Quantification of Some Benzodiazepines Affecting Sleep Disorders: A New Platform for Preparation of Bioactive Scaffolds. Int. J. Biol. Macromol. 2018, 120, 2466–2481. [Google Scholar] [CrossRef]
- Ashrafi, H.; Mobed, A.; Hasanzadeh, M.; Babaie, P.; Ansarin, K.; Jouyban, A. Monitoring of Five Benzodiazepines Using a Novel Polymeric Interface Prepared by Layer by Layer Strategy. Microchem. J. 2019, 146, 121–125. [Google Scholar] [CrossRef]
- Riman, D.; Rozsypal, J.; Halouzka, V.; Hrbac, J.; Jirovsky, D. The use of micro carbon pencil lead electrode for sensitive HPLC-ED analysis of selected antipsychotic drugs. Microchem. J. 2020, 154, 104606. [Google Scholar] [CrossRef]
- Ashrafi, H.; Hassanpour, S.; Saadati, A.; Hasanzadeh, M.; Ansarin, K.; Ozkan, S.A.; Shadjou, N.; Jouyban, A. Sensitive Detection and Determination of Benzodiazepines using Silver Nanoparticles-N-GQDs Ink Modified Electrode: A New Platform for Modern Pharmaceutical Analysis. Microchem. J. 2019, 145, 1050–1057. [Google Scholar] [CrossRef]
- Beduk, D.; Beduk, T.; de Oliveira Filho, J.I.; Lahcen, A.A.; Aldemir, E.; Celik, E.G.; Salama, K.N.; Timur, S. Smart Multiplex Point-of-Care Platform for Simultaneous Drug Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 37247–37258. [Google Scholar] [CrossRef]
- Paschoarelli, M.V.; Kavai, S.M.; de Lima, L.F.; de Araujo, W.R. Laser-Scribing Fabrication of a Disposable Electrochemical Device for Forensic Detection of Crime Facilitating Drugs in Beverage Samples. Talanta 2023, 255, 124214. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, T.S.T.; Laroui, A.; Wietecha-Posłuszny, R.; Poltorak, L. Instant On-Site Screening and Discrimination of Designer Benzodiazepine Date Rape Drugs in Spiked Beverages at Electrified Liquid-Liquid Interface. Sens. Actuators B Chem. 2025, 443, 138228. [Google Scholar] [CrossRef]
- Herrera-Chacón, A.; Torabi, F.; Faridbod, F.; Ghasemi, J.B.; González-Calabuig, A.; del Valle, M. Voltammetric Electronic Tongue for the Simultaneous Determination of Three Benzodiazepines. Sensors 2019, 19, 5002. [Google Scholar] [CrossRef] [PubMed]
Structure: | A benzene ring A fused to a seven-membered diazepine ring B. |
In most compounds, this scaffold is complemented by a third substituent, an aryl ring C. | |
All three ring systems are essential for the pharmacological activity of BZDs. | |
Benzene ring A: | Introducing a strong electron-withdrawing group (for example, -Cl or -NO2) to position 7 yields optimal activity. |
Attaching groups to other positions on the same ring diminishes potency. | |
Diazepine ring B: | Indispensable for proper receptor binding through the amide or N-alkyl groups. |
Attaching a methyl group to position 1 augments biological activity. | |
Voluminous groups attached to position 1, such as tert-butyl, decrease activity. | |
Aryl group C: | Supports receptor binding through hydrophobic and steric interactions. |
Electron-attracting groups in position 2′ enhance activity. | |
Groups attached to position 4′ reduce biological activity. |
Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
HMDE | DPAdCSV/Eacc −0.80 V; tacc 120 s; PBS pH 7.00/~−0.95 | 1.62 × 10−8–6.48 × 10−8 | 2.27 × 10−10 | River water | [28] |
MB-Ag@Pd/EμPAD | CV/0.10 V, 35 °C and 10 s of incubation time; PBS pH 7.00/~−0.50 | 3.51 × 10−9–1.05 × 10−6 | 8.78 × 10−11 | Urine | [37] |
CNFs/SPE | SWV/B-R buffer pH 10.00/~−1.30 | 1.00 × 10−5–3.00 × 10−4 | 2.00 × 10−7 | Xanax tablets | [38] |
EPGCE | DPAdCSV/Eacc −0.10 V; tacc 480 s; B-R buffer pH 9.00/~−1.10 | 3.24 × 10−7–1.29 × 10−5 1.29 × 10−5–6.48 × 10−5 | 9.72 × 10−9 | Beverages | [39] |
Apt-AgNPs-EPMAD | CV/5.00 × 10−4 mol/L [Fe(CN)6]3−/4− in 0.10 mol/L PBS/~0.40 | 3.24 × 10−8–1.62 × 10−5 | 3.24 × 10−8 | Beverages | [40] |
LI-AuNP-rGO/GCE | DPAdCSV/Eacc −0.10 V; tacc 200 s; B-R buffer pH 9.00/~−0.95 | 3.24 × 10−9–3.24 × 10−7 3.24 × 10−7–2.59 × 10−5 | 9.81 × 10−10 | Beverages | [41] |
AuNUs-Fe-Ni@GO/GCE | DPV/B-R buffer pH 9.00/~−1.05 | 1.30 × 10−8–1.62 × 10−6 3.24 × 10−6–1.62 × 10−4 | 3.24 × 10−9 | Diluted blood serum | [44] |
Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
HMDE | DPAdSV/Eacc −0.30 V; tacc 120 s; PBS pH 8.00/−0.40 | 2.06 × 10−9–4.78 × 10−8 | 6.02 × 10−10 | Natural water | [25] |
AgFs-IL/GCE | DPV/PBS pH 7.00/~−0.53 | 1.00 × 10−7–2.50 × 10−4 | 6.60 × 10−8 | Pharmaceuticals, urine, serum | [46] |
C3N4/CNH-MSN/GCE | DPV/PBS pH 7.00/~−0.72 | 8.20 × 10−7–7.69 × 10−5 | 2.50 × 10−9 | TPharmaceuticals, urine, human serum | [47] |
SPE | DPAdSV/Eacc −1.50 V; tacc 60 s; PBS pH 11.00/Oxidation~−0.50 | 6.50 × 10−6–2.53 × 10−5 | 6.50 × 10−6 | Fortified wine, serum | [48] |
Fe3O4/R-SH/Pd/GCE | DPV/PBS pH 7.20/~−0.72 | 1.00 × 10−8–1.00 × 10−6 | 3.02 × 10−9 | Pharmaceuticals, human serum | [49] |
LUB-rGO/SPE | SWV/PBS pH 7.4/~−0.70 | 2.50 × 10−8–2.50 × 10−7 | 1.67 × 10−9 | Saliva | [50] |
FeCu-LDH@MXene/GCE | DPV/PBS pH 7.00/~−0.62 | 6.60 × 10−7–4.18 × 10−4 | 9.00 × 10−8 | Pharmaceuticals, human plasma | [51] |
CoOOH-rGO/SPCE | DPV/PBS pH 7.40/0.11 | 1.00 × 10−7–3.50 × 10−4 | 3.80 × 10−8 | Alcoholic and non-alcoholic beverages | [52] |
pMela/MWCNT-COOH/GCE | SWAdASV; Eacc −0.63 V; tacc 100 s; B-R buffer pH 7.00/Oxidation ~−0.08 | 5.00 × 10−8–1.00 × 10−5 | 6.30 × 10−8 | Serum | [53] |
Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
HMDE | DPAdSV/Eacc −0.60 V; tacc 120 s; PBS pH 6.00/−1.00 | 9.48× 10−10–7.06 × 10−8 | 2.81 × 10−10 | Natural water | [25] |
AgNDs/GNs/GCE | DPV/PBS pH 7.00/~−1.08 | 1.00 × 10−7–1.00 × 10−6 1.00 × 10−6–2.00 × 10−5 | 8.56 × 10−9 | Pharmaceuticals, human plasma | [54] |
BiPPGE | DPV/ABS pH 4.80/~−0.9 | 1.40 × 10−6–1.67 × 10−5 | 1.10 × 10−6 | Pharmaceuticals, urine | [55] |
C60–CNT/IL/GCE | DPV/PBS pH 7.00/~−1.00 | 3.00 × 10−7–7.00 × 10−4 | 8.70 × 10−8 | Pharmaceuticals, serum, urine | [56] |
Cu/POT/ISM sensor | Potentiometry | 5.00 × 10−7–1.00 × 10−2 | 1.20 × 10−7 | Plasma, urine, saliva, human milk | [57] |
MWCNT/GC/CPE | SWV/B-R buffer pH 1.00/~−0.70 | 1.49 × 10−6–2.15 × 10−5 | 3.30 × 10−7 | Alcoholic drinks, synthetic serum | [58] |
Si@GNRs/EμPAD | CV/PBS pH 7.00/−1.50 | 3.50 × 10−9–3.50 × 10−3 | 1.50 × 10−9 | Spiked urine | [59] |
MIP@SiO2-MPA- AuZnCeSeS-QDs/SPCE | EIS | 1.00 × 10−7–1.00 × 10−4 | 4.90 × 10−6 | Electrolyte Saliva Electrolyte | [60] |
1.00 × 10−7–1.00 × 10−4 (I) | 2.30 × 10−6 (I) | ||||
1.00 × 10−6–1.00 × 10−3 (II) | 2.70 × 10−6 (II) | ||||
SWV/NaTKBor/0.25 | 1.00 × 10−7–1.00 × 10−3 | 1.00 × 10−6 | |||
GCE | FI-DPA/HCl/KCl buffer pH 1.00 | 2.00 × 10−5–2.50 × 10−4 | 1.34 × 10−5 | Energetic drink, beer | [61] |
SbFSPE | LSV/0.10 mol/L HCl/~−0.90 | 5.00 × 10−7–1.00 × 10−5 | 3.30 × 10−7 | Pharmaceuticals | [62] |
SPE | BIA-DPAdSV/Eacc −1.20 V; tacc 150 s; B-R buffer pH 6.00/~−1.35 | 5.00 × 10−6–4.00 × 10−5 | 2.00 × 10−6 | Pharmaceuticals; fortified rum | [63] |
MWCNTs/PEDOT:PSS/glove | SWV/B-R buffer pH 7.00/~−1.30 | 5.00 × 10−7–1.00 × 10−5 | 6.00 × 10−8 | Alcoholic and non-alcoholic beverages | [64] |
GO/Lys/GCE | DPV/PBS pH 7.00/−0.86 | 1.70 × 10−7–6.90 × 10−7 6.90 × 10−7–3.50 × 10−5 | 4.60 × 10−8 | Alcoholic and non-alcoholic beverages | [65] |
MIP-MWCNTs-COOH/CPE | SWV/0.40 mol/L HCl/~−0.68 | 8.00 × 10−9–1.00 × 10−6 | 3.70 × 10−9 | Pharmaceuticals, human serum | [66] |
Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
TiO2@CuO-N-rGO/p(L-Cys)/GCE | DPV/B-R buffer pH 3.00; tacc 30 s/Oxidation~0.65 | 1.00 × 10−9–5.00 × 10−5 | 3.00 × 10−10 | Plasma | [67] |
AuNPs/MnFe2O4NPs/CPE | DPV/B-R buffer pH 4.00/Oxidation~0.38 | 1.00 × 10−7–1.00 × 10−4 | 3.30 × 10−7 | Human plasma | [68] |
Eβ-CD/B-rGO/GCE | DPV/PBS pH 6.50/ Oxidation~0.00 | 2.00 × 10−9–5.00 × 10−7 5.00 × 10−7–2.00 × 10−5 | 6.00 × 10−10 | Human blood serum | [69] |
GOx/GluHD/FeSPC | DPV/PBS pH 7.00/~−0.55 | 1.00 × 10−6–1.00 × 10−5 | 7.00 × 10−7 | Alcoholic and soft drinks | [70] |
AGO-CuNPs/SPCE | DPV/B-R buffer pH 7.00/ Oxidation~0.25 | 4.00 × 10−7–1.40 × 10−4 | 1.30 × 10−7 | Fruit juice | [71] |
Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
AuNPs/SiNPs-CPE | DPV/ABS pH 5.60/~−1.35 | 4.00 × 10−7–2.90 × 10−4 | 2.28 × 10−8 | Pharmaceuticals, human plasma | [76] |
MIP-CPE | SWV/0.10 mol/L HCl/~−0.55 | 5.00 × 10−10–1.00 × 10−7 1.00 × 10−7–1.00 × 10−6 | 1.77 × 10−10 | Pharmaceuticals, urine | [77] |
BDDE | DPV/B-R buffer pH 2.00/ Oxidation ~1.60 | 1.00 × 10−6–3.00 × 10−6 4.00 × 10−6–2.50 × 10−5 1.00 × 10−6–1.00 × 10−5 1.00 × 10−6–1.50 × 10−5 | 7.40 × 10−8 4.60 × 10−7 4.30 × 10−7 3.30 × 10−7 | Aqueous Vodka Whisky Red wine | [78] |
Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
GCE AuNPs/GCE rGO/GCE AuNPs-rGO/GCE | DPV/PBS pH 7.40/Oxidation −0.12 | 2.00 × 10−5–2.20 × 10−4 5.00 × 10−6–3.20 × 10−4 5.00 × 10−6–1.00 × 10−4 5.00 × 10−7–4.00 × 10−4 | 6.66 × 10−6 1.66 × 10−6 1.66 × 10−6 1.66 × 10−7 | Pharmaceuticals, serum | [79] |
Electroactivated GCE | SS-HLLME/DPV/PBS pH 7.00/~−0.75 | 1.07 × 10−10–7.11 × 10−10 7.11 × 10−10–1.60 × 10−8 | 3.20 × 10−12 | Urine | [80] |
GO-HNT/GCE | CV/PBS pH 7.00/~−0.72 | 1.60 × 10−7–1.50 × 10−4 | 7.90 × 10−7 | Beverages | [81] |
Electrode | Technique/Conditions/Ep (V) | Linear Range (mol/L) | LoD (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
S-CQDs/Fe2O3/GCE | CV/PBS pH 7.00/Oxidation ~0.20 | 1.00 × 10−7–3.50 × 10−5 | 6.00 × 10−9 | Urine | [82] |
AuNPs/p(L-Ala)/pre-PGE | DPV/B-R buffer pH 4.50/ Oxidation~0.50 | 2.71 × 10−7–1.00 × 10−3 | 8.10 × 10−8 | Pharmaceuticals, serum, urine | [83] |
N,P-CNOs/GNP/PGE | DPV/PBS pH 7.00/ Oxidation ~0.15 | 4.50 × 10−10–4.50 × 10−8 | 4.40 × 10−11 | Pharmaceuticals, serum, urine | [84] |
OLP-TP/CPE | Potentiometry titration | 7.50 × 10−7–5.60 × 10−4 | 5.00 × 10−7 | Pharmaceuticals, blood | [85] |
NC@N,S@GQDs/GCE | SWAdSV/Eacc 0.10 V; tacc 120 s; B-R buffer pH 7.00/Oxidation ~0.60 | 1.50 × 10−8–9.00 × 10−7 | 5.00 × 10−9 | Pharmaceuticals, plasma, urine | [86] |
PtB/Au | DPV/PBS pH 5.00/Oxidation ~0.20 | 2.00 × 10−8–1.20 × 10−7 | 1.56 × 10−8 | Serum | [89] |
BMBPBP/CdS-QDs/MWCNTs/Au | HA/RDE/PBS pH 7.00 | 2.00 × 10−8–1.00 × 10−4 | 6.00 × 10−9 | Serum | [90] |
OLP-TPB/DOP/PVC | Potentiometry | 4.00 × 10−6–1.00 × 10−2 | 2.02 × 10−6 | Pharmaceuticals, urine | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheregi, M.-C.; Iorgulescu, E.-E.; Comănescu, M.-A.; David, I.G.; Trifu, A.S. Recent Advances in Benzodiazepine Electroanalysis. Chemosensors 2025, 13, 351. https://doi.org/10.3390/chemosensors13090351
Cheregi M-C, Iorgulescu E-E, Comănescu M-A, David IG, Trifu AS. Recent Advances in Benzodiazepine Electroanalysis. Chemosensors. 2025; 13(9):351. https://doi.org/10.3390/chemosensors13090351
Chicago/Turabian StyleCheregi, Mihaela-Carmen, Emilia-Elena Iorgulescu, Mircea-Alexandru Comănescu, Iulia Gabriela David, and Adelaida Sorana Trifu. 2025. "Recent Advances in Benzodiazepine Electroanalysis" Chemosensors 13, no. 9: 351. https://doi.org/10.3390/chemosensors13090351
APA StyleCheregi, M.-C., Iorgulescu, E.-E., Comănescu, M.-A., David, I. G., & Trifu, A. S. (2025). Recent Advances in Benzodiazepine Electroanalysis. Chemosensors, 13(9), 351. https://doi.org/10.3390/chemosensors13090351