A Ratiometric Fluorescent Probe Based on CDs-Functionalized UiO-66 for Efficient Detection of Uric Acid
Abstract
1. Introduction
2. Experimental Details
2.1. Reagents and Instruments
2.2. Synthesis of UiO-66-(COOH)2
2.3. Preparation of Tb-UiO-66-(COOH)2
2.4. Synthesis of CDs
2.5. Preparation of CDs@Tb-UiO-66-(COOH)2
2.6. Luminescence Sensing Experiments
3. Results and Discussion
3.1. Characterizations
3.2. Photoluminescence Property
3.3. Detection of Uric Acid in Aqueous Solutions
3.4. Possible Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lewandowska, K.; Mikuła-Pietrasik, J.; Książek, K.; Tykarski, A.; Uruski, P. Uric acid promotes human umbilical vein endothelial cell senescence in vitro. Metabolites 2025, 15, 402. [Google Scholar] [CrossRef] [PubMed]
- Shang, K.; Wang, S.; Chen, S.; Wang, X. Sensitivity detection of uric acid and creatinine in human urine based on nanoporous gold. Biosensors 2022, 12, 588. [Google Scholar] [CrossRef]
- Verma, G.; Singhal, S.; Rai, P.K.; Gupta, A. A simple approach to develop a paper-based biosensor for real-time uric acid detection. Anal. Methods 2023, 15, 2955–2963. [Google Scholar] [CrossRef]
- Ranjith Kumar, D.; Manoj, D.; Rosenkranz, A.; Al Mahmud, A.; Shim, J.-J.; Philomina Mary, S.; Nellaiappan, S. Micro-structured growth of 1,2,4-triazole by electro-polymerization for highly selective detection of gallic acid and uric acid. Microchem. J. 2023, 195, 109375. [Google Scholar] [CrossRef]
- Yang, J.; Che, J.; Jiang, X.; Fan, Y.; Gao, D.; Bi, J.; Ning, Z. A novel turn-on fluorescence probe based on Cu(II) functionalized metal–organic frameworks for visual detection of uric acid. Molecules 2022, 27, 4803. [Google Scholar] [CrossRef]
- Shi, P.; Zhao, N.; Sun, Z.; Sun, K.; Chu, W.; Tsai, H.-S.; Wu, L.; Cai, T.; Wang, Y.; Jiang, N.; et al. Synthesis of tumbleweed-like MoSe2 nanostructures for ultrasensitive electrochemical detection of uric acid. Chemosensors 2025, 13, 81. [Google Scholar] [CrossRef]
- Quan, C.; Chen, W.; Yang, M.; Hou, Y. Electrochemical sensor using cobalt oxide-modified porous carbon for uric acid determination. Microchim. Acta 2023, 190, 401. [Google Scholar] [CrossRef]
- Dey, N.; Bhattacharya, S. Nanomolar level detection of uric acid in blood serum and pest-infested grain samples by an amphiphilic probe. Anal. Chem. 2017, 89, 10376–10383. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cao, S.Y.; Yan, R.X.; Wang, Z.W.; Wang, D.; Yang, H.F. Selectivity/specificity improvement strategies in surface-enhanced Raman spectroscopy analysis. Sensors 2017, 17, 2689. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Kim, Y.I.; Lee, S.W.; Jung, H.G.; Lee, G.; Yoon, D.S. Highly permselective uric acid detection using kidney cell membrane–functionalized enzymatic biosensors. Biosens. Bioelectron. 2021, 190, 113411. [Google Scholar] [CrossRef]
- Shatery, O.B.A.; Omer, K.M. Selectivity enhancement for uric acid detection via in situ preparation of blue emissive carbon dots entrapped in chromium metal–organic frameworks. ACS Omega 2022, 7, 16576–16583. [Google Scholar] [CrossRef]
- Yao, B.; Giel, M.-C.; Hong, Y. Detection of kidney disease biomarkers based on fluorescence technology. Mater. Chem. Front. 2021, 5, 2124–2142. [Google Scholar] [CrossRef]
- Islam, M.F.; Abdulkadir, A.Z.; Elbayomi, S.M.; Zhang, P. A rhodamine B-based “turn-on” fluorescent probe for selective Fe3+ ions detection. Sensors 2025, 25, 3477. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, N.; Wen, J.; Yang, D.; Chen, H.; Long, Y.; Zheng, H. Detecting uric acid base on the dual inner filter effect using BSA@Au nanoclusters as both peroxidase mimics and fluorescent reporters. Spectrochim. Acta Part A 2023, 293, 122504. [Google Scholar] [CrossRef]
- Saikia, P.; Nath, J.; Dolui, S.K.; Mahanta, S.P. Cesium lead bromide as a colorimetric and fluorometric sensing platform for the selective detection of uric acid. New J. Chem. 2023, 47, 7425–7431. [Google Scholar] [CrossRef]
- Peng, Y.; Shao, F.; Guo, K.; Zhuo, H.; Wang, Y.; Xie, X.; Tao, Y. SiQDs/Cu2-β-CD nanoclusters: A fluorescence probe for the mutual non-interference detection of uric acid and l-cysteine under alkaline conditions. Inorg. Chem. Commun. 2022, 143, 109765. [Google Scholar] [CrossRef]
- Wang, X.; Guo, H.; Wu, N.; Xu, M.; Zhang, L.; Yang, W. A dual-emission fluorescence sensor constructed by encapsulating double carbon dots in zeolite imidazole frameworks for sensing Pb2+. Colloids Surf. A 2021, 615, 126218. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Y.; Xie, Y.; Gao, H.; Li, W.; Che, J.; Zhou, J.; Li, H.; Gao, D.; Ning, Z. A ratiometric fluorescent probe for the facile and visual detecting Al3+ and the design of logic device. Microchem. J. 2025, 214, 114046. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, M.; Feng, X.; Li, X. Research progress of rare earth metal–organic frameworks on pollutant monitoring. Chemosensors 2025, 13, 184. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, P.; Zheng, R.; Zhao, Z.; An, J.; Hao, C.; Kang, M. Preparation of molecularly imprinted ratiometric fluorescence sensor for visual detection of tetrabromobisphenol A in water samples. Microchim. Acta 2023, 190, 161. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Xu, K.; Deng, D.; Zhang, Q.; Luo, L. Current progress of ratiometric fluorescence sensors based on carbon dots in foodborne contaminant detection. Biosensors 2023, 13, 233. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, L.; Yue, B. Luminescent properties and recent progress in applications of lanthanide metal-organic frameworks. Chin. Chem. Lett. 2023, 34, 108009. [Google Scholar] [CrossRef]
- Feng, L.; Dong, C.; Li, M.; Li, L.; Jiang, X.; Gao, R.; Wang, R.; Zhang, L.; Ning, Z.; Gao, D.; et al. Terbium-based metal-organic frameworks: Highly selective and fast respond sensor for styrene detection and construction of molecular logic gate. J. Hazard. Mater. 2019, 388, 121816. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, B.; Shi, J.; Zhang, J.; Zheng, L.; Zhang, J.; Shao, D.; Tan, X.; Han, B.; Yang, G. Tin(IV) sulfide greatly improves the catalytic performance of UiO-66 for carbon dioxide cycloaddition. ChemCatChem 2018, 10, 2945–2948. [Google Scholar] [CrossRef]
- Wang, C.; Ding, J.; Wu, H.; Zhang, J.; Xu, J.; Zhang, Y.; Ma, M.; Zhang, M.; Li, H. The facile construction of defect-engineered and surface-modified UiO-66 MOFs for promising oxidative desulfurization performance. Nanomaterials 2025, 15, 931. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, X.; Yan, L.; Yang, Y.; Liu, X. Recent research progress in CDs@MOFs composites: Fabrication, property modulation, and application. Microchim. Acta 2022, 190, 28. [Google Scholar] [CrossRef] [PubMed]
- Yanqiu, Z.; Minrui, S.; Mingguo, P.; Erdeng, D.; Xia, X.; Chong-Chen, W. The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review. Chin. Chem. Lett. 2022, 34, 107478. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, F.; Sun, H.; Xia, P.; Qu, J.; Lu, C.; Zong, S.; Zhang, R.; Xu, S.; Wang, C. A novel ion species- and ion concentration-dependent anti-counterfeiting based on ratiometric fluorescence sensing of CDs@MOF-nanofibrous films. Small 2023, 20, 2305211. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Luan, X.; Wang, R.; Li, X.; Jia, Z.; Zhou, L.; Chen, J.; Deng, J.; Zhao, Z.; Zhao, Z. Encapsulating site-directly carbonized CDs in MOF(Cr) as adsorption-photothermal sites for boosting toluene Ad/de-sorption process via photo-assisted strategy. Chem. Eng. J. 2025, 506, 160104. [Google Scholar] [CrossRef]
- Li, M.; Dong, C.; Yang, J.; Yang, T.; Bai, F.; Ning, Z.; Gao, D.; Bi, J. Solvothermal synthesis of La-based metal-organic frameworks and their color-tunable photoluminescence properties. J. Mater. Sci. Mater. Electron. 2021, 32, 9903–9911. [Google Scholar] [CrossRef]
- Li, Z.; Sun, W.; Chen, C.; Guo, Q.; Li, X.; Gu, M.; Feng, N.; Ding, J.; Wan, H.; Guan, G. Deep eutectic solvents appended to UiO-66 type metal organic frameworks: Preserved open metal sites and extra adsorption sites for CO2 capture. Appl. Surf. Sci. 2019, 480, 770–778. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, X.; Zhang, Z.; Guo, X.; Huo, J.; Wang, Q.; Liu, Y.; Wang, X.; Ding, B. Composite Eu-MOF@CQDs “off & on” ratiometric luminescent probe for highly sensitive chiral detection of l-lysine and 2-methoxybenzaldehyde. Chin. Chem. Lett. 2023, 34, 108426. [Google Scholar]
- Matuphum, P.; Suchart, S.; Basa, A.; Anumakonda Varada, R. Modification of egg shell powder with in situ generated copper and cuprous oxide nanoparticles by hydrothermal method. Mater. Res. Express 2019, 7, 015010. [Google Scholar] [CrossRef]
- Jie, Y.; Bo, R.; Qin, Y.; Lung-Chang, T.; Ning, M.; Tao, J.; Fang-Chang, T. Carbon dots-embedded zinc-based metal-organic framework as a dual-emitting platform for metal cation detection. Microporous Mesoporous Mater. 2021, 331, 111630. [Google Scholar]
- Liu, K.; You, H.; Zheng, Y.; Jia, G.; Song, Y.; Huang, Y.; Yang, M.; Jia, J.; Guo, N.; Zhang, H. Facile and rapid fabrication of metal–organic framework nanobelts and color-tunable photoluminescence properties. J. Mater. Chem. 2010, 20, 3272–3279. [Google Scholar] [CrossRef]
- Xu, B.; Guo, H.; Wang, S.; Li, Y.; Zhang, H.; Liu, C. Solvothermal synthesis of luminescent Eu(BTC)(H2O)DMF hierarchical architectures. CrystEngComm 2012, 58, 973–978. [Google Scholar] [CrossRef]
- Aafria, S.; Kumari, P.; Sharma, S.; Yadav, S.; Batra, B.; Rana, J.S.; Sharma, M. Electrochemical biosensing of uric acid: A review. Microchem. J. 2022, 182, 107945. [Google Scholar] [CrossRef]
- Westley, C.; Xu, Y.; Thilaganathan, B.; Carnell, A.J.; Turner, N.J.; Goodacre, R. Absolute quantification of uric acid in human urine using surface enhanced raman scattering with the standard addition method. Anal. Chem. 2017, 89, 2472–2477. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Zhu, G.-B.; Cao, W.-D.; Liu, Z.-J.; Pan, C.-G.; Hu, W.-J.; Zhao, W.-Y.; Sun, J.-F. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta 2018, 191, 46–53. [Google Scholar]
- Ruiz-Guerrero, C.D.; Estrada-Osorio, D.V.; Gutiérrez, A.; Espinosa-Lagunes, F.I.; Luna-Barcenas, G.; Escalona-Villalpando, R.A.; Arriaga, L.G.; Ledesma-García, J. A miniaturized device based on cobalt oxide nanoparticles for the quantification of uric acid in artificial and human sweat. Chemosensors 2025, 13, 114. [Google Scholar] [CrossRef]
- Mohapatro, U.; Mishra, L.; Mishra, M.; Mohapatra, S. Zn-CD@Eu ratiometric fluorescent probe for the detection of dipicolinic acid, uric acid, and ex vivo uric acid imaging. Anal. Chem. 2024, 96, 8630–8640. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.-J.; Hou, G.-Z.; Han, L.-J. A europium-based CP fluorescent probe for sensing malachite green, ascorbic acid and uric acid. Polyhedron 2024, 261, 117164. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zhao, H.; Zou, H.; Yan, H.; Lu, J.; Hao, H.; Dou, J.; Li, Y.; Wang, S. Eu3+/Tb3+-modified Cd(II) coordination polymers for effective detection of uric acid and lung cancer biomarker N-acetylneuraminic acid. J. Mater. Chem. C 2023, 12, 3141–3153. [Google Scholar] [CrossRef]
- Xu, S.; Pang, J.; Zhang, B.; Li, Y.; Yang, Y.; Li, J. Construction of a sensitive fluorescence sensor for convenient 1-HP and UA detection relied on a stable Eu-MOF. Cryst. Growth Des. 2024, 24, 1410–1420. [Google Scholar] [CrossRef]
- Pang, X.; Yan, R.; Li, L.; Wang, P.; Zhang, Y.; Liu, Y.; Liu, P.; Dong, W.; Miao, P.; Mei, Q. Non-doped and non-modified carbon dots with high quantum yield for the chemosensing of uric acid and living cell imaging. Anal. Chim. Acta 2022, 1199, 339571. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Song, M.; Chen, F. Bimetallic CuCo Prussian blue analogue nanocubes induced chemiluminescence of luminol under alkaline solution for uric acid detection in human serum. Microchem. J. 2022, 181, 107667. [Google Scholar] [CrossRef]
- Sumalatha, V.; Anujya, C.; Balchander, V.; Dhanalaxmi, B.; Pradeep Kumar, M.; Ayodhya, D. Hydrothermal fabrication of n-CeO2/p-CuS heterojunction nanocomposite for enhanced photodegradation of pharmaceutical drugs in wastewater under visible-light and fluorometric sensor for detection of uric acid. Inorg. Chem. Commun. 2023, 155, 110962. [Google Scholar] [CrossRef]
- Han, L.-J.; Kong, Y.-J.; Zhang, X.-M.; Hou, G.-Z.; Chen, H.-C.; Zheng, H.-G. Fluorescence recognition of adenosine triphosphate and uric acid by two Eu-based metal–organic frameworks. J. Mater. Chem. C 2021, 9, 6051–6061. [Google Scholar] [CrossRef]
- Yao, H.; Li, S.-Y.; Zhang, H.; Pang, X.-Y.; Lu, J.-L.; Chen, C.; Jiang, W.; Yang, L.-P.; Wang, L.-L. Tetralactam macrocycle based indicator displacement assay for colorimetric and fluorometric dual-mode detection of urinary uric acid. Chem. Commun. 2023, 59, 5411–5414. [Google Scholar] [CrossRef]
- Hu, Z.; Yan, B. A luminescent Eu@SOF film fabricated by electrophoretic deposition as ultrasensitive platform for styrene gas quantitative monitoring through fluorescence sensing and ANNs model. J. Hazard. Mater. 2022, 441, 129865. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lei, Q.; Wang, F.; Zhao, D.; Deng, Y.; Yang, L.; Fan, L.; Zhang, Z. A stable cationic Cd(II) coordination network as bifunctional chemosensor with high sensitively and selectively detection of antibiotics and Cr(VI) anions in water. J. Solid State Chem. 2021, 298, 122117. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, T.; Wang, Z.; Xing, X.; Peng, S.; Zhao, R.; Zhang, X.; Wang, Y. The fluorescent quenching mechanism of N and S Co-doped graphene quantum dots with Fe3+ and Hg2+ ions and their application as a novel fluorescent sensor. Nanomaterials 2019, 9, 738. [Google Scholar] [CrossRef]
- Li, A.; Chu, Q.; Zhou, H.; Yang, Z.; Liu, B.; Zhang, J. Effective nitenpyram detection in a dual-walled nitrogen-rich In(III)/Tb(III)–organic framework. Inorg. Chem. Front. 2021, 8, 2341–2348. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, R.; Tang, D.; Hou, X.; Wu, P. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. Trends Anal. Chem. 2018, 110, 183–190. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Zhao, Y.; Fan, Y.; Li, Y.; Gao, H.; Li, H.; Gao, D.; Ning, Z. A ratiometric fluorescent probe dye-functionalized MOFs integrated with logic gate operation for efficient detection of acetaldehyde. Molecules 2024, 29, 2970. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Wu, X.; Weng, Y.; Lu, Y.; Huang, Z.-Z. Self-assembled FRET nanoprobe with metal-organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal. Chem. 2020, 92, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
Probe | Work Range | LOD (µM) | Ref. |
---|---|---|---|
Au/Ag NCs | 5~50 µM | 5.1 | [39] |
SiQDs/Cu2-β-CD | 25~150 µM | 4.9 | [16] |
GCE/Co3O4/UOx | 20~100 µM | 1.3 | [40] |
Zn-CD@Eu | 0~100 μM | 0.36 | [41] |
Eu2(PEDA)3(H2O)4 | ---- | 0.965 | [42] |
Eu3+@Cd-CP2 | 0~166 μM | 0.89 | [43] |
Eu-MOF | 0~30 μM | 1.34 | [44] |
A-CDs | 0~56 μM | 0.49 | [45] |
CuCo PBA | 0.3~5 μM | 0.16 | [46] |
n-CeO2/p-CuS | 10~100 μM | 1.214 | [47] |
Eu2(PDA)3(H2O)3 | ---- | 0.601 | [48] |
RF@H1 | 37~134 μM | 0.33 | [49] |
CDs@Tb-UiO-66-(COOH)2 | 0~5 × 10−3 M | 0.102 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Zhao, Y.; Xie, Y.; Wang, Y.; Che, J.; Gao, D.; Ning, Z. A Ratiometric Fluorescent Probe Based on CDs-Functionalized UiO-66 for Efficient Detection of Uric Acid. Chemosensors 2025, 13, 340. https://doi.org/10.3390/chemosensors13090340
Gao H, Zhao Y, Xie Y, Wang Y, Che J, Gao D, Ning Z. A Ratiometric Fluorescent Probe Based on CDs-Functionalized UiO-66 for Efficient Detection of Uric Acid. Chemosensors. 2025; 13(9):340. https://doi.org/10.3390/chemosensors13090340
Chicago/Turabian StyleGao, Hongmei, Yourong Zhao, Yuhong Xie, Yiying Wang, Jie Che, Daojiang Gao, and Zhanglei Ning. 2025. "A Ratiometric Fluorescent Probe Based on CDs-Functionalized UiO-66 for Efficient Detection of Uric Acid" Chemosensors 13, no. 9: 340. https://doi.org/10.3390/chemosensors13090340
APA StyleGao, H., Zhao, Y., Xie, Y., Wang, Y., Che, J., Gao, D., & Ning, Z. (2025). A Ratiometric Fluorescent Probe Based on CDs-Functionalized UiO-66 for Efficient Detection of Uric Acid. Chemosensors, 13(9), 340. https://doi.org/10.3390/chemosensors13090340