Modeling of Chemiresistive Gas Sensors: From Microscopic Reception and Transduction Processes to Macroscopic Sensing Behaviors
Abstract
:1. Introduction
2. Reception Process
2.1. Density Functional Theory (DFT)
2.2. Molecular Dynamics (MD)
2.3. DFT + MD & Ab Initio Molecular Dynamics (AIMD)
2.4. Monte Carlo (MC)
3. Transduction Process
3.1. Band-Bending-Based Theoretical Models
3.2. Power Law
4. Entire Process
4.1. Analytical Models
4.2. Finite Element Method (FEM)
5. Model Comparisons
6. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density functional theory |
MD | Molecular dynamics |
AIMD | ab initio molecular dynamics |
MC | Monte Carlo |
FEM | Finite element method |
MOS | Metal oxide semiconductors |
RDF | Radial distribution function |
ZnONT | Zinc oxide nanotube |
ELF | Electronic localization functions |
GCMC | Grand Canonical Monte Carlo |
KMC | Kinetic Monte Carlo |
SWCNTs | Single-walled carbon nanotubes |
HAL | Hole accumulation layer |
FET | Field-effect transistor |
LOD | Limit of detection |
ML | Machine learning |
References
- Wu, P.; Li, Y.; Yang, A.; Tan, X.; Chu, J.; Zhang, Y.; Yan, Y.; Tang, J.; Yuan, H.; Zhang, X.; et al. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens. 2024, 9, 2728–2776. [Google Scholar] [CrossRef]
- Shen, Q.; Xie, X.; Peng, M.; Sun, N.; Shao, H.; Zheng, H.; Wen, Z.; Sun, X. Self-Powered Vehicle Emission Testing System Based on Coupling of Triboelectric and Chemoresistive Effects. Adv. Funct. Mater. 2018, 28, 1703420. [Google Scholar] [CrossRef]
- Jeong, S.; Moon, Y.K.; Kim, T.; Park, S.; Kim, K.B.; Kang, Y.C.; Lee, J. A New Strategy for Detecting Plant Hormone Ethylene Using Oxide Semiconductor Chemiresistors: Exceptional Gas Selectivity and Response Tailored by Nanoscale Cr2O3 Catalytic Overlayer. Adv. Sci. 2020, 7, 1903093. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Chuang, M.-Y.; Zan, H.-W.; Meng, H.-F.; Lu, C.-J.; Yeh, P.-H.; Chen, J.-N. One-Minute Fish Freshness Evaluation by Testing the Volatile Amine Gas with an Ultrasensitive Porous-Electrode-Capped Organic Gas Sensor System. ACS Sens. 2017, 2, 531–539. [Google Scholar] [CrossRef]
- Güder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T.J.; Whitesides, G.M. Paper-Based Electrical Respiration Sensor. Angew. Chem. Int. Ed. 2016, 55, 5727–5732. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, N.M.; Ahmed, F.; Saber, O.; Kumar, S. Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors. Chemosensors 2022, 10, 338. [Google Scholar] [CrossRef]
- Zhao, T.; Song, Z.; Wu, C.; Li, Y.; Li, H.; Wei, Y.; Yao, S.; Xiao, M.; Zhao, M.; Cui, B. Advancements in Cobalt-based Oxide Catalysts for Soot Oxidation: Enhancing Catalytic Performance through Modification and Morphology Control. Smart Mol. 2024, 2, e20240024. [Google Scholar] [CrossRef]
- Naganaboina, V.R.; Singh, S.G. Chemiresistive Gas Sensors: From Novel Gas-Sensing Materials to Electrode Structure. Chem. Phys. Rev. 2023, 4, 021306. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M.I. Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review. Sensor 2021, 21, 2877. [Google Scholar] [CrossRef]
- Najafi, P.; Ghaemi, A. Chemiresistor Gas Sensors: Design, Challenges, and Strategies: A Comprehensive Review. Chem. Eng. J. 2024, 498, 154999. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensor 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zeng, W.; Li, Y. Metal Oxide Gas Sensors for Detecting NO2 in Industrial Exhaust Gas: Recent Developments. Sens. Actuators B 2022, 359, 131579. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L. Accurate First-Principles Simulation for the Response of 2D Chemiresistive Gas Sensors. Npj Comput. Mater. 2024, 10, 138. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sens. Actuators B 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.; Xu, H.; Wang, D.; Li, G. Construction of 2D TiO2@MoS2 Heterojunction Nanosheets for Efficient Toluene Gas Detection. Chemosensors 2025, 13, 154. [Google Scholar] [CrossRef]
- Kim, T.; Lee, T.H.; Park, S.Y.; Eom, T.H.; Cho, I.; Kim, Y.; Kim, C.; Lee, S.A.; Choi, M.-J.; Suh, J.M.; et al. Drastic Gas Sensing Selectivity in 2-Dimensional MoS2 Nanoflakes by Noble Metal Decoration. ACS Nano 2023, 17, 4404–4413. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Tian, S.; Zhu, J.; Yang, Y.; Shi, J.; Yu, T.; Yuan, C. High Selectivity of Sulfur-Doped SnO2 in NO2 Detection at Lower Operating Temperatures. Nanoscale 2018, 10, 20761–20771. [Google Scholar] [CrossRef]
- Laera, A.M.; Penza, M. Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature. Chemosensors 2024, 12, 78. [Google Scholar] [CrossRef]
- Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Nematov, S.; Sberveglieri, G. Investigation of Reduced Graphene Oxide and a Nb-Doped TiO2 Nanotube Hybrid Structure to Improve the Gas-Sensing Response and Selectivity. ACS Sens. 2019, 4, 2094–2100. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; He, Z.; Zhang, W.; Du, Y.; Li, X.; Wang, S.; Zhao, J.; Song, Y.-Y.; Gao, Z. Pd Nanoclusters-Sensitized MIL-125/TiO2 Nanochannel Arrays for Sensitive and Humidity-Resistant Formaldehyde Detection at Room Temperature. ACS Sens. 2024, 9, 4166–4175. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, C.; Meng, F. Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High-Performance Formaldehyde Detection: A Review. Chemosensors 2021, 9, 179. [Google Scholar] [CrossRef]
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured Metal Oxide Semiconductor-Based Gas Sensors: A Comprehensive Review. Sens. Actuators A 2022, 341, 113578. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Cai, Y.; Zhao, J.; Gao, Z.; Song, Y.-Y. The Challenges and Opportunities for TiO2 Nanostructures in Gas Sensing. ACS Sens. 2024, 9, 1644–1655. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, Y.; Liu, H. Room-Temperature Semiconductor Gas Sensors: Challenges and Opportunities. ACS Sens. 2022, 7, 3582–3597. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, J.; Zou, Y.; Li, G.; Xu, H.; Sysoev, V.V.; Cheng, X.; Deng, Y. Modeling Interfacial Interaction between Gas Molecules and Semiconductor Metal Oxides: A New View Angle on Gas Sensing. Adv. Sci. 2022, 9, 2203594. [Google Scholar] [CrossRef]
- Liu, H.-H.; Huang, T.-E.; Yen, T.-Y.; Chang, Y.-C.; Hung, K.-M.; Lo, K.-Y. Gas Sensor Mechanism Based on Boltzmann Statistics and Transport Theory: Assessing the Impact of Gas Dynamics. Sens. Actuators B 2024, 418, 136255. [Google Scholar] [CrossRef]
- Wang, J.; Li, G. Full-scale Modeling of Chemical Experiments. Smart Mol. 2024, 2, e20230010. [Google Scholar] [CrossRef]
- Guarino, R.; Mo, F.; Ardesi, Y.; Gaiardo, A.; Tonezzer, M.; Guarino, S.; Piccinini, G. Modelling Electronic Transport in Monocrystalline Metal Oxide Gas Sensors: From the Surface Kinetics to the Experimental Response. Sens. Actuators B 2022, 373, 132646. [Google Scholar] [CrossRef]
- Fort, A.; Mugnaini, M.; Rocchi, S.; Vignoli, V.; Comini, E.; Faglia, G.; Ponzoni, A. Metal-Oxide Nanowire Sensors for CO Detection: Characterization and Modeling. Sens. Actuators B 2010, 148, 283–291. [Google Scholar] [CrossRef]
- Kumar, A.; Punetha, D.; Pandey, S.K. Computational Modeling and Analysis of a Chemical Gas Sensor Utilizing WO3 Thin Films for NO2 Detection. J. Comput. Electron. 2023, 22, 760–767. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal Oxide-Based Gas Sensor Research: How To? Sens. Actuators B 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Kang, W.; Deng, N.; Pan, Y.; Sun, W.; Ni, J.; Kang, X. TiO2 Gas Sensors Combining Experimental and DFT Calculations: A Review. Nanomaterials 2022, 12, 3611. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Song, J.; Xie, Y.; Ma, Y.; Hu, H.; Li, H.; Zhang, L.; Lawrie, C.H. DFT Calculation for Organic Semiconductor-Based Gas Sensors: Sensing Mechanism, Dynamic Response and Sensing Materials. Chin. Chem. Lett. 2025, 36, 110906. [Google Scholar] [CrossRef]
- Spencer, M.J.S. Gas Sensing Applications of 1D-Nanostructured Zinc Oxide: Insights from Density Functional Theory Calculations. Prog. Mater Sci. 2012, 57, 437–486. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Williams, D.E. Semiconducting Oxides as Gas-Sensitive Resistors. Sens. Actuators B 1999, 57, 1–16. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K.; Sawada, C. Contribution of Electron Tunneling Transport in Semiconductor Gas Sensor. Thin Solid Films 2007, 515, 8302–8309. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Receptor Function and Response of Semiconductor Gas Sensor. J. Sens. 2009, 2009, 875704. [Google Scholar] [CrossRef]
- Yamazoe, N.; Suematsu, K.; Shimanoe, K. Extension of Receptor Function Theory to Include Two Types of Adsorbed Oxygen for Oxide Semiconductor Gas Sensors. Sens. Actuators B 2012, 163, 128–135. [Google Scholar] [CrossRef]
- Brinzari, V.; Korotcenkov, G. Kinetic Approach to Receptor Function in Chemiresistive Gas Sensor Modeling of Tin Dioxide. Steady State Consideration. Sens. Actuators B 2018, 259, 443–454. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.; Zeng, D.; Xie, C. Metal-Oxide-Semiconductor Based Gas Sensors: Screening, Preparation, and Integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. [Google Scholar] [CrossRef]
- Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.-L.; Hasan, T.; Huang, X.; Huang, W. Printed Gas Sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef]
- Degler, D.; Weimar, U.; Barsan, N. Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Ou, L.-X.; Mao, L.-W.; Wu, X.-Y.; Liu, Y.-P.; Lu, H.-L. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. Nano Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Staerz, A.; Weimar, U.; Barsan, N. Current State of Knowledge on the Metal Oxide Based Gas Sensing Mechanism. Sens. Actuators B 2022, 358, 131531. [Google Scholar] [CrossRef]
- Brink, D.M. Density Functional Theory. Nucl. Phys. News 2002, 12, 27–32. [Google Scholar] [CrossRef]
- Cui, S.; Pu, H.; Wells, S.A.; Wen, Z.; Mao, S.; Chang, J.; Hersam, M.C.; Chen, J. Ultrahigh Sensitivity and Layer-Dependent Sensing Performance of Phosphorene-Based Gas Sensors. Nat. Commun. 2015, 6, 8632. [Google Scholar] [CrossRef]
- Bai, S.; Guo, T.; Zhao, Y.; Luo, R.; Li, D.; Chen, A.; Liu, C.C. Mechanism Enhancing Gas Sensing and First-Principle Calculations of Al-Doped ZnO Nanostructures. J. Mater. Chem. A 2013, 1, 11335. [Google Scholar] [CrossRef]
- Xia, S.-Y.; Tao, L.-Q.; Jiang, T.; Sun, H.; Li, J. Rh-Doped h-BN Monolayer as a High Sensitivity SF6 Decomposed Gases Sensor: A DFT Study. Appl. Surf. Sci. 2021, 536, 147965. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Q.; Jia, L.; Cui, X.; Zeng, W. The Gas-Sensing Mechanism of Pt3 Cluster Doped SnS2 Monolayer for SF6 Decomposition: A DFT Study. Appl. Surf. Sci. 2022, 597, 153693. [Google Scholar] [CrossRef]
- Jain, A.; Parambil, A.M.; Panda, S. Screen-Printed PANI/MoS2-Based Flexible Gas Sensor for Sub-ppm NH3 Detection: Experimental and DFT Investigations. Sens. Actuators B Chem. 2025, 432, 137453. [Google Scholar] [CrossRef]
- Perilli, D.; Chesnyak, V.; Ugolotti, A.; Panighel, M.; Vigneri, S.; Armillotta, F.; Naderasli, P.; Stredansky, M.; Schied, M.; Lacovig, P.; et al. CO Adsorption on a Single-Atom Catalyst Stably Embedded in Graphene. Angew. Chem. Int. Ed. 2025, 64, e202421757. [Google Scholar] [CrossRef]
- Perilli, D.; Freddi, S.; Zanotti, M.; Drera, G.; Casotto, A.; Pagliara, S.; Schio, L.; Sangaletti, L.; Di Valentin, C. Design of Highly Responsive Chemiresistor-Based Sensors by Interfacing NiPc with Graphene. Commun. Mater. 2024, 5, 254. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Liao, N.; Zhou, H.; Zheng, B.; Xue, W. Silicon Oxycarbide-Derived Carbon as Potential NO2 Gas Sensor: A First Principles’ Study. IEEE Electron Device Lett. 2018, 39, 1760–1763. [Google Scholar] [CrossRef]
- Perilli, D.; Rizzi, A.M.; Di Valentin, C. Tailoring Metal Phthalocyanine/Graphene Interfaces for Highly Sensitive Gas Sensors. Nanomaterials 2025, 15, 691. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, J.; Zeng, W.; Zhou, Q. Adsorption and Sensing Performances of MoTe2 Monolayers Doped with Pd, Ni, and Pt for SO2 and NH3: A DFT Investigation. Langmuir 2023, 39, 4125–4139. [Google Scholar] [CrossRef]
- Hou, T.; Zhou, Q.; Zeng, W. Cr3-Doped GaSe Monolayer as an Innovative Sensor and Scavenger for Cl2, NO, and SO2: A DFT Study. J. Mater. Res. Technol. 2022, 19, 4463–4472. [Google Scholar] [CrossRef]
- Wang, L.; Chai, R.; Lou, Z.; Shen, G. Highly Sensitive Hybrid Nanofiber-Based Room-Temperature CO Sensors: Experiments and Density Functional Theory Simulations. Nano Res. 2018, 11, 1029–1037. [Google Scholar] [CrossRef]
- Wei, W.; Li, W.; Wang, L. High-Selective Sensitive NH3 Gas Sensor: A Density Functional Theory Study. Sens. Actuators B 2018, 263, 502–507. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, T.; Wang, Z.; Tsukimoto, S.; Saito, M.; Ikuhara, Y. Oxygen Adsorption on Anatase TiO2 (101) and (001) Surfaces from First Principles. Mater. Trans. 2010, 51, 171–175. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W.; Li, Y. A Non-Oxygen Adsorption Mechanism for Hydrogen Detection of Nanostructured SnO2 Based Sensors. Mater. Res. Bull. 2019, 109, 108–116. [Google Scholar] [CrossRef]
- Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang, Z. Direct CO Oxidation by Lattice Oxygen on the SnO2 (110) Surface: A DFT Study. Phys. Chem. Chem. Phys. 2014, 16, 12488–12494. [Google Scholar] [CrossRef]
- Proykova, A. Molecular Dynamics Simulation of Gas Adsorption and Absorption in Nanotubes. In NATO Science Series II: Mathematics, Physics and Chemistry; Popov, V.N., Lambin, P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; Volume 222, pp. 187–207. [Google Scholar]
- Evans, J.D.; Coudert, F.-X. Challenges and Opportunities of Molecular Simulations for Negative Gas Adsorption. Acc. Mater. Res. 2024, 5, 640–647. [Google Scholar] [CrossRef]
- Neimark, A.V.; Ravikovitch, P.I. Calibration of Pore Volume in Adsorption Experiments and Theoretical Models. Langmuir 1997, 13, 5148–5160. [Google Scholar] [CrossRef]
- Předota, M.; Machesky, M.L.; Wesolowski, D.J.; Cummings, P.T. Electric Double Layer at the Rutile (110) Surface. 4. Effect of Temperature and pH on the Adsorption and Dynamics of Ions. J. Phys. Chem. C 2013, 117, 22852–22866. [Google Scholar] [CrossRef]
- Min, X.; Qin, W.; Zhang, X.; Fan, J.; Zhu, X.; Zhu, Y.; Wang, X.; Qiu, J.; Wang, Y.; Hu, X.; et al. An Ultra-High Sensitive Ethanol Sensor through Amending Surface-Functionalized Groups by Novel Acidic Synthesis Methods. Sens. Actuators B 2021, 347, 130654. [Google Scholar] [CrossRef]
- Geng, X.; Lu, P.; Zhang, C.; Lahem, D.; Olivier, M.-G.; Debliquy, M. Room-Temperature NO2 Gas Sensors Based on rGO@ZnO1-x Composites: Experiments and Molecular Dynamics Simulation. Sens. Actuators B 2019, 282, 690–702. [Google Scholar] [CrossRef]
- Huang, S.; Panes-Ruiz, L.A.; Croy, A.; Löffler, M.; Khavrus, V.; Bezugly, V.; Cuniberti, G. Highly Sensitive Room Temperature Ammonia Gas Sensor Using Pristine Graphene: The Role of Biocompatible Stabilizer. Carbon 2021, 173, 262–270. [Google Scholar] [CrossRef]
- Shahabi, M.; Raissi, H. Assessment of DFT Calculations and Molecular Dynamics Simulation on the Application of Zinc Oxide Nanotube as Hydrogen Cyanide Gas Sensor. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1878–1885. [Google Scholar] [CrossRef]
- Boboriko, N.E.; Dzichenka, Y.U. Molecular Dynamics Simulation as a Tool for Prediction of the Properties of TiO2 and TiO2:MoO3 Based Chemical Gas Sensors. J. Alloys Compd. 2021, 855, 157490. [Google Scholar] [CrossRef]
- Tan, X.; Na, Z.; Zhuo, R.; Wang, D.; Zhang, Y.; Wu, P. Investigation of CrB as a Potential Gas Sensor for Fault Detection in Eco-Friendly Power Equipment. Chemosensors 2023, 11, 371. [Google Scholar] [CrossRef]
- Wang, M.; Zeng, Q.; Cao, J.; Chen, D.; Zhang, Y.; Liu, J.; Jia, P. Highly Sensitive Gas Sensor for Detection of Air Decomposition Pollutant (CO, NOx): Popular Metal Oxide (ZnO, TiO2)-Doped MoS2 Surface. ACS Appl. Mater. Interfaces 2024, 16, 3674–3684. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Miao, Q.; Wang, Y.; Yang, H. 2D NbS2 Monolayer as a Gas Sensor for the Detection of Nitrogen-Containing Toxic Gases. Surf. Interfaces 2023, 42, 103336. [Google Scholar] [CrossRef]
- Kelly, E.; Seth, M.; Ziegler, T. Calculation of Free Energy Profiles for Elementary Bimolecular Reactions by Ab Initio Molecular Dynamics: Sampling Methods and Thermostat Considerations. J. Phys. Chem. A 2004, 108, 2167–2180. [Google Scholar] [CrossRef]
- Bermudez, V.M. Computational Study of the Adsorption of NO2 on Monolayer MoS2. J. Phys. Chem. C 2020, 124, 15275–15284. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Jin, L.; Zhang, B.; Zhang, H.; Zhu, M.; Yang, W. Self-Assembly Gridding α-MoO3 Nanobelts for Highly Toxic H2S Gas Sensors. Sens. Actuators B 2016, 237, 350–357. [Google Scholar] [CrossRef]
- Choudhuri, I.; Sadhukhan, D.; Garg, P.; Mahata, A.; Pathak, B. Lewis Acid–Base Adducts for Improving the Selectivity and Sensitivity of Graphene Based Gas Sensors. ACS Sens. 2016, 1, 451–459. [Google Scholar] [CrossRef]
- Rhrissi, I.; Bouhmouche, A.; Abdelrhafor, I.; Moubah, R. Strain-Engineered 2D h-BC2N Monolayer as a Potential Gas Sensor with Exceptional Sensitivity and Selectivity for NO2 Gas Detection. Mater. Sci. Semicond. Process 2024, 182, 108707. [Google Scholar] [CrossRef]
- Kim, I.M.; Landau, D.P. Monte Carlo Simulation of a Lattice Gas Model of Multilayer Adsorption. Surf. Sci. 1981, 110, 415–422. [Google Scholar] [CrossRef]
- Prasetyo, L.; Horikawa, T.; Phadungbut, P.; Tan, S.; Do, D.D.; Nicholson, D. A GCMC Simulation and Experimental Study of Krypton Adsorption/Desorption Hysteresis on a Graphite Surface. J. Colloid Interface Sci. 2016, 478, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Prasetyo, L.; Zeng, Y.; Do, D.D.; Nicholson, D. On the Consistency of NVT, NPT, μVT and Gibbs Ensembles in the Framework of Kinetic Monte Carlo—Fluid Phase Equilibria and Adsorption of Pure Component Systems. Chem. Eng. J. 2017, 316, 243–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Hao, F.; Xiao, H.; Zhang, S.; Chen, X. CO2 Adsorption and Separation from Natural Gason Phosphorene Surface: Combining DFT and GCMC Calculations. Appl. Surf. Sci. 2017, 397, 206–212. [Google Scholar] [CrossRef]
- Fichthorn, A.; Ziff, M. Monte Carlo Simulation of the Adsorption of CO on Pt(111): Thermodynamic Considerations for the Surface Configuration of Adsorbed Species. Surf. Sci. 1991, 243, 273–294. [Google Scholar] [CrossRef]
- Zeitler, T.R.; Allendorf, M.D.; Greathouse, J.A. Grand Canonical Monte Carlo Simulation of Low-Pressure Methane Adsorption in Nanoporous Framework Materials for Sensing Applications. J. Phys. Chem. C 2012, 116, 3492–3502. [Google Scholar] [CrossRef]
- Liu, D.-J.; Evans, J.W. Realistic Multisite Lattice-Gas Modeling and KMC Simulation of Catalytic Surface Reactions: Kinetics and Multiscale Spatial Behavior for CO-oxidation on Metal (100) Surfaces. Prog. Surf. Sci. 2013, 88, 393–521. [Google Scholar] [CrossRef]
- Gordijo, J.S.; Rodrigues, N.M.; Martins, J.B.L. CO2 and CO Capture on the ZnO Surface: A GCMC and Electronic Structure Study. ACS Omega 2023, 8, 46830–46840. [Google Scholar] [CrossRef]
- Lithoxoos, G.P.; Labropoulos, A.; Peristeras, L.D.; Kanellopoulos, N.; Samios, J.; Economou, I.G. Adsorption of N2, CH4, CO and CO2 Gases in Single Walled Carbon Nanotubes: A Combined Experimental and Monte Carlo Molecular Simulation Study. J. Supercrit. Fluids 2010, 55, 510–523. [Google Scholar] [CrossRef]
- Bahmanzadgan, F.; Ghaemi, A.; Qasemnazhand, M.; Molaee, M. Simulation of Gas Adsorption on Single-Walled Carbon Nanotubes. Sci. Rep. 2025, 15, 15595. [Google Scholar] [CrossRef]
- Kowalczyk, P. Molecular Insight into the High Selectivity of Double-Walled Carbon Nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 2784. [Google Scholar] [CrossRef]
- Skafidas, P.D.; Vlachos, D.S.; Avaritsiotis, J.N. Modelling and Simulation of Tin Oxide Based Thick-Film Gas Sensors Using Monte Carlo Techniques. Sens. Actuators B 1994, 19, 724–728. [Google Scholar] [CrossRef]
- Pulkkinen, U.; Rantala, T.T.; Rantala, T.S.; Lantto, V. Kinetic Monte Carlo Simulation of Oxygen Exchange of SnO2 Surface. J. Mol. Catal. A Chem. 2001, 166, 15–21. [Google Scholar] [CrossRef]
- Rantala, T.S.; Lantto, V.; Rantala, T.T. Rate Equation Simulation of the Height of Schottky Barriers at the Surface of Oxidic Semiconductors. Sens. Actuators B 1993, 13, 234–237. [Google Scholar] [CrossRef]
- Ghosh, S.; Nath, P.; Sanyal, D. Adsorption and Evolution of N2 Molecules over ZnO Monolayer: A Combined DFT and Kinetic Monte-Carlo Insight. Adsorption 2024, 30, 2255–2265. [Google Scholar] [CrossRef]
- Le, T.N.-M.; Chiu, C.; Kuo, J.-L. From the Perspectives of DFT Calculations, Thermodynamic Modeling, and Kinetic Monte Carlo Simulations: The Interaction between Hydrogen and Sc2C Monolayers. Phys. Chem. Chem. Phys. 2020, 22, 4387–4401. [Google Scholar] [CrossRef]
- Yamazoe, N. New Approaches for Improving Semiconductor Gas Sensors. Sens. Actuators B 1991, 5, 7–19. [Google Scholar] [CrossRef]
- Bârsan, N.; Huebner, M.; Weimar, U. Conduction Mechanism in Semiconducting Metal Oxide Sensing Films: Impact on Transduction. In Semiconductor Gas Sensors, 2nd ed.; Woodhead Publishing Series in Electronic and Optical Materials: Cambridge, UK, 2020; pp. 39–69. [Google Scholar]
- Bârsan, N.; Hübner, M.; Weimar, U. Conduction Mechanisms in SnO2 Based Polycrystalline Thick Film Gas Sensors Exposed to CO and H2 in Different Oxygen Backgrounds. Sens. Actuators B 2011, 157, 510–517. [Google Scholar] [CrossRef]
- Williams, D.E.; Moseley, P.T. Dopant Effects on the Response of Gas-Sensitive Resistors Utilising Semiconducting Oxides. J. Mater. Chem. 1991, 1, 809. [Google Scholar] [CrossRef]
- Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J.S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R.M.; et al. MoS2 P-Type Transistors and Diodes Enabled by High Work Function MoOx Contacts. Nano Lett. 2014, 14, 1337–1342. [Google Scholar] [CrossRef]
- Nah, J.; Kumar, S.B.; Fang, H.; Chen, Y.-Z.; Plis, E.; Chueh, Y.-L.; Krishna, S.; Guo, J.; Javey, A. Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors. J. Phys. Chem. C 2012, 116, 9750–9754. [Google Scholar] [CrossRef]
- Cui, X.; Freitag, M.; Martel, R.; Brus, L.; Avouris, P. Controlling Energy-Level Alignments at Carbon Nanotube/Au Contacts. Nano Lett. 2003, 3, 783–787. [Google Scholar] [CrossRef]
- Choi, S.-J.; Kim, I.-D. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electron. Mater. Lett. 2018, 14, 221–260. [Google Scholar] [CrossRef]
- Liu, B.; Chen, L.; Liu, G.; Abbas, A.N.; Fathi, M.; Zhou, C. High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano 2014, 8, 5304–5314. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kang, S.-K.; Oh, N.-C.; Lee, H.-D.; Lee, S.-M.; Park, J.; Kim, H. Improved Sensitivity in Schottky Contacted Two-Dimensional MoS2 Gas Sensor. ACS Appl. Mater. Interfaces 2019, 11, 38902–38909. [Google Scholar] [CrossRef]
- Jahangir, I.; Uddin, M.A.; Singh, A.K.; Chandrashekhar, M.; Koley, G. Graphene/MoS2 Thin Film Based Two Dimensional Barristors with Tunable Schottky Barrier for Sensing Applications. IEEE Sens. J. 2021, 21, 26549–26555. [Google Scholar] [CrossRef]
- Suman, P.H.; Junker, B.; Weimar, U.; Orlandi, M.O.; Barsan, N. Modeling the Conduction Mechanism in Chemoresistive Gas Sensor Based on Single-Crystalline Sn3O4 Nanobelts: A Phenomenological In Operando Investigation. ACS Sens. 2024, 9, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, L.; Ma, J.; Ren, Y.; Cheng, X.; Zhu, Y.; Zhao, D.; Elzatahry, A.A.; Alghamdi, A.; Deng, Y. Ordered Mesoporous Tin Oxide Semiconductors with Large Pores and Crystallized Walls for High-Performance Gas Sensing. ACS Appl. Mater. Interfaces 2018, 10, 1871–1880. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Shi, L.; Li, G.-D.; Sun, L.; Zou, X. Revealing the Relationship between Energy Level and Gas Sensing Performance in Heteroatom-Doped Semiconducting Nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 29795–29804. [Google Scholar] [CrossRef]
- Li, T.; Zeng, W.; Long, H.; Wang, Z. Nanosheet-Assembled Hierarchical SnO2 Nanostructures for Efficient Gas-Sensing Applications. Sens. Actuators B 2016, 231, 120–128. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, Y.; Duan, G. Self-Assembly of Cu2O Monolayer Colloidal Particle Film Allows the Fabrication of CuO Sensor with Superselectivity for Hydrogen Sulfide. ACS Appl. Mater. Interfaces 2019, 11, 8164–8174. [Google Scholar] [CrossRef]
- Nakate, U.T.; Ahmad, R.; Patil, P.; Yu, Y.T.; Hahn, Y.-B. Ultra Thin NiO Nanosheets for High Performance Hydrogen Gas Sensor Device. Appl. Surf. Sci. 2020, 506, 144971. [Google Scholar] [CrossRef]
- Simion, C.E.; Schipani, F.; Papadogianni, A.; Stanoiu, A.; Budde, M.; Oprea, A.; Weimar, U.; Bierwagen, O.; Barsan, N. Conductance Model for Single-Crystalline/Compact Metal Oxide Gas-Sensing Layers in the Nondegenerate Limit: Example of Epitaxial SnO2 (101). ACS Sens. 2019, 4, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Oprea, A.; Moretton, E.; Bârsan, N.; Becker, W.J.; Wöllenstein, J.; Weimar, U. Conduction Model of SnO2 Thin Films Based on Conductance and Hall Effect Measurements. J. Appl. Phys. 2006, 100, 033716. [Google Scholar] [CrossRef]
- Hübner, M.; Bârsan, N.; Weimar, U. Influences of Al, Pd and Pt Additives on the Conduction Mechanism as Well as the Surface and Bulk Properties of SnO2 Based Polycrystalline Thick Film Gas Sensors. Sens. Actuators B 2012, 171–172, 172–180. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors. J. Electrochem. Soc. 2008, 155, J85. [Google Scholar] [CrossRef]
- Rebholz, J.; Bonanati, P.; Jaeschke, C.; Hübner, M.; Mädler, L.; Weimar, U.; Barsan, N. Conduction Mechanism in Undoped and Antimony Doped SnO2 Based FSP Gas Sensors. Sens. Actuators B 2013, 188, 631–636. [Google Scholar] [CrossRef]
- Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of Sensing and Transduction for P-Type Semiconducting Metal Oxide Based Gas Sensors. J. Electroceram. 2010, 25, 11–19. [Google Scholar] [CrossRef]
- Montmeat, P.; Marchand, J.-C.; Lalauze, R.; Viricelle, J.-P.; Tournier, G.; Pijolat, C. Physico-Chemical Contribution of Gold Metallic Particles to the Action of Oxygen on Tin Dioxide Sensors. Sens. Actuators B 2003, 95, 83–89. [Google Scholar] [CrossRef]
- Montmeat, P.; Lalauze, R.; Viricelle, J.-P.; Tournier, G.; Pijolat, C. Model of the Thickness Effect of SnO2 Thick Film on the Detection Properties. Sens. Actuators B 2004, 103, 84–90. [Google Scholar] [CrossRef]
- Andrei, P.; Fields, L.L.; Zheng, J.P.; Cheng, Y.; Xiong, P. Modeling and Simulation of Single Nanobelt SnO2 Gas Sensors with FET Structure. Sens. Actuators B 2007, 128, 226–234. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Shin, J.; Jesse, S.; Geohegan, D.; Baddorf, A.P.; Lilach, Y.; Moskovits, M.; Kolmakov, A. Electronic Transport Imaging in a Multiwire SnO2 Chemical Field-Effect Transistor Device. J. Appl. Phys. 2005, 98, 044503. [Google Scholar] [CrossRef]
- Schmid, W.; Bârsan, N.; Weimar, U. Sensing of Hydrocarbons and CO in Low Oxygen Conditions with Tin Dioxide Sensors: Possible Conversion Paths. Sens. Actuators B 2004, 103, 362–368. [Google Scholar] [CrossRef]
- Zhao, L.; Gong, X.; Tao, W.; Wang, T.; Sun, P.; Liu, F.; Liang, X.; Liu, F.; Wang, Y.; Lu, G. Understanding the Increasing Trend of Sensor Signal with Decreasing Oxygen Partial Pressure by a Sensing-Reaction Model Based on O2– Species. ACS Sens. 2022, 7, 1095–1104. [Google Scholar] [CrossRef]
- Clifford, P.K.; Tuma, D.T. Characteristics of Semiconductor Gas Sensors I. Steady State Gas Response. Sens. Actuators 1982, 3, 233–254. [Google Scholar] [CrossRef]
- Clifford, P.K.; Tuma, D.T. Characteristics of Semiconductor Gas Sensors II. Transient Response to Temperature Change. Sens. Actuators 1982, 3, 255–281. [Google Scholar] [CrossRef]
- Morrison, S.R. Mechanism of Semiconductor Gas Sensor Operation. Sens. Actuators 1987, 11, 283–287. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theory of Power Laws for Semiconductor Gas Sensors. Sens. Actuators B 2008, 128, 566–573. [Google Scholar] [CrossRef]
- Hua, Z.; Li, Y.; Zeng, Y.; Wu, Y. A Theoretical Investigation of the Power-Law Response of Metal Oxide Semiconductor Gas Sensors Ι: Schottky Barrier Control. Sens. Actuators B 2018, 255, 1911–1919. [Google Scholar] [CrossRef]
- Hua, Z.; Qiu, Z.; Li, Y.; Zeng, Y.; Wu, Y.; Tian, X.; Wang, M.; Li, E. A Theoretical Investigation of the Power-Law Response of Metal Oxide Semiconductor Gas Sensors ΙI: Size and Shape Effects. Sens. Actuators B 2018, 255, 3541–3549. [Google Scholar] [CrossRef]
- Liu, J.; Gong, S.; Xia, J.; Quan, L.; Liu, H.; Zhou, D. The Sensor Response of Tin Oxide Thin Films to Different Gas Concentration and the Modification of the Gas Diffusion Theory. Sens. Actuators B 2009, 138, 289–295. [Google Scholar] [CrossRef]
- Kimura, Y.; Kimura, S.; Kojima, R.; Bitoh, M.; Abe, M.; Niwano, M. Micro-Scaled Hydrogen Gas Sensors with Patterned Anodic Titanium Oxide Nanotube Film. Sens. Actuators B 2013, 177, 1156–1160. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Li, X.; Ren, Y.; Deng, Y. High-Performance H2 Sensors with Selectively Hydrophobic Micro-Plate for Self-Aligned Upload of Pd Nanodots Modified Mesoporous In2O3 Sensing-Material. Sens. Actuators B 2018, 267, 83–92. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, W.; Liu, X.; Zhang, L.; Zheng, L.; Yang, C.; Pinna, N.; Zhang, J. Platinum Single Atoms on Tin Oxide Ultrathin Films for Extremely Sensitive Gas Detection. Mater. Horiz. 2020, 7, 1519–1527. [Google Scholar] [CrossRef]
- Gardner, J.W. A Diffusion-Reaction Model of Electrical Conduction in Tin Oxide Gas Sensors. Semicond. Sci. Technol. 1989, 4, 345–350. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Lal, P.; Dwivedi, R.; Srivastava, S.K. Sensing Mechanism in Tin Oxide-Based Thick-Film Gas Sensors. Sens. Actuators B 1994, 21, 213–218. [Google Scholar] [CrossRef]
- Lu, H.; Ma, W.; Gao, J.; Li, J. Diffusion-Reaction Theory for Conductance Response in Metal Oxide Gas Sensing Thin Films. Sens. Actuators B 2000, 66, 228–231. [Google Scholar] [CrossRef]
- Göpel, W.; Schierbaum, K.D. SnO2 Sensors: Current Status and Future Prospects. Sens. Actuators B 1995, 26, 1–12. [Google Scholar] [CrossRef]
- Chinh, N.D.; Hien, T.T.; Do Van, L.; Hieu, N.M.; Quang, N.D.; Lee, S.-M.; Kim, C.; Kim, D. Adsorption/Desorption Kinetics of Nitric Oxide on Zinc Oxide Nano Film Sensor Enhanced by Light Irradiation and Gold-Nanoparticles Decoration. Sens. Actuators B 2019, 281, 262–272. [Google Scholar] [CrossRef]
- Guarino, G. Finite Element Modeling and Simulation of Photoconductive and Ballistic Semiconductor Nanodevices. Ph.D. Thesis, University of Rochester, New York, NY, USA, 2010. [Google Scholar]
- Zimmerman, W.B.J. Multiphysics Modeling with Finite Element Methods. Series on Stability, Vibration and Control of Systems, Series A; World Scientific: Singapore, 2006; Volume 18. [Google Scholar]
- Gao, Z.; Mao, M.; Feng, H.; Lou, W.; Wang, Y.; Ma, T. Modelling and Systematic Investigation of Gas Sensing Utilizing Metal Oxide Semiconductors: Insights into Sensor Design Principles. Microsyst. Nanoeng. 2025; submitted. [Google Scholar]
- Yaghouti Niyat, F.; Shahrokh Abadi, M.H. COMSOL-Based Modeling and Simulation of SnO2/rGO Gas Sensor for Detection of NO2. Sci. Rep. 2018, 8, 2149. [Google Scholar] [CrossRef]
- Lo Sciuto, G.; Kałużyński, P.; Coco, S. 3D Finite Element Simulation Model of a Chemiresistor Gas Sensor Based on ZnO and Graft Comb Copolymer Integrated in a Gas Chamber. J. Mater. Sci. Mater. Electron. 2022, 33, 5037–5048. [Google Scholar] [CrossRef]
Processes | Models | Characteristics | Applications | |||
---|---|---|---|---|---|---|
Applicable Scales | Computational Complexity | Accuracy | Interpretability | |||
Reception Process | DFT | Atomic scale (Å–nm) | High | High (quantum-level detail) | High (physical meaning clear) | Charge transfer, orbital hybridization, adsorption energetics |
MD | Nanoscopic to mesoscopic (nm–μm) | Medium | Medium (limited by force fields) | Medium | Dynamic physisorption, temperature-dependent behavior | |
AIMD | Atomic scale, Short time domain | High | High | High | Real-time electronic evolution during adsorption | |
MC | Mesoscopic to macroscopic | Low to medium | Medium (parameter dependent) | Medium | Adsorption equilibrium (GCMC), kinetic evolution (KMC), system-level coverage predictions | |
Transduction Process | Band-bending-based theoretical models | Nanoscopic | High | High | Medium | Carrier modulation, depletion region estimation, resistance change mechanisms |
Power Law | Macroscopic | Low | Medium | Low | Concentration–response fitting, quick prediction, LOD estimation | |
Entire Process | Analytical Models | Nanoscopic to device scale | High | Medium to high | Medium | Process coupling, time-dependent response simulation |
FEM | Nanoscopic to system scale | Low | Medium to high | High (visualizable, modular) | Full sensor process simulation (gas flow, adsorption, transport, electrical response) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Mao, M.; Ma, J.; Han, J.; Feng, H.; Lou, W.; Wang, Y.; Ma, T. Modeling of Chemiresistive Gas Sensors: From Microscopic Reception and Transduction Processes to Macroscopic Sensing Behaviors. Chemosensors 2025, 13, 227. https://doi.org/10.3390/chemosensors13070227
Gao Z, Mao M, Ma J, Han J, Feng H, Lou W, Wang Y, Ma T. Modeling of Chemiresistive Gas Sensors: From Microscopic Reception and Transduction Processes to Macroscopic Sensing Behaviors. Chemosensors. 2025; 13(7):227. https://doi.org/10.3390/chemosensors13070227
Chicago/Turabian StyleGao, Zhiqiao, Menglei Mao, Jiuwu Ma, Jincheng Han, Hengzhen Feng, Wenzhong Lou, Yixin Wang, and Teng Ma. 2025. "Modeling of Chemiresistive Gas Sensors: From Microscopic Reception and Transduction Processes to Macroscopic Sensing Behaviors" Chemosensors 13, no. 7: 227. https://doi.org/10.3390/chemosensors13070227
APA StyleGao, Z., Mao, M., Ma, J., Han, J., Feng, H., Lou, W., Wang, Y., & Ma, T. (2025). Modeling of Chemiresistive Gas Sensors: From Microscopic Reception and Transduction Processes to Macroscopic Sensing Behaviors. Chemosensors, 13(7), 227. https://doi.org/10.3390/chemosensors13070227