Predicting the Color of Archaeological Littorina obtusata/fabalis Shells Using Raman Spectroscopy and Clustering Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sectioning, Polishing Procedure and Raman Spectra Acquisition for Cross-Sectional Analysis
- Rough-polished with 400-grit silicon carbide paper (3 min) to remove major irregularities.
- Intermediate polishing with 800-grit paper (5 min) and then 1200-grit (5 min) paper to refine and smooth the surface.
- Fine polishing with 2000-grit waterproof abrasive paper (5 min).
- Final lapping using 12 μm lapping film (5 min) to achieve a mirror-like finish.
2.3. Raman Spectra Acquisition
2.4. Spectral Data Analysis and Analysis Algorithms
2.4.1. Spectral Preprocessing
- Background subtraction: the instrumental background noise, measured independently, was subtracted from each raw spectrum acquired by the spectrometer.
- Spectral range selection: spectra outside this biological window were removed to focus the analysis and reduce computational load.
- Baseline estimation: the baseline was estimated using the Whittaker–Henderson smoothing method, commonly referred to as asymmetric least squares (ALS) [28].
- Baseline correction: the estimated baseline was subtracted from the cut spectrum. This step yielded the final corrected spectrum, where the broad background trend was removed, allowing the characteristic Raman peaks to be more clearly distinguished.
2.4.2. Analysis Algorithms
3. Results
3.1. Surface Preparation and Polishing
- Figure 4a: unpolished surface immediately after cutting. The surface is rough, with visible irregularities and microfractures.
- Figure 4b: rough polishing with 400-grit silicon carbide paper (3 min) removes major surface irregularities.
- Figure 4c: intermediate polishing with 800-grit paper (5 min) significantly reduces surface roughness.
- Figure 4d: additional polishing with 1200-grit paper (5 min) for further refinement.
- Figure 4e: fine polishing with 2000-grit waterproof abrasive paper (5 min) enhances reflectivity.
- Figure 4f: final lapping using 12 μm lapping film (5 min) achieves a highly reflective surface, contributing to a uniform focal depth.
3.2. Raman Spectra Analysis
3.3. Pigment Distribution in Polished Shell Sections
3.4. Clustering Analysis of Raman Spectra
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BP | Before present |
AHC | Agglomerative hierarchical clustering |
RS | Raman spectroscopy |
CAs | Clustering algorithms |
ML | Machine learning |
SSE | Sum of squared errors |
References
- Soler Mayor, B.; Pardo-Gordó, S.; Pascual Benito, J.L.; Balcázar Campos, N.; Avezuela-Aristu, B.; Vadillo Conesa, M.; Aura Tortosa, J.E. Personal Ornament in Transition. Final Paleolithic—Mesolithic Data from the Iberian Mediterranean Region (16.5–7 Ky Cal. BP). Archaeol. Anthropol. Sci. 2025, 17, 55. [Google Scholar] [CrossRef]
- Baker, J.; Rigaud, S.; Pereira, D.; Courtenay, L.A.; d’Errico, F. Evidence from Personal Ornaments Suggest Nine Distinct Cultural Groups between 34,000 and 24,000 Years Ago in Europe. Nat. Hum. Behav. 2024, 8, 431–444. [Google Scholar] [CrossRef]
- Cucart-Mora, C.; Gómez-Puche, M.; Romano, V.; De Pablo, J.F.-L.; Lozano, S. Reconstructing Mesolithic Social Networks on the Iberian Peninsula Using Ornaments. Archaeol. Anthropol. Sci. 2022, 14, 174. [Google Scholar] [CrossRef]
- Vanhaeren, M.; d’Errico, F. Aurignacian Ethno-Linguistic Geography of Europe Revealed by Personal Ornaments. J. Archaeol. Sci. 2006, 33, 1105–1128. [Google Scholar] [CrossRef]
- Fernández, E.Á. Perforated Homalopoma sanguineum from Tito Bustillo (Asturias): Mobility of Magdalenian Groups in Northern Spain. Antiquity 2002, 76, 641–646. [Google Scholar] [CrossRef]
- Kozminsky, E.V.; Lezin, P.A. Distribution of Pigments in the Shell of the Gastropod Littorina obtusata (Linnaeus, 1758). Russ. J. Mar. Biol. 2007, 33, 238–244. [Google Scholar] [CrossRef]
- Álvarez Fernández, E.; Corchón Rodríguez, S.; Bosinski, G. Los Objetos de Adorno-Colgantes del Paleolítico Superior y del Mesolítico en la Cornisa Cantábrica y en el Valle del Ebro una visión Europea; Universidad de Salamanca: Salamanca, Spain, 2006; ISBN 978-84-7800-412-6. [Google Scholar]
- Barnard, W.; De Waal, D. Raman Investigation of Pigmentary Molecules in the Molluscan Biogenic Matrix. J. Raman Spectrosc. 2006, 37, 342–352. [Google Scholar] [CrossRef]
- Hedegaard, C.; Bardeau, J.-F.; Chateigner, D. Molluscan shell pigments: An in situ resonance raman study. J. Molluscan Stud. 2006, 72, 157–162. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kagi, H.; Sasaki, T.; Endo, K. Chemical Basis of Molluscan Shell Colors Revealed with in Situ micro-Raman Spectroscopy. J. Raman Spectrosc. 2019, 50, 1700–1711. [Google Scholar] [CrossRef]
- Spectroscopic Investigation of Shell Pigments from the Family Neritidae (Mollusca: Gastropoda). In Biomineralization: From Molecular and Nano-Structural Analyses to Environmental Science; Endo, K., Kogure, T., Nagasawa, H., Eds.; Springer: Singapore, 2018; ISBN 978-981-13-1001-0. [Google Scholar]
- Wolkenstein, K.; Schmidt, B.C.; Harzhauser, M. Detection of Intact Polyene Pigments in Miocene Gastropod Shells. Palaeontology 2024, 67, e12691. [Google Scholar] [CrossRef]
- Withnall, R.; Chowdhry, B.Z.; Silver, J.; Edwards, H.G.M.; De Oliveira, L.F.C. Raman Spectra of Carotenoids in Natural Products. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2207–2212. [Google Scholar] [CrossRef] [PubMed]
- Gaspard, D.; Paris, C.; Loubry, P.; Luquet, G. Raman Investigation of the Pigment Families in Recent and Fossil Brachiopod Shells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 208, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef]
- Zuo, H.; Sun, Y.; Huang, M.; Marie Fowler, S.; Liu, J.; Zhang, Y.; Mao, Y. Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods. Foods 2024, 13, 3688. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.T.; Ganesamurthi, J.; Chen, S.-M.; Chen, T.-W.; Chen, C.-J.; Lakshmanan, K.; Chinnamuthu, P.; Liu, X.; Balaji, R. Non-Destructive Discrimination of Blue Inks on Suspected Documents through the Combination of Raman Spectroscopy and Chemometric Analysis. J 2023, 6, 536–543. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, S.; Wei, Z.; Lai, X.; Zeng, Q.; Huang, Y.; Ma, X.; Liu, D.; Qiu, Q.; Wang, J.; et al. Application of K-Means Clustering and Spectroscopic Analysis for Rapid Sorting of Inner Shell Colors in Freshwater Pearl Mussels Hyriopsis schlegelii. Aquaculture 2025, 599, 742128. [Google Scholar] [CrossRef]
- Reid, D.G. Reid Systematics and Evolution of Littorina. x, 463p. London: The Ray Society, 1996. (Volume 164 of the Series). J. Mar. Biol. Ass. 1996, 76, 1119. [Google Scholar] [CrossRef]
- Rolán-Alvarez, E.; Zapata, C.; Alvarez, G. Distinct Genetic Subdivision in Sympatric and Sibling Species of the Genus Littorina (Gastropoda: Littorinidae). Heredity 1995, 74, 1–9. [Google Scholar] [CrossRef]
- Kemppainen, P.; Panova, M.; Hollander, J.; Johannesson, K. Complete Lack of Mitochondrial Divergence between Two Species of NE Atlantic Marine Intertidal Gastropods. J. Evol. Biol. 2009, 22, 2000–2011. [Google Scholar] [CrossRef]
- Costa, D.; Sotelo, G.; Kaliontzopoulou, A.; Carvalho, J.; Butlin, R.; Hollander, J.; Faria, R. Hybridization Patterns between Two Marine Snails, Littorina fabalis and L. obtusata. Ecol. Evol. 2020, 10, 1158–1179. [Google Scholar] [CrossRef]
- Sotelo, G.; Duvetorp, M.; Costa, D.; Panova, M.; Johannesson, K.; Faria, R. Phylogeographic History of Flat periwinkles, Littorina fabalis and L. obtusata. BMC Evol. Biol. 2020, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Poppe, G.T.; Goto, Y. European Seashells. 2 Scaphopoda, Bivalvia, Cephalopoda; European Seashells: Hemmen, The Netherlands; Wiesbaden, German, 1993; ISBN 978-3-925919-11-4. [Google Scholar]
- Claassen, C. Shells; Cambridge Manuals in Archaeology; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1998; ISBN 978-0-521-57036-7. [Google Scholar]
- Lyman, R.L. Vertebrate Taphonomy, 1st ed.; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-45215-1. [Google Scholar]
- Milano, S.; Schöne, B.R.; González-Morales, M.R.; Gutiérrez-Zugasti, I. Temporal and Spatial Variability of Prehistoric Aquatic Resource Procurement: A Case Study from Mesolithic Northern Iberia. Sci. Rep. 2022, 12, 3111. [Google Scholar] [CrossRef] [PubMed]
- Eilers, P.H.; Boelens, H.F. Baseline Correction with Asymmetric Least Squares Smoothing; Leiden University Medical Centre Report; Leiden University Medical Centre: Leiden, The Netherlands, 2005; Volume 1, p. 5. [Google Scholar]
- Umargono, E.; Suseno, J.E.; Vincensius Gunawan, S.K. K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula. In Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019), Yogyakarta, Indonesia, 25–26 November 2019; Atlantis Press: Yogyakarta, Indonesia, 2020. [Google Scholar]
- Fernández-Manteca, M.G.; García García, B.; Gómez-Galdós, C.; Mirapeix, J.; Arniz-Mateos, R.; García-Escárzaga, A.; Gutiérrez-Zugasti, I.; Algorri, J.F.; López-Higuera, J.M.; Ocampo-Sosa, A.A.; et al. Structural Pattern Analysis in Patella Vulgata Shells Using Raman Imaging. Appl. Sci. 2025, 15, 5180. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Zheng, Z.; Jiang, L.; Yang, Y.; Zhao, L.; Su, W. Density Functional Theoretical Analysis of the Molecular Structural Effects on Raman Spectra of β-Carotene and Lycopene. Chin. J. Chem. 2012, 30, 2573–2580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Asensio, A.; Fernández-Manteca, M.G.; Cuenca-Solana, D.; Gutiérrez-Zugasti, I.; García-Escárzaga, A.; Mirapeix, J.; López-Higuera, J.M.; Rodríguez-Cobo, L.; Cobo, A. Predicting the Color of Archaeological Littorina obtusata/fabalis Shells Using Raman Spectroscopy and Clustering Algorithms. Chemosensors 2025, 13, 232. https://doi.org/10.3390/chemosensors13070232
Perez-Asensio A, Fernández-Manteca MG, Cuenca-Solana D, Gutiérrez-Zugasti I, García-Escárzaga A, Mirapeix J, López-Higuera JM, Rodríguez-Cobo L, Cobo A. Predicting the Color of Archaeological Littorina obtusata/fabalis Shells Using Raman Spectroscopy and Clustering Algorithms. Chemosensors. 2025; 13(7):232. https://doi.org/10.3390/chemosensors13070232
Chicago/Turabian StylePerez-Asensio, Andrea, María Gabriela Fernández-Manteca, David Cuenca-Solana, Igor Gutiérrez-Zugasti, Asier García-Escárzaga, Jesús Mirapeix, José Miguel López-Higuera, Luis Rodríguez-Cobo, and Adolfo Cobo. 2025. "Predicting the Color of Archaeological Littorina obtusata/fabalis Shells Using Raman Spectroscopy and Clustering Algorithms" Chemosensors 13, no. 7: 232. https://doi.org/10.3390/chemosensors13070232
APA StylePerez-Asensio, A., Fernández-Manteca, M. G., Cuenca-Solana, D., Gutiérrez-Zugasti, I., García-Escárzaga, A., Mirapeix, J., López-Higuera, J. M., Rodríguez-Cobo, L., & Cobo, A. (2025). Predicting the Color of Archaeological Littorina obtusata/fabalis Shells Using Raman Spectroscopy and Clustering Algorithms. Chemosensors, 13(7), 232. https://doi.org/10.3390/chemosensors13070232