Development and Application of Analytical Methods to Quantitate Nitrite in Excipients and Secondary Amines in Metformin API at Trace Levels Using Liquid Chromatography–Tandem Mass Spectrometry
Abstract
1. Introduction
A-Nitrite | ||||
Ref. | Sample | Derivatization reagent | Derivatization process and mechanism | Analytical methods |
[25] | Sea water | Triethyloxoniumtetrafluoroborate | NO2−(aq) + Et3O+(aq) → EtONO(g) + Et2O NO3−(aq) + Et3O+(aq) → EtONO2(g) + Et2O | HS-GC/MS |
[26] | Urine/plasma | Pentafluorobenzyl bromide | GC-ECNICI-MS | |
[27] | Meat | Triethyloxoniumtetrafluoroborate | NO2−(aq) + Et3O+(aq) → EtONO(g) + Et2O NO3−(aq) + Et3O+(aq) → EtONO2(g) + Et2O | HS-GC/MS |
[28] | Urine/fecal excretion | DAN | LC-MS/MS | |
[29] | Excipients | DAN | UPLC-MS | |
[30] | Food/environmental | DAN | GC–MS LC-FLD | |
[31] | Biological sample | Pentafluorobenzyl bromide | GC-MS | |
[32] | Sea water | DAN | LC-FLD | |
B-Amines | ||||
Ref. | Sample | Derivatization reagent | Derivatization process and mechanism | Analytical methods |
[36] | Metformin | DNFB | LC-UV | |
[37] | Metformin | DNFB | UV | |
[35] | Metformin | 4-Nitrobenzoyl chloride | LC-UV | |
Non-derivatization method | N.A. | IC | ||
[38] | Wine/beer | Tosyl chloride | LC-MS/MS | |
[39] | Beer | Tosyl chloride | LC-MS/MS | |
[40] | Amino acid | Dansyl-Cl, o-phthalaldehyde (OPA), Fmoc-Cl, Dabsyl-Cl, Marfey’s reagent | N.A. | LC-MS/MS |
[41] | Fruit juice/ alcoholic beverage | 1-naphthylisothiocyanate | LC-UV | |
[42] | Water | Non-derivatization method | N.A. | UFLC-MS/MS |
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Analytical Method for Determination of Nitrite in Excipients
2.2.1. Preparation of the Nitrite Standard Stock Solutions
2.2.2. Preparation of a DAN Solution
2.2.3. Optimization of DAN Derivatization
2.2.4. Preparation of Nitrite Standards and Sample Solutions for Validation
2.2.5. Preparation of Excipient Sample Solutions
2.2.6. Instrumental Conditions
2.2.7. Selection of Excipients
2.2.8. Method Validation
2.2.9. System Suitability
2.3. Analytical Method for the Determination of DMA and DEA in Metformin Hydrochloride
2.3.1. Preparation of DMA and DEA Standard Stock Solutions
2.3.2. Preparation of DMA and DEA Standards and Sample Solutions for Validation
2.3.3. Preparation of Metformin Sample Solutions
2.3.4. Instrumental Conditions
2.3.5. Method Validation
2.3.6. System Suitability
2.4. Application of the Analytical Methods Using Marketed Products
3. Results and Discussion
3.1. Optimization and Validation of Analytical Method for Determination of Nitrite in Excipients
3.1.1. Optimization of Derivatization Procedure
3.1.2. Correction of 15N-NAT Intensity
3.1.3. Method Validation
3.2. Optimization and Validation of Analytical Method for the Determination of DMA and DEA in Metformin Hydrochloride
3.2.1. Derivatization Optimization
3.2.2. Method Validation
3.3. Application of the Developed Methods for the Detection of Nitrite and Amines in Pharmaceutical Substances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Medicines Agency. Update on Review of Recalled Valsartan Medicines: Preliminary Assessment of Possible Risk to Patients. 2018. Available online: https://www.ema.europa.eu/en/documents/press-release/update-review-recalled-valsartan-medicines_en.pdf (accessed on 11 July 2025).
- The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. M7(R2) Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. 2023. Available online: https://database.ich.org/sites/default/files/ICH_M7%28R2%29_Guideline_Step4_2023_0216_0.pdf (accessed on 11 July 2025).
- U.S. Food and Drug Administration. Updates and Press Announcements on Angiotensin II Receptor Blocker (ARB) Recalls (Valsartan, Losartan, and Irbesartan). 2018–2019. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-and-press-announcements-angiotensin-ii-receptor-blocker-arb-recalls-valsartan-losartan (accessed on 11 July 2025).
- Health Canada. Several Drugs Containing Valsartan Being Recalled Due to Contamination with a Potential Carcinogen. 2018. Available online: https://recalls-rappels.canada.ca/en/alert-recall/several-drugs-containing-valsartan-being-recalled-due-contamination-potential (accessed on 11 July 2025).
- Ministry of Food and Drug Safety. Announcement of Results of Investigation Regarding Concerns over Use of Valsartan Manufactured by Zhejiang Huahai. 2018. Available online: https://www.korea.kr/briefing/pressReleaseView.do?newsId=156280000 (accessed on 11 July 2025).
- European Medicines Agency. EMA Confirms Recommendation to Suspend All Ranitidine Medicines in the EU. 2020. Available online: https://www.ema.europa.eu/en/documents/press-release/suspension-ranitidine-medicines-eu_en.pdf (accessed on 11 July 2025).
- U.S. Food and Drug Administration. Updates and Press Announcements on NDMA in Zantac (Ranitidine). 2019–2020. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-and-press-announcements-ndma-zantac-ranitidine (accessed on 11 July 2025).
- European Medicines Agency. EMA Update on Metformin Diabetes Medicines. 2019. Available online: https://www.ema.europa.eu/en/documents/press-release/ema-update-metformin-diabetes-medicines_en.pdf (accessed on 11 July 2025).
- U.S. Food and Drug Administration. Updates and Press Announcements on NDMA in Metformin. 2019–2021. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-and-press-announcements-ndma-metformin (accessed on 11 July 2025).
- Ministry of Food and Drug Safety. The Temporary Ban on the Manufacturing and Sale of 31 Metformin Diabetes Treatment Products. 2020. Available online: https://www.korea.kr/briefing/pressReleaseView.do?newsId=156391976 (accessed on 11 July 2025).
- European Medicines Agency. Assessment Report: Nitrosamine Impurities in Human Medicinal Products. 2020. Available online: https://www.ema.europa.eu/en/documents/opinion-any-scientific-matter/nitrosamines-emea-h-a53-1490-assessment-report_en.pdf (accessed on 11 July 2025).
- Cioc, R.C.; Joyce, C.; Mayr, M.; Bream, R.N. Formation of N-nitrosamine drug substance related impurities in medicines: A regulatory perspective on risk factors and mitigation strategies. Org. Process Res. Dev. 2023, 27, 1736–1750. [Google Scholar] [CrossRef]
- Dube, S.; Naik, M.; Rajendran, S. Nitrosamine drug substance-related impurities (NDSRI): A new challenge in pharmaceutical manufacturing. Int. J. Pharm. Sci. 2020, 29, 335–348. [Google Scholar]
- U.S. Food and Drug Administration. Guidance for Industry: Control of Nitrosamine Impurities in Human Drugs. 2024. Available online: https://www.fda.gov/media/141720/download (accessed on 11 July 2025).
- U.S. Food and Drug Administration. Guidance for Industry: Recommended Acceptable Intake Limits for Nitrosamine Drug Substance-Related Impurities (NDSRIs). 2023. Available online: https://www.fda.gov/media/170794/download (accessed on 11 July 2025).
- European Medicines Agency. Nitrosamines EMEA-H-A5(3)-1490 Questions and Answers for Marketing Authorisation Holders/Applicants. 2024. Available online: https://www.ema.europa.eu/en/documents/opinion-any-scientific-matter/nitrosamines-emea-h-a53-1490-questions-answers-marketing-authorisation-holders-applicants-chmp-opinion-article-53-regulation-ec-no-726-2004-referral-nitrosamine-impurities-human-medicinal-products_en.pdf (accessed on 11 July 2025).
- U.S. Food and Drug Administration. Updates on Possible Mitigation Strategies to Reduce the Risk of Nitrosamine Drug Substance-Related Impurities in Drug Products. 2021. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/updates-possible-mitigation-strategies-reduce-risk-nitrosamine-drug-substance-related-impurities (accessed on 11 July 2025).
- R Shah, R.; Patel, S.; Yadav, A. Nitrite contamination in pharmaceutical ingredients and the risk of nitrosamine formation: Importance of monitoring and control. Int. J. Pharm. Qual. Assur. 2020, 25, 105–113. [Google Scholar]
- Guideline for Nitrosamine Impurities in China—West. Available online: https://www.westpharma.com/blog/2020/december/guideline-for-nitrosamine-impurities-in-china (accessed on 11 July 2025).
- China National Medical Products Administration. Guiding Principles for the Control of Genotoxic Impurities. Chin. Pharmacopoeia 2020, 4, 9306. Available online: https://chp.health-china.com/ (accessed on 11 July 2025).
- Hu, J.; Christison, T.; Rohrer, J. Determination of dimethylamine and nitrite in pharmaceuticals by ion chromatography to assess the likelihood of nitrosamine formation. Heliyon 2021, 7, e06179. [Google Scholar] [CrossRef]
- Siu, D.C.; Henshall, A. Ion chromatographic determination of nitrate and nitrite in meat products. J. Chromatogr. A 1998, 804, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Kerry, M.; Serr, B.; Mintert, M. Parts per billion of nitrite in microcrystalline cellulose by ion chromatography mass spectrometry with isotope labeled internal standard. J. Pharm. Biomed. Anal. 2023, 235, 115648. [Google Scholar] [CrossRef] [PubMed]
- Suresh Kumar, A.B.; Dey, D.; Balaji, T.S.; Karthik, H.; Sathishkumar, K.; McDaid, P.; Fitzpatrick, B.; Awasthi, A.; Davies, S.; Dirat, O. Nitrite in Pharmaceutical Manufacturing Water: Development of an Ultra-Sensitive Analytical Method, Typical Data, and Discussion of Potential Nitrosamine Formation in Drug Substance and Drug Product from Water. Org. Process Res. Dev. 2024, 28, 2614–2622. [Google Scholar] [CrossRef]
- Pagliano, E.; Meija, J.; Mester, Z. High-precision quadruple isotope dilution method for simultaneous determination of nitrite and nitrate in seawater by GCMS after derivatization with triethyloxonium tetrafluoroborate. Anal. Chim. Acta 2014, 824, 36–41. [Google Scholar] [CrossRef]
- Hanff, E.; Lützow, M.; Kayacelebi, A.A.; Finkel, A.; Maassen, M.; Yanchev, G.R.; Haghikia, A.; Bavendiek, U.; Buck, A.; Lücke, T.; et al. Simultaneous GC-ECNICI-MS measurement of nitrite, nitrate and creatinine in human urine and plasma in clinical settings. J. Chromatogr. B 2017, 1047, 207–214. [Google Scholar] [CrossRef]
- Luckovitch, N.; Pagliano, E. A reference isotope dilution headspace GC/MS method for the determination of nitrite and nitrate in meat samples. Int. J. Food Sci. Technol. 2020, 55, 1110–1118. [Google Scholar] [CrossRef]
- Hu, C.W.; Chang, Y.J.; Yen, C.C.; Chen, J.L.; Muthukumaran, R.B.; Chao, M.R. 15N-labelled nitrite/nitrate tracer analysis by LC-MS/MS: Urinary and fecal excretion of nitrite/nitrate following oral administration to mice. Free Radic. Biol. Med. 2019, 143, 193–202. [Google Scholar] [CrossRef]
- Jireš, J.; Douša, M. Nitrites as precursors of N-nitrosation in pharmaceutical samples—A trace level analysis. J. Pharm. Biomed. Anal. 2022, 213, 114677. [Google Scholar] [CrossRef] [PubMed]
- Akyüz, M.; Ata, Ş. Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection. Talanta 2009, 79, 900–904. [Google Scholar] [CrossRef]
- Tsikas, D. GC-MS analysis of biological nitrate and nitrite using pentafluorobenzyl bromide in aqueous acetone: A dual role of carbonate/bicarbonate as an enhancer and inhibitor of derivatization. Molecules 2021, 26, 7003. [Google Scholar] [CrossRef]
- Carré, M.C.; Mahieuxe, B.; André, J.C.; Viriot, M.L. Fluorimetric nitrite analysis using 2,3-diaminonaphthalene: An improvement of the method. Analusis 1999, 27, 835–838. [Google Scholar] [CrossRef]
- Reynolds, J.G.; Britton, M.D.; Belsher, J.D. A review of sodium nitrite solubility in water and physical properties of the saturated solutions. J. Chem. Eng. Data 2021, 66, 2931–2941. [Google Scholar] [CrossRef]
- Schlingemann, J.; Boucley, C.; Hickert, S.; Bourasseau, L.; Walker, M.; Celdran, C.; Chemarin, T.; Pegues, C.; Fritzsche, M.; Keitel, J.; et al. Avoiding N-nitrosodimethylamine formation in metformin pharmaceuticals by limiting dimethylamine and nitrite. Int. J. Pharm. 2022, 620, 121740. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Kondo, K.; Fukumoto, S.; Takenaka, N.; Uchikawa, O.; Yoshida, I. N-nitrosodimethylamine formation in metformin drug products by the reaction of dimethylamine and atmospheric NO2. Org. Process Res. Dev. 2023, 27, 2123–2133. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines. European Pharmacopoeia (Ph. Eur.) Monograph 00931: Metformin Hydrochloride, 11th ed.; Council of Europe: Strasbourg, France, 2023; Available online: https://pheur.edqm.eu/home (accessed on 11 July 2025).
- Sharma, R.; Saluja, M.S. Spectrophotometric determination of dimethylamine in metformin hydrochloride via derivatization with 1-fluoro 2,4-dinitrobenzene. SFS 2022, 8, 261–266. [Google Scholar]
- Nalazek-Rudnicka, K.; Wasik, A. Development and validation of an LC-MS/MS method for the determination of biogenic amines in wines and beers. Monatsh Chem. 2017, 148, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
- Nalazek-Rudnicka, K.; Kubica, P.; Wasik, A. Discrepancies in determination of biogenic amines in beer samples by reversed phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Microchem. J. 2020, 159, 105574. [Google Scholar] [CrossRef]
- Lkhagva, A.; Shen, C.C.; Leung, Y.S.; Tai, H.C. Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1610, 460536. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Gupta, M.; Verma, K.K. Salting-out assisted liquid–liquid extraction for the determination of biogenic amines in fruit juices and alcoholic beverages after derivatization with 1-naphthylisothiocyanate and high-performance liquid chromatography. J. Chromatogr. A 2015, 1422, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Shi, H.; Ma, Y.; Adams, C.; Eichholz, T.; Timmons, T.; Jiang, H. Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography–tandem mass spectrometry. Talanta 2015, 131, 736–741. [Google Scholar] [CrossRef]
- Moser, J.; Ashworth, I.W.; Harris, L.; Hillier, M.C.; Nanda, K.K.; Scrivens, G. N-Nitrosamine Formation in Pharmaceutical Solid Drug Products: Experimental Observations. J. Pharm. Sci. 2023, 112, 1255–1267. [Google Scholar] [CrossRef]
- The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Q2(R1) Validation of Analytical Procedures: Text and Methodology. 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 11 July 2025).
- Elwers, S.; Schütze, T.; Putzka, H. Fluorescent derivatization of nitrite by 2,3-diaminonaphthalene in acidic solutions. J. Anal. Chem. 2001, 56, 1049–1054. [Google Scholar]
- Atiqi, R.; Iersel, C.V.; Cleophas, T.J. Accuracy assessments of quantitative diagnostic tests for clinical research. Int. J. Clin. Pharmacol. Ther. 2009, 47, 153–158. [Google Scholar] [CrossRef]
- Douša, M.; Jireš, J. HILIC-MS determination of dimethylamine in the active pharmaceutical ingredients and in the dosage forms of metformin. J. Pharm. Biomed. Anal. 2020, 191, 113573. [Google Scholar] [CrossRef]
- Fukuda, S.; Hoshiyama, T.; Kondo, K.; Uchikawa, O. Development of a simultaneous analytical method for amines corresponding to 10 typical nitrosamines. ACS Omega 2024, 10, 325–333. [Google Scholar] [CrossRef]
- Wichitnithad, W.; Nantaphol, S.; Noppakhunsomboon, K.; Rojsitthisak, P. An update on the current status and prospects of nitrosation pathways and possible root causes of nitrosamine formation in various pharmaceuticals. SPJ 2023, 31, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.; Jaspers, M.; Dickhoff, B.H.J. Modeling the impact of excipients selection on nitrosamine formation towards risk mitigation. Pharmaceutics 2023, 15, 2015. [Google Scholar] [CrossRef]
- Voronov, S.; Sakir, M.; Fatta-Kassinos, D.; Vasquez, M.I. Suspect Screening and Semi-Quantification of Macrolide Antibiotics in Municipal Wastewater by HPLC–Precursor Ion Scan Tandem Mass Spectrometry. Chemosensors 2023, 11, 44. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Xiang, Y.; Cao, H.; Li, Y. Simultaneous Determination of Trace Matrine and Oxymatrine Pesticide Residues in Tea by Magnetic Solid-Phase Extraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Test. 2024, 8, 245–250. [Google Scholar] [CrossRef]
Number of Samples (n = 170) | Number of Manufacturers | Number of Manufacturing Countries | |
---|---|---|---|
Metformin HCl | 20 | 7≤ a | 2≤ a |
Magnesium stearate | 21 | 3 | 3 |
Microcrystalline cellulose | 23 | 5≤ a | 5 |
Colloidal silicon dioxide | 18 | 4≤ a | 3 |
Lactose monohydrate | 21 | 3 | 2 |
Sodium stearyl fumarate | 14 | 1 | 1 |
Hypromellose (HPMC) | 22 | 5≤ a | 4 |
Croscarmellose sodium | 20 | 6 | 5 |
Sodium carboxymethyl cellulose | 11 | 4 | 4 |
Evaluation Factors | Validation Results | Validation Methodology | |||
---|---|---|---|---|---|
Linearity (n = 3) | 0.9999 (MS, MCC, CSD, LM, and SSF) 0.9997 (CCM, and CMC) 0.9996 (HPMC) | - Five concentration levels - Acceptable criteria: r2 ≥ 0.995 | |||
Accuracy (n = 9) | MS | 0.1 µg/g | 90.4 ± 2.5% | - Recovery test - Spiked sample at three levels (n = 3) - Acceptable criteria: 80~120% | |
1 µg/g | 97.4 ± 1.7% | ||||
4 µg/g | 99.3 ± 1.0% | ||||
MCC | 0.1 µg/g | 97.8 ± 6.1% | |||
1 µg/g | 98.4 ± 2.1% | ||||
4 µg/g | 97.6 ± 1.7% | ||||
CSD | 0.1 µg/g | 92.1 ± 6.9% | |||
1 µg/g | 100.7 ± 2.0% | ||||
4 µg/g | 101.6 ± 1.2% | ||||
LM | 0.1 µg/g | 108.1 ± 14.1% | |||
1 µg/g | 101.9 ± 2.7% | ||||
4 µg/g | 102.1 ± 1.4% | ||||
SSF | 0.1 µg/g | 94.2 ± 13.4% | |||
1 µg/g | 105.8 ± 1.2% | ||||
4 µg/g | 101.2 ± 0.8% | ||||
HPMC | 0.1 µg/g | 110.2 ± 3.1% | |||
1 µg/g | 104.6 ± 7.8% | ||||
4 µg/g | 110.6 ± 2.4% | ||||
CCS | 0.1 µg/g | 100.3 ± 4.3% | |||
1 µg/g | 101.3 ± 4.7% | ||||
4 µg/g | 102.7 ± 3.4% | ||||
CMC | 0.1 µg/g | 103.8 ± 4.7% | |||
1 µg/g | 101.5 ± 10.7% | ||||
4 µg/g | 105.6 ± 5.9% | ||||
Precision (n = 6, 3 days) | MS | Intra-day | 1.9~2.0% RSD | - Repeatability test - Six replicates - Acceptable criteria: %RSD ≤ 10 | |
Inter-day | 1.5% RSD | ||||
MCC | Intra-day | 1.0~1.6% RSD | |||
Inter-day | 2.6% RSD | ||||
CSD | Intra-day | 2.0~2.1% RSD | |||
Inter-day | 2.9% RSD | ||||
LM | Intra-day | 2.1~2.3% RSD | |||
Inter-day | 2.0% RSD | ||||
SSF | Intra-day | 2.1~2.6% RSD | |||
Inter-day | 4.8% RSD | ||||
HPMC | Intra-day | 1.0~6.5% RSD | |||
Inter-day | 3.4% RSD | ||||
CCS | Intra-day | 3.7~4.7% RSD | |||
Inter-day | 0.6% RSD | ||||
CMC | Intra-day | 4.3~4.7% RSD | |||
Inter-day | 1.5% RSD | ||||
LOD LOQ | MS, MCC, CSD, LM, SSF | 0.03 µg/g (LOD) 0.09 µg/g (LOQ) | - Estimation based on standard deviation (SD) of calibration curves; LOD = 3.3 × SD/slope; LOQ = 10 × SD/slope | ||
HPMC | 0.02 µg/g (LOD) 0.07 µg/g (LOQ) | ||||
CCS, CMC | 0.04 µg/g (LOD) 0.11 µg/g (LOQ) | ||||
Range | 0.5~20.0 ng/mL | - Reportable level~120% | |||
Robustness | Stability (n = 5) | 6 h | 1.7% RSD | - Deviation: %RSD ≤ 15 | |
12 h | 1.4% RSD | ||||
24 h | 1.0% RSD | ||||
Flow rate (±0.05 mL/min) (n = 6) | 1.6~2.1% RSD | - Deviation: %RSD ≤ 15 | |||
Temperature of column oven (±2 °C) (n = 6) | 1.1~3.4% RSD | - Deviation: %RSD ≤ 15 |
Evaluation Factors | Validation Results | Validation Methodology | |||
---|---|---|---|---|---|
Linearity (n = 3) | 0.9996 (DMA) 0.9994 (DEA) | - Five concentration levels - Acceptable criteria: r2 ≥ 0.995 | |||
Accuracy (n = 9) | DMA | 5 µg/g | 101.5 ± 5.0% | - Recovery test - Spiked sample at three levels (n = 3) - Acceptable criteria: 80~120% | |
20 µg/g | 98.9 ± 3.9% | ||||
100 µg/g | 100.4 ± 1.8% | ||||
DEA | 5 µg/g | 90.1 ± 2.9% | |||
20 µg/g | 96.6 ± 3.4% | ||||
100 µg/g | 105.1 ± 2.9% | ||||
Precision (n = 6, 3 days) | DMA | Intra-day | 1.1~2.3% RSD | - Repeatability test - Six replicates - Acceptable criteria: %RSD ≤ 10 | |
Inter-day | 1.5% RSD | ||||
DEA | Intra-day | 1.7~2.0% RSD | |||
Inter-day | 3.2% RSD | ||||
LOD LOQ | DMA | 0.6 µg/g (LOD) 1.8 µg/g (LOQ) | - Estimation based on standard deviation (SD) of calibration curves; LOD = 3.3 × SD/slope; LOQ = 10 × SD/slope | ||
DEA | 0.7 µg/g (LOD) 2.2 µg/g (LOQ) | ||||
Range | 5~100 ng/mL | - Reportable level~120% | |||
Robustness | Stability (n = 5) | 6 h | DMA | 0.6% RSD | - Deviation: %RSD ≤ 15 |
DEA | 1.1% RSD | ||||
12 h | DMA | 4.9% RSD | |||
DEA | 1.9% RSD | ||||
24 h | DMA | 3.7% RSD | |||
DEA | 1.9% RSD | ||||
Temperature of column oven (±2 °C) (n = 6) | DMA | 1.8% RSD | - Deviation: %RSD ≤ 15 | ||
DEA | 1.5% RSD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, I.; Lee, S.; Jung, M.J.; Jeong, Y.; Kim, J.Y.; Kim, M.; Kim, P.S.; Lee, B.-H.; Lee, Y.M.; Son, K.H. Development and Application of Analytical Methods to Quantitate Nitrite in Excipients and Secondary Amines in Metformin API at Trace Levels Using Liquid Chromatography–Tandem Mass Spectrometry. Chemosensors 2025, 13, 307. https://doi.org/10.3390/chemosensors13080307
Ahn I, Lee S, Jung MJ, Jeong Y, Kim JY, Kim M, Kim PS, Lee B-H, Lee YM, Son KH. Development and Application of Analytical Methods to Quantitate Nitrite in Excipients and Secondary Amines in Metformin API at Trace Levels Using Liquid Chromatography–Tandem Mass Spectrometry. Chemosensors. 2025; 13(8):307. https://doi.org/10.3390/chemosensors13080307
Chicago/Turabian StyleAhn, Ilyoung, Soyeon Lee, Min Ji Jung, Yeongeun Jeong, Ji Yun Kim, Minjeong Kim, Pan Soon Kim, Byung-Hoon Lee, Yong Moon Lee, and Kyung Hun Son. 2025. "Development and Application of Analytical Methods to Quantitate Nitrite in Excipients and Secondary Amines in Metformin API at Trace Levels Using Liquid Chromatography–Tandem Mass Spectrometry" Chemosensors 13, no. 8: 307. https://doi.org/10.3390/chemosensors13080307
APA StyleAhn, I., Lee, S., Jung, M. J., Jeong, Y., Kim, J. Y., Kim, M., Kim, P. S., Lee, B.-H., Lee, Y. M., & Son, K. H. (2025). Development and Application of Analytical Methods to Quantitate Nitrite in Excipients and Secondary Amines in Metformin API at Trace Levels Using Liquid Chromatography–Tandem Mass Spectrometry. Chemosensors, 13(8), 307. https://doi.org/10.3390/chemosensors13080307