Use of Chemometrics for the Authentication, Characterization and Detection of Adulteration of Cypriot Products Registered Under EU Quality Schemes: A Review
Abstract
1. Introduction
2. Overview of Certified Cypriot Products
3. Chemometric Approaches in Food Authentication
4. Applications of Chemometrics in Studies Related to Cypriot Food and Beverage Products with Quality Schemes
5. Challenges, Limitations, and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albuquerque, T.G.; Oliveira, M.B.P.; Costa, H.S. 25 years of European Union (EU) quality schemes for agricultural products and foodstuffs across EU Member States. J. Sci. Food Agric. 2018, 98, 2475–2489. [Google Scholar] [CrossRef]
- European Commission. First Turkish Cypriot ‘Halloumi’/‘Hellim’ Cheese Certified Protected Designation of Origin. 2023. Available online: https://agriculture.ec.europa.eu/media/news/first-turkish-cypriot-halloumihellim-cheese-certified-protected-designation-origin-2023-03-28_en (accessed on 28 August 2025).
- Cassago, A.L.L.; Artêncio, M.M.; de Moura Engracia Giraldi, J.; Da Costa, F.B. Metabolomics as a marketing tool for geographical indication products: A literature review. Eur. Food Res. Technol. 2021, 247, 2143–2159. [Google Scholar] [CrossRef]
- Katerinopoulou, K.; Kontogeorgos, A.; Salmas, C.E.; Patakas, A.; Ladavos, A. Geographical origin authentication of agri-food products: A review. Foods 2020, 9, 489. [Google Scholar] [CrossRef]
- Sadílek, T. Utilization of food quality labels included in the european union quality schemes. Int. J. Food Syst. Dyn. 2020, 11, 72–83. [Google Scholar] [CrossRef]
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. Available online: https://eur-lex.europa.eu/eli/reg/2013/1308/oj/eng (accessed on 28 August 2025).
- Sgroi, F.; Modica, F. Localized agri-food systems: The case of Pecorino Siciliano PDO a food product of the tradition of Mediterranean gastronomy. Int. J. Gastron. Food Sci. 2022, 27, 100471. [Google Scholar] [CrossRef]
- Cei, L.; Defrancesco, E.; Stefani, G. From geographical indications to rural development: A review of the economic effects of european union policy. Sustainability 2018, 10, 3745. [Google Scholar] [CrossRef]
- Cardoso, V.A.; Lourenzani, A.E.B.S.; Caldas, M.M.; Bernardo, C.H.C.; Bernardo, R. The benefits and barriers of geographical indications to producers: A review. Renew. Agric. Food Syst. 2022, 37, 707–719. [Google Scholar] [CrossRef]
- Vandecandelaere, E.; Teyssier, C.; Barjolle, D.; Fournier, S.; Beucherie, O.; Jeanneaux, P. Strengthening sustainable food systems through geographical indications: Evidence from 9 worldwide case studies. J. Sustain. Res. 2020, 4. [Google Scholar] [CrossRef]
- Parastar, H.; Tauler, R. Big (bio) chemical data mining using chemometric methods: A need for chemists. Angew. Chem. 2022, 134, e201801134. [Google Scholar] [CrossRef]
- Hibbert, D.B. Vocabulary of concepts and terms in chemometrics (IUPAC Recommendations 2016). Pure Appl. Chem. 2016, 88, 407–443. [Google Scholar] [CrossRef]
- Segato, S.; Caligiani, A.; Contiero, B.; Galaverna, G.; Bisutti, V.; Cozzi, G. 1H NMR metabolic profile to discriminate pasture based alpine asiago PDO cheeses. Animals 2019, 9, 722. [Google Scholar] [CrossRef]
- Maestrello, V.; Solovyev, P.; Franceschi, P.; Stroppa, A.; Bontempo, L. 1H-NMR approach for the discrimination of PDO Grana Padano cheese from non-PDO cheeses. Foods 2024, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Tarapoulouzi, M.; Agriopoulou, S.; Artemi, A. Quality Schemes and Geographical Indicators in the Cheese Agribusiness and the Case of the Cypriot Traditional Cheese Halloumi. In Agribusiness Innovation and Contextual Evolution, Volume I: Strategic, Managerial and Marketing Advancements; Springer International Publishing: Cham, Switzerland, 2024; pp. 155–182. [Google Scholar]
- Grassi, S.; Tarapoulouzi, M.; D’Alessandro, A.; Agriopoulou, S.; Strani, L.; Varzakas, T. How chemometrics can fight milk adulteration. Foods 2022, 12, 139. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Tarapoulouzi, M.; Varzakas, T. (Eds.) Chemometrics and Authenticity of Foods of Plant Origin; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- de Araújo Gomes, A.; Azcarate, S.M.; Špánik, I.; Khvalbota, L.; Goicoechea, H.C. Pattern recognition techniques in food quality and authenticity: A guide on how to process multivariate data in food analysis. TrAC Trends Anal. Chem. 2023, 164, 117105. [Google Scholar] [CrossRef]
- Smaoui, S.; Tarapoulouzi, M.; Agriopoulou, S.; D’Amore, T.; Varzakas, T. Current state of milk, dairy products, meat and meat products, eggs, fish and fishery products authentication and chemometrics. Foods 2023, 12, 4254. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. An overview on the application of chemometrics tools in food authenticity and traceability. Foods 2022, 11, 3940. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J. Advanced chemometrics toward robust spectral analysis for fruit quality evaluation. Trends Food Sci. Technol. 2024, 150, 104612. [Google Scholar] [CrossRef]
- Riedl, J.; Esslinger, S.; Fauhl-Hassek, C. Review of validation and reporting of non-targeted fingerprinting approaches for food authentication. Anal. Chim. Acta 2015, 885, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Kokkinofta, R.; Petrakis, P.V.; Mavromoustakos, T.; Theocharis, C.R. Authenticity of the traditional cypriot spirit “Zivania” on the basis of metal content using a combination of coupled plasma spectroscopy and statistical analysis. J. Agric. Food Chem. 2003, 51, 6233–6239. [Google Scholar] [CrossRef] [PubMed]
- Kokkinofta, R.I.; Theocharis, C.R. Chemometric characterization of the Cypriot spirit “Zivania”. J. Agric. Food Chem. 2005, 53, 5067–5073. [Google Scholar] [CrossRef]
- Petrakis, P.; Touris, I.; Liouni, M.; Zervou, M.; Kyrikou, I.; Kokkinofta, R.; Theocharis, C.R.; Mavromoustakos, T.M. Authenticity of the traditional cypriot spirit “zivania” on the basis of 1H NMR spectroscopy diagnostic parameters and statistical analysis. J. Agric. Food Chem. 2005, 53, 5293–5303. [Google Scholar] [CrossRef]
- Ioannou-Papayianni, E.; Kokkinofta, R.I.; Theocharis, C.R. Authenticity of Cypriot sweet wine commandaria using FT-IR and chemometrics. J. Food Sci. 2011, 76, C420–C427. [Google Scholar] [CrossRef]
- Kokkinofta, R.; Economidou, N.; Tzioni, E.; Damianou, K.; Poulli, K.; Savvidou, C.; Louka, C.; Kanari, P. Studies on the authenticity of local wines by spectroscopic and chemometric analysis. J. Chem. Chem. Eng. 2014, 8, 101. [Google Scholar]
- Kamilari, E.; Mina, M.; Karallis, C.; Tsaltas, D. Metataxonomic analysis of grape microbiota during wine fermentation reveals the distinction of cyprus regional terroirs. Front. Microbiol. 2021, 12, 726483. [Google Scholar] [CrossRef] [PubMed]
- Tarapoulouzi, M.; Theocharis, C.R. Discrimination of Anari cheese samples in comparison with Halloumi cheese samples regarding the origin of the species by FTIR measurements and chemometrics. Analytica 2023, 4, 374–384. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Pashalidis, I.; Theocharis, C.R. Discrimination of Cheese Products Regarding Milk Species’ Origin Using FTIR, 1H-NMR, and Chemometrics. Appl. Sci. 2024, 14, 2584. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Logan, N.; Hardy, M.; Montgomery, H.; Haughey, S.A.; Elliott, C.T.; Theocharis, C.R. A Pre-Trial Study to Identify Species of Origin in Halloumi Cheese Utilising Chemometrics with Near-Infrared and Hyperspectral Imaging Technologies. Analytica 2024, 5, 17–27. [Google Scholar] [CrossRef]
- Ioannou-Papayianni, E.; Damaskinos, C.; Tarapoulouzi, M.; Louka, C.; Savvidou, C.; Tzioni, E.; Kokkinofta, R. Utilizing isotopic and elemental markers to enhance the authenticity of potatoes. Eur. Food Res. Technol. 2025, 251, 367–375. [Google Scholar] [CrossRef]
- Louppis, A.P.; Constantinou, M.S.; Kosma, I.S.; Badeka, A.V.; Kontominas, M.G.; Blando, F.; Stamatakos, G. Identification of quality markers for the geographical and botanical differentiation of Mediterranean prickly pears based on conventional physicochemical parameters, volatile compounds, sugars and colour. J. Food Compos. Anal. 2023, 123, 105579. [Google Scholar] [CrossRef]
- Louppis, A.P.; Constantinou, M.S.; Kontominas, M.G.; Blando, F.; Stamatakos, G. Geographical and botanical differentiation of Mediterranean prickly pear using specific chemical markers. J. Food Compos. Anal. 2023, 119, 105219. [Google Scholar] [CrossRef]
- Kokkinofta, R.; Yiannopoulos, S.; Stylianou, M.A.; Agapiou, A. Use of chemometrics for correlating carobs nutritional compositional values with geographic origin. Metabolites 2020, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Krokou, A.; Kokkinofta, R.; Stylianou, M.; Agapiou, A. Decoding carob flavor aroma using HS–SPME–GC–MS and chemometrics. Eur. Food Res. Technol. 2020, 246, 1419–1428. [Google Scholar] [CrossRef]
- Papaefstathiou, E.; Agapiou, A.; Giannopoulos, S.; Kokkinofta, R. Nutritional characterization of carobs and traditional carob products. Food Sci. Nutr. 2018, 6, 2151–2161. [Google Scholar] [CrossRef]
- Christou, C.; Agapiou, A.; Kokkinofta, R. Use of FTIR spectroscopy and chemometrics for the classification of carobs origin. J. Adv. Res. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Theocharis, C.R. Discrimination of Cheddar, Kefalotyri, and Halloumi cheese samples by the chemometric analysis of Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectra. J. Food Process Eng. 2022, 45, e13933. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, A.P.; Kontakos, S.; Drouza, C.; Papastephanou, C. Characterization and botanical differentiation of monofloral and multifloral honeys produced in Cyprus, Greece, and Egypt using physicochemical parameter analysis and mineral content in conjunction with supervised statistical techniques. J. Anal. Methods Chem. 2018, 2018, 7698251. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Papastephanou, C.; Karabagias, V.K. Geographical differentiation of Cypriot multifloral honeys through specific volatile compounds and the use of DFA. AIMS Agric. Food 2019, 4, 149–162. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Moreno-Rojas, J.M.; Holland, M.V.; Reniero, F.; Guillou, C.; Héberger, K. Virgin olive oil authentication by multivariate analyses of 1H NMR fingerprints and δ13C and δ2H data. J. Agric. Food Chem. 2010, 58, 5586–5596. [Google Scholar] [CrossRef]
- Araghipour, N.; Colineau, J.; Koot, A.; Akkermans, W.; Rojas, J.M.M.; Beauchamp, J.; Wisthaler, A.; Märk, T.D.; Downey, G.; Guillou, C.; et al. Geographical origin classification of olive oils by PTR-MS. Food Chem. 2008, 108, 374–383. [Google Scholar] [CrossRef]
- Kritioti, A.; Menexes, G.; Drouza, C. Chemometric characterization of virgin olive oils of the two major Cypriot cultivars based on their fatty acid composition. Food Res. Int. 2018, 103, 426–437. [Google Scholar] [CrossRef]
- Kastanos, E.; Papaneophytou, C.; Georgiou, T.; Demoliou, C. A simple and fast triplex-PCR for the identification of milk’s animal origin in Halloumi cheese and yoghurt. J. Dairy Res. 2022, 89, 323–326. [Google Scholar] [CrossRef]
- Karabagias, I.K. Advances of spectrometric techniques in food analysis and food authentication implemented with chemometrics. Foods 2020, 9, 1550. [Google Scholar] [CrossRef] [PubMed]
- Rodionova, O.Y.; Oliveri, P.; Malegori, C.; Pomerantsev, A.L. Chemometrics as an efficient tool for food authentication: Golden pillars for building reliable models. Trends Food Sci. Technol. 2024, 147, 104429. [Google Scholar] [CrossRef]
- Consonni, V.; Todeschini, R.; Gosetti, F.; Ballabio, D. Authenticity and chemometrics basics. In Chemometrics and Authenticity of Foods of Plant Origin; CRC Press: Boca Raton, FL, USA, 2022; pp. 9–35. [Google Scholar]
- Wang, X.; Bouzembrak, Y.; Lansink, A.O.; Van Der Fels-Klerx, H.J. Application of machine learning to the monitoring and prediction of food safety: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 416–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, L.; Zhu, H.; Wang, W.; Ren, Z.; Zhou, Q.; Lu, S.; Sun, S.; Zhu, Z.; Gorriz, J.M.; et al. Deep learning in food category recognition. Inf. Fusion 2023, 98, 101859. [Google Scholar] [CrossRef]
- Dayananda, B.; Owen, S.; Kolobaric, A.; Chapman, J.; Cozzolino, D. Pre-processing applied to instrumental data in analytical chemistry: A brief review of the methods and examples. Crit. Rev. Anal. Chem. 2024, 54, 2745–2753. [Google Scholar] [CrossRef]
- Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current application of advancing spectroscopy techniques in food analysis: Data handling with chemometric approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef]
- Ulberth, F.; Koeber, R. Reference materials for food authentication. Anal. Bioanal. Chem. 2025, 417, 2427–2438. [Google Scholar] [CrossRef]
- Agriopoulou, S.; D’Amore, T.; Tarapoulouzi, M.; Varzakas, T.; Smaoui, S. Chemometrics in Mycotoxin Detection by Mass Spectrometry. In Mass Spectrometry in Food Analysis: Principles and Applications; World Scientific Publishing: Singapore, 2025; pp. 277–303. [Google Scholar]
- Tsimidou, M.Z.; Ordoudi, S.A.; Mantzouridou, F.T.; Nenadis, N.; Stelzl, T.; Rychlik, M.; Belc, N.; Zoani, C. Strategic priorities of the scientific plan of the European Research Infrastructure METROFOOD-RI for promoting metrology in food and nutrition. Foods 2022, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, F.N.; Vidal, R.B.P.; Aspromonte, J. Untargeted chromatographic methods coupled with chemometric strategies for the analysis of food and related samples. TrAC Trends Anal. Chem. 2024, 173, 117650. [Google Scholar] [CrossRef]
- Ji, H.; Pu, D.; Yan, W.; Zhang, Q.; Zuo, M.; Zhang, Y. Recent advances and application of machine learning in food flavor prediction and regulation. Trends Food Sci. Technol. 2023, 138, 738–751. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting black-box models: A review on explainable artificial intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Buyuktepe, O.; Catal, C.; Kar, G.; Bouzembrak, Y.; Marvin, H.; Gavai, A. Food fraud detection using explainable artificial intelligence. Expert Syst. 2025, 42, e13387. [Google Scholar] [CrossRef]
- Furuya, D.E.G.; Bolfe, É.L.; Parreiras, T.C.; Barbedo, J.G.A.; Santos, T.T.; Gebler, L. Combination of Remote Sensing and Artificial Intelligence in Fruit Growing: Progress, Challenges, and Potential Applications. Remote Sens. 2024, 16, 4805. [Google Scholar] [CrossRef]
- Pérez-Marín, D.; Fearn, T. Non-destructive/Non-invasive Method Development, Evaluation, and Transfer. In Non-Invasive and Non-Destructive Methods for Food Integrity; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 17–38. [Google Scholar]
- Yazgan, N.N.; Hummel, D.; Hinrichs, J.; Hitzmann, B. Raman Spectroscopy as a Tool for In-Line Quality Management in Food Processing. In Raman Spectroscopy in the Food Industry; CRC Press: Boca Raton, FL, USA, 2025; pp. 205–229. [Google Scholar]
- Tarapoulouzi, M.; Ioannidis, I.; Pashalidis, I. Applications, trends, and challenges in the non-destructive assessment of microplastics in fish. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 341, 126462. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Dubey, S.K.; Goel, S.; Kalita, P.K. Portable sensors in precision agriculture: Assessing advances and challenges in soil nutrient determination. TrAC Trends Anal. Chem. 2024, 180, 117981. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and applications of miniaturized near-infrared (NIR) spectrometers. Chem.—A Eur. J. 2021, 27, 1514–1532. [Google Scholar] [CrossRef]
- Albu, C.; Chira, A.; Radu, G.L.; Eremia, S.A. Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing. Chemosensors 2025, 13, 113. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, M.; Mujumdar, A.S. Blockchain-based fresh food quality traceability and dynamic monitoring: Research progress and application perspectives. Comput. Electron. Agric. 2024, 224, 109191. [Google Scholar] [CrossRef]
- Bhat, M.A.; Rather, M.Y.; Singh, P.; Hassan, S.; Hussain, N. Advances in smart food authentication for enhanced safety and quality. Trends Food Sci. Technol. 2024, 155, 104800. [Google Scholar] [CrossRef]
- Lukacs, M.; Toth, F.; Horvath, R.; Solymos, G.; Alpár, B.; Varga, P.; Kertesz, I.; Gillay, Z.; Baranyai, L.; Felfoldi, J.; et al. Advanced digital solutions for food traceability: Enhancing origin, quality, and safety through NIRS, RFID, Blockchain, and IoT. J. Sens. Actuator Netw. 2025, 14, 21. [Google Scholar] [CrossRef]
- Kayikci, Y.; Durak Usar, D.; Aylak, B.L. Using blockchain technology to drive operational excellence in perishable food supply chains during outbreaks. Int. J. Logist. Manag. 2022, 33, 836–876. [Google Scholar] [CrossRef]
- De Angelis, D.; Summo, C.; Pasqualone, A.; Faccia, M.; Squeo, G. Advancements in food authentication using soft independent modelling of class analogy (SIMCA): A review. Food Qual. Saf. 2024, 8, fyae032. [Google Scholar] [CrossRef]
- dos Santos, R.R.; Guarnieri, P. Social gains for artisanal agroindustrial producers induced by cooperation and collaboration in agri-food supply chain. Soc. Responsib. J. 2021, 17, 1131–1149. [Google Scholar]
- World Health Organization. WHO Global Strategy for Food Safety 2022–2030: Towards Stronger Food Safety Systems and Global Cooperation; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
# | Product Type/Category | File Number | Name | Status | Date of Registration |
---|---|---|---|---|---|
1 | Food/Rosewater | PGI-CY-02862 | Rodostagma Agrou/Agros Rosewater | Registered | 4 October 2024 |
2 | Food/Vegetable | PGI-CY-02906 | Kypriaki patata kokkinoyis/Cyprus red soil potato | Published | 20 September 2024 |
3 | Food/Pasta | PGI-CY-02762 | Tertziellouthkia | Registered | 10 July 2024 |
4 | Food/Cheese | PGI-CY-02872 | Halitzia Tillirias | Registered | 7 December 2023 |
5 | Wine | PGI-CY-A1620-AM01 | Larnaca | Applied | 20 September 2022 |
6 | Wine | PGI-CY-A1621-AM01 | Nicosia | Applied | 20 September 2022 |
7 | Food/Pasta | PGI-CY-02763 | ΜMakaronia tis SmilasMakaronia tou Sklinitziou | Registered | 22 July 2022 |
8 | Food/Cheese | PDO-CY-01243 | Halloumi/Hellim | Registered | 13 April 2021 |
9 | Food/Sausage | PGI-CY-02369 | Loukaniko Pitsilias | Registered | 10 February 2021 |
10 | Food/Processed or preserved meat | PGI-CY-02367 | Lountza Pitsilias | Registered | 10 February 2021 |
11 | Food/Processed or preserved meat | PGI-CY-02368 | Hiromeri Pitsilias | Registered | 8 October 2020 |
12 | Food/Vegetable | PDO-CY-01309 | Kolokasi Sotiras/Kolokasi-Poulles Sotiras | Registered | 3 August 2016 |
13 | Food/Preserved fruits and flowers in syrup | PGI-CY-01310 | Glyko Triantafyllo Agrou | Registered | 21 June 2016 |
14 | Food/Sausage | PGI-CY-1244 | Pafitiko Loukaniko | Registered | 20 October 2015 |
15 | Food/Confectionery | PGI-CY-0800 | Koufeta Amygdalou Geroskipou | Registered | 3 March 2012 |
16 | Spirit drink | PGI-CY-01942 | Ζιβάνα/Zivania | Registered | 13 February 2008 |
17 | Spirit drink | PGI-CY + GR-01828 | Ouzo | Registered | 13 February 2008 |
18 | Food/Confectionery | PGI-CY-0454 | Loukoumi Geroskipou | Registered | 15 December 2007 |
19 | Wine | PDO-CY-A1628 | Krasochoria of Lemesos | Registered | 17 February 2006 |
20 | Wine | PDO-CY-A1627 | Pitsilia | Registered | 17 February 2006 |
21 | Wine | PDO-CY-A1626 | Laona Akama | Registered | 17 February 2006 |
22 | Wine | PDO-CY-A1625 | Vouni Panagias—Ampelitis | Registered | 17 February 2006 |
23 | Wine | PDO-CY-A1624 | Krasochoria of Lemesos—Laona | Registered | 17 February 2006 |
24 | Wine | PDO-CY-A1623 | Krasochoria of Lemesos—Afames | Registered | 17 February 2006 |
25 | Wine | PDO-CY-A1622 | Commandaria | Registered | 17 February 2006 |
26 | Wine | PGI-CY-A1621 | Nicosia | Registered | 26 January 2006 |
27 | Wine | PGI-CY-A1620 | Larnaca | Registered | 26 January 2006 |
28 | Wine | PGI-CY-A1619 | Lemesos | Registered | 26 January 2006 |
29 | Wine | PGI-CY-A1618 | Paphos | Registered | 26 January 2006 |
Food or Beverage Product | Analytical Method(s) | Target(s) | Chemometric Method(s) | Reference |
---|---|---|---|---|
Zivania | ICP-OES | Type of distilled alcoholic beverages and geographical origin | CDA, CBT, PCA, PCO | Kokkinofta et al. [23] |
Zivania | HPLC-RID, GC-FID, 1H NMR, and ICP-OES | Type of distilled alcoholic beverages and geographical origin | PCA, CART, RDA, Dendrogram | Kokkinofta and Theocharis [24] |
Zivania | 1H NMR spectroscopy | Type of distilled alcoholic beverages | CDA, CBT | Petrakis et al. [25] |
Commandaria | FTIR | Type of sweet wine and geographical origin | PCA, CART, RDA, Dendrogram | Ioannou-Papayianni et al. [26] |
Wines | SNIF-NMR, IR-MS, ICP-OES | Geographical origin | PCA, CART, RDA, Dendrogram | Kokkinofta et al. [27] |
Wines | PCR | Geographical origin | LDA | Kamilari et al. [28] |
Halloumi cheese | FTIR spectroscopy | Milk’s animal origin | OPLS-DA | Tarapoulouzi and Theocharis [29] |
Halloumi cheese | 1H NMR and FTIR spectroscopy | Milk’s animal origin | OPLS-DA | Tarapoulouzi et al. [30] |
Halloumi cheese | NIR and HSI | Milk’s animal origin | PCA and HCA | Tarapoulouzi et al. [31] |
Potato | IRMS, SNIF-NMR, ICP-OES | Geographical origin | OPLS-DA | Ioannou-Papayianni et al. [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarapoulouzi, M.; Pashalidis, I.; Theocharis, C.R. Use of Chemometrics for the Authentication, Characterization and Detection of Adulteration of Cypriot Products Registered Under EU Quality Schemes: A Review. Chemosensors 2025, 13, 332. https://doi.org/10.3390/chemosensors13090332
Tarapoulouzi M, Pashalidis I, Theocharis CR. Use of Chemometrics for the Authentication, Characterization and Detection of Adulteration of Cypriot Products Registered Under EU Quality Schemes: A Review. Chemosensors. 2025; 13(9):332. https://doi.org/10.3390/chemosensors13090332
Chicago/Turabian StyleTarapoulouzi, Maria, Ioannis Pashalidis, and Charis R. Theocharis. 2025. "Use of Chemometrics for the Authentication, Characterization and Detection of Adulteration of Cypriot Products Registered Under EU Quality Schemes: A Review" Chemosensors 13, no. 9: 332. https://doi.org/10.3390/chemosensors13090332
APA StyleTarapoulouzi, M., Pashalidis, I., & Theocharis, C. R. (2025). Use of Chemometrics for the Authentication, Characterization and Detection of Adulteration of Cypriot Products Registered Under EU Quality Schemes: A Review. Chemosensors, 13(9), 332. https://doi.org/10.3390/chemosensors13090332