Analysis of Ergothioneine Using Surface-Enhanced Raman Scattering: Detection in Mushrooms
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extraction of EGT from POS Fruiting Bodies
2.3. Nanoparticles Preparation and SERS Analyses
2.4. Fourier Transform Infrared Spectroscopy (FTIR)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanret, C. Sur Une Base Nouvelle Retiree Du Seigle Ergote, l’ergothioneine. Ann. Chim. Phys. 1909, 18, 114–124. [Google Scholar]
- Borodina, I.; Kenny, L.C.; McCarthy, C.M.; Paramasivan, K.; Pretorius, E.; Roberts, T.J.; Van Der Hoek, S.A.; Kell, D.B. The Biology of Ergothioneine, an Antioxidant Nutraceutical. Nutr. Res. Rev. 2020, 33, 190–217. [Google Scholar] [CrossRef] [PubMed]
- Cheah, I.K.; Halliwell, B. Ergothioneine, Recent Developments. Redox Biol. 2021, 42, 101868. [Google Scholar] [CrossRef]
- Gründemann, D. The Ergothioneine Transporter Controls and Indicates Ergothioneine Activity—A Review. Prev. Med. 2012, 54, S71–S74. [Google Scholar] [CrossRef] [PubMed]
- Cheah, I.K.; Halliwell, B. Ergothioneine; Antioxidant Potential, Physiological Function and Role in Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.D.; Snyder, S.H. The Unusual Amino Acid L-Ergothioneine Is a Physiologic Cytoprotectant. Cell Death Differ. 2010, 17, 1134–1140. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, Z.; Su, E.; Wang, L.; Sun, L.; Lei, P.; Xu, H.; Li, S. Recent Strategies for the Biosynthesis of Ergothioneine. J. Agric. Food Chem. 2021, 69, 13682–13690. [Google Scholar] [CrossRef]
- Tian, X.; Thorne, J.L.; Moore, J.B. Ergothioneine: An Underrecognised Dietary Micronutrient Required for Healthy Ageing? Br. J. Nutr. 2023, 129, 104–114. [Google Scholar] [CrossRef]
- Beelman, R.B.; Richie, J.P.; Phillips, A.T.; Kalaras, M.D.; Sun, D.; Duiker, S.W. Soil Disturbance Impact on Crop Ergothioneine Content Connects Soil and Human Health. Agronomy 2021, 11, 2278. [Google Scholar] [CrossRef]
- Carrara, J.E.; Lehotay, S.J.; Lightfield, A.R.; Sun, D.; Richie, J.P.; Smith, A.H.; Heller, W.P. Linking Soil Health to Human Health: Arbuscular Mycorrhizae Play a Key Role in Plant Uptake of the Antioxidant Ergothioneine from Soils. Plants People Planet 2023, 5, 449–458. [Google Scholar] [CrossRef]
- Bello, M.H.; Mogannam, J.C.; Morin, D.; Epstein, L. Endogenous Ergothioneine Is Required for Wild Type Levels of Conidiogenesis and Conidial Survival but Does Not Protect against 254 Nm UV-Induced Mutagenesis or Kill. Fungal Genet. Biol. 2014, 73, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Tsiantas, K.; Tsiaka, T.; Koutrotsios, G.; Siapi, E.; Zervakis, G.I.; Kalogeropoulos, N.; Zoumpoulakis, P. On the Identification and Quantification of Ergothioneine and Lovastatin in Various Mushroom Species: Assets and Challenges of Different Analytical Approaches. Molecules 2021, 26, 1832. [Google Scholar] [CrossRef]
- Dubost, N.J.; Beelman, R.B.; Peterson, D.; Royse, D.J. Identification and Quantification of Ergothioneine in Cultivated Mushrooms by Liquid Chromatography-Mass Spectroscopy. Int. J. Med. Mushrooms 2006, 8, 215–222. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Ho, K.-J.; Hsieh, Y.-J.; Wang, L.-T.; Mau, J.-L. Contents of Lovastatin, γ-Aminobutyric Acid and Ergothioneine in Mushroom Fruiting Bodies and Mycelia. LWT 2012, 47, 274–278. [Google Scholar] [CrossRef]
- Apparoo, Y.; Phan, C.W.; Kuppusamy, U.R.; Sabaratnam, V. Ergothioneine and Its Prospects as an Anti-Ageing Compound. Exp. Gerontol. 2022, 170, 111982. [Google Scholar] [CrossRef]
- Han, Y.; Tang, X.; Zhang, Y.; Hu, X.; Ren, L.-J. The Current Status of Biotechnological Production and the Application of a Novel Antioxidant Ergothioneine. Crit. Rev. Biotechnol. 2021, 41, 580–593. [Google Scholar] [CrossRef]
- Kitsanayanyong, L.; Ohshima, T. Ergothioneine: A Potential Antioxidative and Antimelanosis Agent for Food Quality Preservation. FEBS Lett. 2022, 596, 1330–1347. [Google Scholar] [CrossRef]
- Carlsson, J.; Kierstan, M.P.J.; Brocklehurst, K. A Convenient Spectrophotometric Assay for the Determination of l -Ergothioneine in Blood. Biochem. J. 1974, 139, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Liu, Q.; Jiang, W.; Chen, N. A New Strategy for Quantitative Analysis of Ergothioneine in Fermentation Broth by RP-HPLC. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), Tianjin, China, 18–19 October 2012; Zhang, T.-C., Ouyang, P., Kaplan, S., Skarnes, B., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2014; Volume 249, pp. 313–321. ISBN 978-3-642-37915-4. [Google Scholar]
- Sotgia, S.; Pisanu, E.; Pintus, G.; Erre, G.L.; Pinna, G.A.; Deiana, L.; Carru, C.; Zinellu, A. Plasma L-Ergothioneine Measurement by High-Performance Liquid Chromatography and Capillary Electrophoresis after a Pre-Column Derivatization with 5-Iodoacetamidofluorescein (5-IAF) and Fluorescence Detection. PLoS ONE 2013, 8, e70374. [Google Scholar] [CrossRef]
- Petersen, M.; Yu, Z.; Lu, X. Application of Raman Spectroscopic Methods in Food Safety: A Review. Biosensors 2021, 11, 187. [Google Scholar] [CrossRef]
- Nilghaz, A.; Mahdi Mousavi, S.; Amiri, A.; Tian, J.; Cao, R.; Wang, X. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. J. Agric. Food Chem. 2022, 70, 5463–5476. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, Y.; Peng, Y.; Zhao, S.; Xu, M.; Zhang, L.; Huang, Z.; Shi, J.; Yang, Y. Recent Development of Surface-Enhanced Raman Scattering for Biosensing. J. Nanobiotechnol. 2023, 21, 149. [Google Scholar] [CrossRef]
- Lombardi, J.R.; Birke, R.L. Theory of Surface-Enhanced Raman Scattering in Semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. [Google Scholar] [CrossRef]
- Suh, J.S.; Moskovits, M. Surface-Enhanced Raman Spectroscopy of Amino Acids and Nucleotide Bases Adsorbed on Silver. J. Am. Chem. Soc. 1986, 108, 4711–4718. [Google Scholar] [CrossRef]
- Aroca, R. Surface-Enhanced Vibrational Spectroscopy; Reprinted with corr.; Wiley: Chichester, UK, 2007; ISBN 978-0-471-60731-1. [Google Scholar]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. [Google Scholar] [CrossRef]
- Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002, 297, 1536–1540. [Google Scholar] [CrossRef]
- Porter, M.D.; Lipert, R.J.; Siperko, L.M.; Wang, G.; Narayanan, R. SERS as a Bioassay Platform: Fundamentals, Design, and Applications. Chem. Soc. Rev. 2008, 37, 1001. [Google Scholar] [CrossRef]
- Fornasaro, S.; Sergo, V.; Bonifacio, A. The Key Role of Ergothioneine in Label-free Surface-enhanced Raman Scattering Spectra of Biofluids: A Retrospective Re-assessment of the Literature. FEBS Lett. 2022, 596, 1348–1355. [Google Scholar] [CrossRef]
- Fornasaro, S.; Gurian, E.; Pagarin, S.; Genova, E.; Stocco, G.; Decorti, G.; Sergo, V.; Bonifacio, A. Ergothioneine, a Dietary Amino Acid with a High Relevance for the Interpretation of Label-Free Surface Enhanced Raman Scattering (SERS) Spectra of Many Biological Samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 119024. [Google Scholar] [CrossRef]
- Zuffi, V.; Puliga, F.; Zambonelli, A.; Trincone, L.; Sanchez-Cortes, S.; Francioso, O. Sustainable Management of Anaerobic Digestate: From Biogas Plant to Full-Scale Cultivation of Pleurotus ostreatus. Agronomy 2023, 13, 950. [Google Scholar] [CrossRef]
- Aroca, R.F. Plasmon Enhanced Spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 5355. [Google Scholar] [CrossRef]
- Bao, H.N.D.; Ushio, H.; Ohshima, T. Antioxidative Activity and Antidiscoloration Efficacy of Ergothioneine in Mushroom (Flammulina velutipes) Extract Added to Beef and Fish Meats. J. Agric. Food Chem. 2008, 56, 10032–10040. [Google Scholar] [CrossRef] [PubMed]
- Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Puliga, F.; Zuffi, V.; Zambonelli, A.; Francioso, O.; Sanchez-Cortes, S. Spectroscopic Analysis of Mushrooms by Surface-Enhanced Raman Scattering (SERS). Chem. Biol. Technol. Agric. 2022, 9, 100. [Google Scholar] [CrossRef]
- Loo, B.H.; Brewster, R.E.; Emerson, M.T.; Yao, J.N.; Fujishima, A.; Kato, T. Surface-Enhanced Raman Spectroscopic Study of Imidazolidine-2-Thione Adsorbed on Silver Electrodes. Surf. Sci. 1993, 296, 224–230. [Google Scholar] [CrossRef]
- Sathyanarayana, D.N.; Raja, S.V.K.; Shunmugam, R. Vibrational Spectra of Imidazoline-2-Thione and Imidazoline-2-One. Spectrochim. Acta Part A Mol. Spectrosc. 1987, 43, 501–506. [Google Scholar] [CrossRef]
- Fuenzalida, F.B.; Slepčíková, P.; Repovská, M.; Jutková, A.; Vega Cañamares, M.; Miškovský, P.; Jurašeková, Z.; Sanchez-Cortes, S. Selective and Ultrasensitive Detection of the Herbicide Glyphosate by Means of Plasmon Catalysis on Ag Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 323, 124845. [Google Scholar] [CrossRef]
- Wang, G.; Harrison, A.; Li, X.; Whittaker, G.; Shi, J.; Wang, X.; Yang, H.; Cao, P.; Zhang, Z. Study of the Adsorption of Benzimidazole and 2-mercaptobenzothiazole on an Iron Surface by Confocal micro-Raman Spectroscopy. J. Raman Spectrosc. 2004, 35, 1016–1022. [Google Scholar] [CrossRef]
- Biswas, N.; Thomas, S.; Sarkar, A.; Mukherjee, T.; Kapoor, S. Adsorption of Methimazole on Silver Nanoparticles: FTIR, Raman, and Surface-Enhanced Raman Scattering Study Aided by Density Functional Theory. J. Phys. Chem. C 2009, 113, 7091–7100. [Google Scholar] [CrossRef]
- Chandra, S.; Chowdhury, J.; Ghosh, M.; Talapatra, G.B. Genesis of Enhanced Raman Bands in SERS Spectra of 2-Mercaptoimidazole: FTIR, Raman, DFT, and SERS. J. Phys. Chem. A 2012, 116, 10934–10947. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, N.; Mori, I.; Sugiura, Y. 13C-Nuclear Magnetic Resonance and Raman Spectroscopic Studies on Ionization and Mercury Complex of Ergothioneine. Chem. Pharm. Bull. 1976, 24, 1737–1741. [Google Scholar] [CrossRef]
- Raman, J.; Jang, K.-Y.; Oh, Y.-L.; Oh, M.; Im, J.-H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yadan, J. Matching Chemical Properties to Molecular Biological Activities Opens a New Perspective on L-ergothioneine. FEBS Lett. 2022, 596, 1299–1312. [Google Scholar] [CrossRef]
- Tossounian, M.-A.; Zhao, Y.; Yu, B.Y.K.; Markey, S.A.; Malanchuk, O.; Zhu, Y.; Cain, A.; Gout, I. Low-Molecular-Weight Thiol Transferases in Redox Regulation and Antioxidant Defence. Redox Biol. 2024, 71, 103094. [Google Scholar] [CrossRef]
- Rao, C.N.R. Chemical Applications of Infrared Spectroscopy; Academic Press, Inc.: New York, NY, USA; London, UK, 1963. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puliga, F.; Zuffi, V.; Zambonelli, A.; Miškovský, P.; Francioso, O.; Sanchez-Cortes, S. Analysis of Ergothioneine Using Surface-Enhanced Raman Scattering: Detection in Mushrooms. Chemosensors 2025, 13, 213. https://doi.org/10.3390/chemosensors13060213
Puliga F, Zuffi V, Zambonelli A, Miškovský P, Francioso O, Sanchez-Cortes S. Analysis of Ergothioneine Using Surface-Enhanced Raman Scattering: Detection in Mushrooms. Chemosensors. 2025; 13(6):213. https://doi.org/10.3390/chemosensors13060213
Chicago/Turabian StylePuliga, Federico, Veronica Zuffi, Alessandra Zambonelli, Pavol Miškovský, Ornella Francioso, and Santiago Sanchez-Cortes. 2025. "Analysis of Ergothioneine Using Surface-Enhanced Raman Scattering: Detection in Mushrooms" Chemosensors 13, no. 6: 213. https://doi.org/10.3390/chemosensors13060213
APA StylePuliga, F., Zuffi, V., Zambonelli, A., Miškovský, P., Francioso, O., & Sanchez-Cortes, S. (2025). Analysis of Ergothioneine Using Surface-Enhanced Raman Scattering: Detection in Mushrooms. Chemosensors, 13(6), 213. https://doi.org/10.3390/chemosensors13060213