Two-Dimensional Materials for Biosensing: Emerging Bio-Converged Strategies for Wearable and Implantable Platforms
Abstract
:1. Introduction
2. 2D Materials for the Biosensor Application
2.1. Graphene
2.2. Transition Metal Dichalcogenides (TMDCs)
2.3. MXens
2.4. Nitride and Carbonitride-Based Materials
2.5. h-BN, Black Phosphorus, and Phosphorene
3. 3D Materials for Biosensing Applications
3.1. Wearable Sensor
Materials | Target | Features | Ref. | |
---|---|---|---|---|
Graphene | Antibody | Cortisol |
| [123] |
Antibody Fab Ag nanofiber | MMP-9 |
| [137] | |
Prussian blue Glucos oxidase | Glucose |
| [124] | |
Aptamer | IFN-γ |
| [125] | |
Anti-bovine antibody | IFN-γ IL-10 |
| [138] | |
Aptamer | IFN-γ TNF-α IL-6 |
| [139] | |
Boron ion CNT | Uric acid |
| [140] | |
Graphdiyne Hemin | Ascorbic acid Uric acid |
| [126] | |
Au cluster Chitosan | Uric acid pH |
| [141] | |
Silk fibroin LiBr | Humidity |
| [142] | |
WS2 | Humidity |
| [143] | |
- | Uric acid Thyrosine |
| [144] | |
Artificial antibody | Metabolites Nutrients |
| [145] | |
TMDC | Glucose oxidase | Glucose |
| [128] |
Anodic aluminum oxide | Humidity |
| [146] | |
Polyaniline | pH |
| [147] | |
CeO2-MoS2 AuNP Lactate oxidase | Lactate |
| [129] | |
Prussian blue TiO2 | H2O2 Phospho- protein |
| [148] | |
Mxene | Cellulose | Humidity |
| [149] |
Nanoporous carbon Glucose oxidase | Glucose |
| [150] | |
ZnO Glucose oxidase | Glucose |
| [151] | |
AuNP Peptide | Sortase A Pyocyanin |
| [132] | |
CeO2NP Oxidase enzymes | H2O2 Glucose Lactate Hypoxanthine |
| [133] | |
PyTs | Uric acid |
| [152] | |
Carbon Nitride (g-C3N4) | Polyaniline Glucose oxidase | Glucose |
| [136] |
CeO2 nanoparticle | Humidity Skin dryness |
| [153] |
3.2. Implantable Sensor
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, F.; Tang, Q.; Ma, T.; Zhu, B.; Wang, L.; He, C.; Luo, X.; Cao, S.; Ma, L.; Cheng, C. Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat 2022, 4, e12299. [Google Scholar] [CrossRef]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Fojtu, M.; Latiff, N.M.; Pumera, M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 2021, 50, 619–657. [Google Scholar] [CrossRef]
- Sakthivel, R.; Keerthi, M.; Chung, R.-J.; He, J.-H. Heterostructures of 2D materials and their applications in biosensing. Prog. Mater. Sci. 2023, 132, 101024. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Li, Y.; Yang, R.; Zhang, G. 2D-materials-based wearable biosensor systems. Biosensors 2022, 12, 936. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qiao, Z.; Li, C.-Y.; Sun, Y. Recent progress in multifunctional gas sensors based on 2D materials. Chemosensors 2023, 11, 483. [Google Scholar] [CrossRef]
- Mathew, M.; Radhakrishnan, S.; Vaidyanathan, A.; Chakraborty, B.; Rout, C.S. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal. Bioanal. Chem. 2021, 413, 727–762. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lou, Z.; Jiang, K.; Shen, G. Bio-multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 2019, 1, 1900040. [Google Scholar] [CrossRef]
- Nisar, S.; Dastgeer, G.; Shazad, Z.M.; Zulfiqar, M.W.; Rasheed, A.; Iqbal, M.Z.; Hussain, K.; Rabani, I.; Kim, D.-k.; Irfan, A.; et al. 2D materials in advanced electronic biosensors for point-of-care devices. Adv. Sci. 2024, 11, 2401386. [Google Scholar] [CrossRef]
- Silvestri, A.; Wetzl, C.; Alegret, N.; Cardo, L.; Hou, H.-L.; Criado, A.; Prato, M. The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv. Drug Deliv. Rev. 2022, 186, 114315. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. Npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Wang, Y. Strategies for the performance enhancement of graphene-based gas sensors: A review. Talanta 2021, 235, 122745. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, M.I.; Novoselov, K.S.; Geim, A.K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, e1801072. [Google Scholar] [CrossRef]
- Ali, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Imran, M.; Ashraf, F.; Ur Rehman, A.; Muhammad, F. 2D-TMDs based electrode material for supercapacitor applications. Int. J. Energy Res. 2022, 46, 22336–22364. [Google Scholar] [CrossRef]
- Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 245213. [Google Scholar] [CrossRef]
- Yin, X.; Tang, C.S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A.T.S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Xie, J.; Lu, G.; Zhang, J. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coord. Chem. Rev. 2021, 447, 214151. [Google Scholar] [CrossRef]
- Chen, L.; Dai, X.; Feng, W.; Chen, Y. Biomedical applications of MXenes: From nanomedicine to biomaterials. Acc. Mater. Res. 2022, 3, 785–798. [Google Scholar] [CrossRef]
- Hou, C.; Zhang, S.; Liu, R.; Gemming, T.; Bachmatiuk, A.; Zhao, H.; Jia, H.; Huang, S.; Zhou, W.; Xu, J.B. Boosting flexible electronics with integration of two-dimensional materials. InfoMat 2024, 6, e12555. [Google Scholar] [CrossRef]
- Ramezani, G.; Stiharu, I.; van de Ven, T.G.M.; Nerguizian, V. Advancement in biosensor technologies of 2D materialintegrated with cellulose-physical properties. Micromachines 2023, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; He, W.; Jiang, C.; Li, J.; Liu, J.; Liu, M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. Nano Micro Lett. 2025, 17, 109. [Google Scholar] [CrossRef]
- Yücer, S.; Sarac, B.; Ciftci, F. Tissue engineering and biosensing applications of carbon-based nanomaterials. Biomed. Eng. Adv. 2025, 9, 100145. [Google Scholar] [CrossRef]
- Zahra, T.; Javeria, U.; Jamal, H.; Baig, M.M.; Akhtar, F.; Kamran, U. A review of biocompatible polymer-functionalized two-dimensional materials: Emerging contenders for biosensors and bioelectronics applications. Anal. Chim. Acta 2024, 1316, 342880. [Google Scholar] [CrossRef]
- Lin, S.; Lin, H.; Yang, M.; Ge, M.; Chen, Y.; Zhu, Y. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale 2020, 12, 10265–10276. [Google Scholar] [CrossRef]
- Hu, Y.; Chatzilakou, E.; Pan, Z.; Traverso, G.; Yetisen, A.K. Microneedle sensors for point-of-care diagnostics. Adv. Sci. 2024, 11, 2306560. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Nargesi Azam, F.; Abdollahi, H.; Rajabifar, N.; Rostami, A.; Guzman, P.; Zarrintaj, P.; Davachi, S.M. Graphene-based polymeric microneedles for biomedical applications: A comprehensive review. ACS Appl. Bio Mater. 2025, 8, 1835–1861. [Google Scholar] [CrossRef] [PubMed]
- Orts Mercadillo, V.; Chan, K.C.; Caironi, M.; Athanassiou, A.; Kinloch, I.A.; Bissett, M.; Cataldi, P. Electrically conductive 2D material coatings for flexible and stretchable electronics: A comparative review of graphenes and MXenes. Adv. Funct. Mater. 2022, 32, 2204772. [Google Scholar] [CrossRef]
- Chen, S.; Xu, S.; Fan, X.; Xiao, X.; Duan, Z.; Zhao, X.; Chen, G.; Zhou, Y.; Chen, J. Advances in 2D materials for wearable biomonitoring. Mater. Sci. Eng. R Rep. 2025, 164, 100971. [Google Scholar] [CrossRef]
- Katiyar, A.K.; Hoang, A.T.; Xu, D.; Hong, J.; Kim, B.J.; Ji, S.; Ahn, J.-H. 2D materials in flexible electronics: Recent advances and future prospectives. Chem. Rev. 2023, 124, 318–419. [Google Scholar] [CrossRef]
- de Souza, F.M.; Ali, J.; Kumar, A.; Selvakumar, C.L.; Gupta, R.K.; Pham, P.V. 2d heterostructure-based sweat and heat sensors. ACS Appl. Electron. Mater. 2025, 7, 2173–2207. [Google Scholar] [CrossRef]
- Ranasinghe, J.C.; Jain, A.; Wu, W.; Zhang, K.; Wang, Z.; Huang, S. Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. J. Mater. Res. 2022, 37, 1689–1713. [Google Scholar] [CrossRef] [PubMed]
- Vincent, T.; Liang, J.Y.; Singh, S.; Castanon, E.G.; Zhang, X.T.; McCreary, A.; Jariwala, D.; Kazakova, O.; Al Balushi, Z.Y. Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future outlook. Appl. Phys. Rev. 2021, 8, 041320. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, T.Y.; Lin, Y.C.; Granzier-Nakajima, T.; Bepete, G.; Kowalczyk, D.A.; Lin, Z.; Zhou, D.; Schranghamer, T.F.; Dodda, A.; et al. Graphene and beyond: Recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au 2022, 2, 450–485. [Google Scholar] [CrossRef]
- Hao, S.; Zhao, X.; Cheng, Q.; Xing, Y.; Ma, W.; Wang, X.; Zhao, G.; Xu, X. A mini review of the preparation and photocatalytic properties of two-dimensional materials. Front. Chem. 2020, 8, 582146. [Google Scholar] [CrossRef]
- Velický, M.; Toth, P.S. From two-dimensional materials to their heterostructures: An electrochemist’s perspective. Appl. Mater. Today 2017, 8, 68–103. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zhang, X.; Liang, X.; Feng, Y.; Feng, W. Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today 2021, 37, 101059. [Google Scholar] [CrossRef]
- Li, M.-Y.; Chen, C.-H.; Shi, Y.; Li, L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, J.; Yu, T.; Lv, J.; Liu, H.; Xu, X. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. 2021, 16, 23201. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Emerging 2D materials and their van der Waals heterostructures. Nanomaterials 2020, 10, 579. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.; Zhou, L.; Li, J.; Chen, H. 2D nanostructures beyond graphene: Preparation, biocompatibility and biodegradation behaviors. J. Mater. Chem. B 2020, 8, 2974–2989. [Google Scholar] [CrossRef] [PubMed]
- Duong, D.L.; Yun, S.J.; Lee, Y.H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kang, S.; Kim, N.; Joshi, R.; Lee, G.-H. Recent trends in covalent functionalization of 2D materials. Phys. Chem. Chem. Phys. 2022, 24, 10684–10711. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Zhuge, F.; Zhang, Q.; Chen, Y.; Lv, L.; Huang, Y.; Li, H.; Zhai, T. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26–51. [Google Scholar] [CrossRef]
- Martín, N.; Tagmatarchis, N.; Wang, Q.H.; Zhang, X. Chemical functionalization of 2D materials. Chem. Eur. J. 2020, 26, 6292–6295. [Google Scholar] [CrossRef]
- Chatterjee, N.; Eom, H.-J.; Choi, J. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials 2014, 35, 1109–1127. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Mei, N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014, 22, 105–115. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep. 2013, 3, 3469. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics 2012, 2, 283. [Google Scholar] [CrossRef]
- Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27. [Google Scholar] [CrossRef]
- Nandee, R.; Chowdhury, M.A.; Shahid, A.; Hossain, N.; Rana, M. Band gap formation of 2D materialin graphene: Future prospect and challenges. Results Eng. 2022, 15, 100474. [Google Scholar] [CrossRef]
- Urade, A.R.; Lahiri, I.; Suresh, K. Graphene properties, synthesis and applications: A review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Mathew, T.; Sree, R.A.; Aishwarya, S.; Kounaina, K.; Patil, A.G.; Satapathy, P.; Hudeda, S.; More, S.S.; Muthucheliyan, K.; Kumar, T.N. Graphene-based functional nanomaterials for biomedical and bioanalysis applications. FlatChem 2020, 23, 100184. [Google Scholar] [CrossRef]
- Glavin, N.R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P.M. Emerging applications of elemental 2D materials. Adv. Mater. 2020, 32, 1904302. [Google Scholar] [CrossRef]
- Lemme, M.C.; Akinwande, D.; Huyghebaert, C.; Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022, 13, 1392. [Google Scholar] [CrossRef]
- Tan, T.; Jiang, X.; Wang, C.; Yao, B.; Zhang, H. 2D material optoelectronics for information functional device applications: Status and challenges. Adv. Sci. 2020, 7, 2000058. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, H.; Bai, X. Two-dimensional transition metal dichalcogenides: Synthesis, biomedical applications and biosafety evaluation. Front. Bioeng. Biotech. 2020, 8, 236. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Late, D.; Kumar, A.; Patel, S.; Singh, J. 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Appl. Mater. Today 2018, 13, 242–270. [Google Scholar] [CrossRef]
- Kuc, A.; Heine, T.; Kis, A. Electronic properties of transition-metal dichalcogenides. MRS Bull. 2015, 40, 577–584. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumbhakar, P.; Krishnamoorthy, A.; Nakano, A.; Sadasivuni, K.K.; Vashishta, P.; Roy, A.K.; Kochat, V.; Tiwary, C.S. Review of strategies toward the development of alloy two-dimensional (2D) transition metal dichalcogenides. Iscience 2021, 24, 103532. [Google Scholar] [CrossRef]
- Mathew, R.; Ajayan, J. Material processing, performance and reliability of MoS2 field effect transistor (FET) technology-A critical review. Mater. Sci. Semicond. Process. 2023, 160, 107397. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Shih, C.-J.; Wang, Q.H.; Son, Y.; Jin, Z.; Blankschtein, D.; Strano, M.S. Tuning on-off current ratio and field-effect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation. ACS Nano 2014, 8, 5790–5798. [Google Scholar] [CrossRef]
- Chen, E.; Xu, W.; Chen, J.; Warner, J. 2D layered noble metal dichalcogenides (Pt, Pd, Se, S) for electronics and energy applications. Mater. Today Adv. 2020, 7, 100076. [Google Scholar] [CrossRef]
- Chaves, A.; Azadani, J.G.; Alsalman, H.; Da Costa, D.; Frisenda, R.; Chaves, A.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J. Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Mater. Appl. 2020, 4, 29. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, R.; Li, J.-P.; Cao, J.-Y.; Qiu, F. Photodetectors based on two-dimensional MoS2 and its assembled heterostructures. Chip 2022, 1, 100017. [Google Scholar] [CrossRef]
- Chen, K.; Roy, A.; Rai, A.; Movva, H.C.; Meng, X.; He, F.; Banerjee, S.K.; Wang, Y. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides. APL Mater. 2018, 6, 056103. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Z.; Wang, X. Electrical contacts to two-dimensional transition-metal dichalcogenides. J. Semicond. 2018, 39, 124001. [Google Scholar] [CrossRef]
- Liao, W.; Zhao, S.; Li, F.; Wang, C.; Ge, Y.; Wang, H.; Wang, S.; Zhang, H. Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: Recent advances and challenges. Nanoscale Horiz. 2020, 5, 787–807. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.K.; Shi, Y.; Li, L.J. Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors. Adv. Mater. Interfaces 2019, 6, 1900220. [Google Scholar] [CrossRef]
- Zhou, J.; Dahlqvist, M.; Bjork, J.; Rosen, J. Atomic scale design of MXenes and their parent materials─ from theoretical and experimental perspectives. Chem. Rev. 2023, 123, 13291–13322. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Wyatt, B.C.; Nemani, S.K.; Anasori, B. Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bull. 2020, 45, 850–861. [Google Scholar] [CrossRef]
- Awan, H.T.A.; Abdah, M.A.A.M.; Mehar, M.; Walvekar, R.; Chaudhary, V.; Khalid, M.; Khosla, A. MXene-polymer hybrid composites for advanced energy storage: Insights into supercapacitors and batteries. J. Energy Storage 2024, 95, 112449. [Google Scholar] [CrossRef]
- Gokul Eswaran, S.; Rashad, M.; Santhana Krishna Kumar, A.; EL-Mahdy, A.F. A comprehensive review of Mxene-based emerging materials for energy storage applications and future perspectives. Chem. Asian J. 2025, 20, e202401181. [Google Scholar] [CrossRef] [PubMed]
- Jangra, S.; Kumar, B.; Sharma, J.; Sengupta, S.; Das, S.; Brajpuriya, R.; Ohlan, A.; Mishra, Y.K.; Goyat, M. A review on overcoming challenges and pioneering advances: MXene-based materials for energy storage applications. J. Energy Storage 2024, 101, 113810. [Google Scholar] [CrossRef]
- Xu, X.; Yang, L.; Zheng, W.; Zhang, H.; Wu, F.; Tian, Z.; Zhang, P.; Sun, Z. MXenes with applications in supercapacitors and secondary batteries: A comprehensive review. Mater. Rep. Energy 2022, 2, 100080. [Google Scholar] [CrossRef]
- Ali, A.; Majhi, S.M.; Siddig, L.A.; Deshmukh, A.H.; Wen, H.; Qamhieh, N.N.; Greish, Y.E.; Mahmoud, S.T. Recent advancements in MXene-based biosensors for health and environmental applications—A review. Biosensors 2024, 14, 497. [Google Scholar] [CrossRef]
- Gayathri, V.G.; Bartholomew, R.; Chacko, J.T.; Bayry, J.; Rasheed, P.A. Non-Ti MXenes: New biocompatible and biodegradable candidates for biomedical applications. J. Mater. Chem. B 2025, 13, 1212–1228. [Google Scholar] [CrossRef]
- Parajuli, D. MXenes-polymer nanocomposites for biomedical applications: Fundamentals and future perspectives. Front. Chem. 2024, 12, 1400375. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. Mxene-based electrochemical biosensors: Advancing detection strategies for biosensing (2020–2024). Biosensors 2025, 15, 127. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, W.; Song, J.; Kim, S.; Ahmed, F.; Cho, E.; Lee, H.; Kim, J. Silicon-based biosensors: A critical review of silicon’s role in enhancing biosensing performance. Biosensors 2025, 15, 119. [Google Scholar] [CrossRef]
- Panahi, A.; Ghafar-Zadeh, E. Emerging field-effect transistor biosensors for life science applications. Bioengineering 2023, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Sedki, M.; Chen, Y.; Mulchandani, A. Non-carbon 2D materials-based field-effect transistor biosensors: Recent advances, challenges, and future perspectives. Sensors 2020, 20, 4811. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, H.; Zhao, Y.; Sun, L.; Zhang, X.; Bai, Y.; Li, W.; Zhao, M.; He, H.; Liu, X. Electron-withdrawing hexagonal boron nitride as a biocompatible and metal-free antibacterial platform. Nano Lett. 2025, 25, 3505–3514. [Google Scholar] [CrossRef]
- Hazarika, C.; Neog, G.; Roy, E.; Gogoi, D.; Das, M.R.; Sarmah, K.; Guha, A.K.; Konwar, R.; Matsagar, B.M.; Wu, K.C.-W. Hydroxyl functionalized hexagonal boron nitride quantum dots as nanozyme for pesticides sensing through dual colorimetric and fluorometric platform: A combined experimental and theoretical study. Chem. Eng. J. 2024, 500, 156365. [Google Scholar] [CrossRef]
- Jedrzejczak-Silicka, M.; Trukawka, M.; Dudziak, M.; Piotrowska, K.; Mijowska, E. Hexagonal boron nitride functionalized with Au nanoparticles—Properties and potential biological applications. Nanomaterials 2018, 8, 605. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Kuila, C.; Maji, A.; Murmu, N.C.; Kuila, T. Hexagonal boron nitride (h-BN)“a miracle in white”: An emerging two-dimensional material for the advanced powered electronics and energy harvesting application. Compos. Part B 2025, 301, 112531. [Google Scholar] [CrossRef]
- Bocanegra-Bernal, M.; Matovic, B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures. Mater. Sci. Eng. A 2010, 527, 1314–1338. [Google Scholar] [CrossRef]
- Du, X.; Lee, S.S.; Blugan, G.; Ferguson, S.J. Silicon nitride as a biomedical material: An overview. Int. J. Mol. Sci. 2022, 23, 6551. [Google Scholar] [CrossRef] [PubMed]
- Krstic, Z.; Krstic, V.D. Silicon nitride: The engineering material of the future. J. Mater. Sci. 2012, 47, 535–552. [Google Scholar] [CrossRef]
- Antolini, E. The application of 2D graphitic carbon nitride (g-C3N4) and hexagonal boron nitride (h-BN) in low-temperature fuel cells: Catalyst supports, ORR catalysts, and membrane fillers. Molecules 2025, 30, 1852. [Google Scholar] [CrossRef]
- Belaya, S.V.; Maksimovsky, E.A.; Shayapov, V.R.; Shapovalova, A.A.; Kolodin, A.N.; Saraev, A.A.; Asanov, I.P.; Khomyakov, M.N.; Yushina, I.V.; Plekhanov, A.G. Boron carbonitride films with tunable composition: LPCVD and PECVD synthesis using trimethylamine borane and nitrogen mixture and characterization. Appl. Sci. 2023, 13, 4959. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, X.; Shi, P.; Li, L.; Dong, Q.; Tian, M.; Wu, Y.; Sun, X. A review on recent progress achieved in boron carbon nitride nanomaterials for supercapacitor applications. Batteries 2023, 9, 396. [Google Scholar] [CrossRef]
- Baboukani, A.R.; Khakpour, I.; Drozd, V.; Wang, C.L. Liquid-based exfoliation of black phosphorus into phosphorene and its application for energy storage devices. Small Struct. 2021, 2, 2000148. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Besedina, N.A.; Brzhezinskaya, M.; Stolyarova, D.Y.; Ryzhkov, S.A.; Saveliev, S.D.; Antonov, G.A.; Baidakova, M.V.; Pavlov, S.I.; Kirilenko, D.A.; et al. Graphene amination towards its grafting by antibodies for biosensing applications. Nanomaterials 2023, 13, 1730. [Google Scholar] [CrossRef]
- Liu, J.Z.; Chen, S.P.; Liu, Y.A.; Zhao, B.J. Progress in preparation, characterization, surface functional modification of graphene oxide: A review. J. Saudi Chem. Soc. 2022, 26, 101560. [Google Scholar] [CrossRef]
- Settu, K.; Liu, J.T.; Chen, C.J.; Tsai, J.Z. Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Anal. Biochem. 2017, 534, 99–107. [Google Scholar] [CrossRef]
- Vojoudi, H.; Soroush, M. Bio-functionalized MXenes: Synthesis and versatile applications. Adv. Healthc. Mater. 2025. [Google Scholar] [CrossRef]
- Khan, A.; DeVoe, E.; Andreescu, S. Carbon-based electrochemical biosensors as diagnostic platforms for connected decentralized healthcare. Sens. Diagn. 2023, 2, 529–558. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed]
- Walters, F.; Ali, M.M.; Burwell, G.; Rozhko, S.; Tehrani, Z.; Daghigh Ahmadi, E.; Evans, J.E.; Abbasi, H.Y.; Bigham, R.; Mitchell, J.J.; et al. A facile method for the non-covalent amine functionalization of carbon-based surfaces for use in biosensor development. Nanomaterials 2020, 10, 1808. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, D.H.; Mashkour, M.S.; Fatemi, F. Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. Chem. Pap. 2021, 75, 279–295. [Google Scholar] [CrossRef]
- Tig, G.A.; Pekyardimci, S. An electrochemical sandwich-type aptasensor for determination of lipocalin-2 based on graphene oxide/polymer composite and gold nanoparticles. Talanta 2020, 210, 120666. [Google Scholar] [CrossRef]
- Gosai, A.; Khondakar, K.R.; Ma, X.; Ali, M.A. Application of functionalized graphene oxide based biosensors for health monitoring: Simple graphene derivatives to 3D printed platforms. Biosensors 2021, 11, 384. [Google Scholar] [CrossRef]
- Weinhold, M.; Klar, P.J. Patterning 2D materials for devices by mild lithography. RSC Adv. 2021, 11, 29887–29895. [Google Scholar] [CrossRef]
- Enrico, A.; Hartwig, O.; Dominik, N.; Quellmalz, A.; Gylfason, K.B.; Duesberg, G.S.; Niklaus, F.; Stemme, G. Ultrafast and resist-free nanopatterning of 2D materials by femtosecond laser irradiation. ACS Nano 2023, 17, 8041–8052. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Tian, Z.A.; Mei, Y.F.; Di, Z.F. Shaping and structuring 2D materials via kirigami and origami. Mater. Sci. Eng. R Rep. 2021, 145, 100621. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Zhou, Y.; Wang, J.; You, R. Research progress of electronic nose technology in exhaled breath disease analysis. Microsyst. Nanoeng. 2023, 9, 129. [Google Scholar] [CrossRef]
- Liu, J.; Qian, J.; Adil, M.; Bi, Y.; Wu, H.; Hu, X.; Wang, Z.; Zhang, W. Bioinspired integrated triboelectric electronic tongue. Microsyst. Nanoeng. 2024, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Lee, Y.; Cho, K.W.; Koo, J.H.; Kim, D.H. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials. Acc. Chem. Res. 2019, 52, 73–81. [Google Scholar] [CrossRef]
- Huang, C.; Hao, Z.; Wang, Z.; Wang, H.; Zhao, X.; Pan, Y. An ultraflexible and transparent graphene-based wearable sensor for biofluid biomarkers detection. Adv. Mater. Technol. 2022, 7, 2101131. [Google Scholar] [CrossRef]
- Srivastava, R.; Thakur, A.; Bahadur, P.S.; Rana, A. A state-of-the-art review of recent developments and challenges for 2D implantable materials. In Engineering Materials for Efficient Energy Storage and Conversion; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 1–24. [Google Scholar]
- Bolotsky, A.; Butler, D.; Dong, C.; Gerace, K.; Glavin, N.R.; Muratore, C.; Robinson, J.A.; Ebrahimi, A. Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond. ACS Nano 2019, 13, 9781–9810. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.; Lee, M.S.; Kim, K.; Ji, S.; Kim, Y.T.; Park, J.; Na, K.; Bae, K.H.; Kyun Kim, H.; et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Zhang, T.; Kong, W.; Zhang, Z.; Qu, H.; Chen, W.; Wang, Y.; Luo, L.; Zheng, L. ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 2018, 101, 21–28. [Google Scholar] [CrossRef]
- An, Q.; Gan, S.; Xu, J.; Bao, Y.; Wu, T.; Kong, H.; Zhong, L.; Ma, Y.; Song, Z.; Niu, L. A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 2019, 107, 106553. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, C.; Yuan, W.; Liu, Z.; Zhu, L.; Li, X.; Lu, Y.; Chen, Z.; Liu, J.; Cui, Z. Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sens. Actuators B 2019, 297, 126743. [Google Scholar] [CrossRef]
- Hu, J.; Dong, M. Recent advances in two-dimensional nanomaterials for sustainable wearable electronic devices. J. Nanobiotechnol. 2024, 22, 63. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Ohno, Y.; Maehashi, K.; Matsumoto, K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 2010, 132, 18012–18013. [Google Scholar] [CrossRef] [PubMed]
- Ku, M.; Kim, J.; Won, J.E.; Kang, W.; Park, Y.G.; Park, J.; Lee, J.H.; Cheon, J.; Lee, H.H.; Park, J.U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020, 6, eabb2891. [Google Scholar] [CrossRef]
- Ma, J.; Du, Y.; Jiang, Y.; Shen, L.; Ma, H.; Lv, F.; Cui, Z.; Pan, Y.; Shi, L.; Zhu, N. Wearable healthcare smart electrochemical biosensors based on co-assembled prussian blue-graphene film for glucose sensing. Mikrochim. Acta 2022, 189, 46. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Wang, X.; Huang, C.; Lin, Q.; Zhao, X.; Pan, Y. A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 2021, 31, 2005958. [Google Scholar] [CrossRef]
- Sun, X.; Duan, M.; Li, R.; Meng, Y.; Bai, Q.; Wang, L.; Liu, M.; Yang, Z.; Zhu, Z.; Sui, N. Ultrathin graphdiyne/graphene heterostructure as a robust electrochemical sensing platform. Anal. Chem. 2022, 94, 13598–13606. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Xiao, T.; Li, D.; Fan, Y.; Xing, L.; Wang, X.; Li, Y.; Shi, X.; Shen, M. Intelligent molybdenum disulfide complexes as a platform for cooperative imaging-guided tri-mode chemo-photothermo-immunotherapy. Adv. Sci. 2021, 8, 2100165. [Google Scholar] [CrossRef]
- Guo, S.; Wu, K.; Li, C.; Wang, H.; Sun, Z.; Xi, D.; Zhang, S.; Ding, W.; Zaghloul, M.E.; Wang, C.; et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969–985. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Li, M.; Chen, L.; Peng, B.; Jiang, H. A wearable nanozyme-enzyme electrochemical biosensor for sweat lactate monitoring. Talanta 2024, 279, 126675. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lai, S.-N.; Yen, C.-C.; Jiang, X.; Peroulis, D.; Stanciu, L.A. Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 2020, 14, 11490–11501. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Shi, Z.; Dai, C.; Deng, P.; Li, X.; Wu, Y.; Lv, J.; Xiong, C.; Shuai, Y.; Zhang, F.; Wang, D. Wearable battery-free smart bandage with peptide functionalized biosensors based on MXene for bacterial wound infection detection. Sens. Actuators B 2023, 383, 133598. [Google Scholar] [CrossRef]
- Khan, R.; Andreescu, S. Catalytic MXCeO2 for enzyme based electrochemical biosensors: Fabrication, characterization and application towards a wearable sweat biosensor. Biosens. Bioelectron. 2024, 248, 115975. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Wang, H.; Nie, R. Synthesis and biomedical applications of graphitic carbon nitride quantum dots. J. Mater. Chem. B 2019, 7, 5432–5448. [Google Scholar] [CrossRef]
- Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and leds. Nanomicro Lett. 2017, 9, 47. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Rinawati, M.; Chang, L.-Y.; Guo, Y.-T.; Chen, K.-J.; Chiu, H.-C.; Lin, Z.-H.; Huang, W.-H.; Haw, S.-C.; Yeh, M.-H. Carbon nitride quantum dots/polyaniline nanocomposites for non-invasive glucose monitoring using wearable sweat biosensor. ACS Appl. Nano Mater. 2025, 8, 2340–2351. [Google Scholar] [CrossRef]
- Jang, J.; Kim, J.; Shin, H.; Park, Y.G.; Joo, B.J.; Seo, H.; Won, J.E.; Kim, D.W.; Lee, C.Y.; Kim, H.K.; et al. Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Sci. Adv. 2021, 7, eabf7194. [Google Scholar] [CrossRef] [PubMed]
- Parate, K.; Rangnekar, S.V.; Jing, D.; Mendivelso-Perez, D.L.; Ding, S.; Secor, E.B.; Smith, E.A.; Hostetter, J.M.; Hersam, M.C.; Claussen, J.C. Aerosol-jet-printed graphene immunosensor for label-free cytokine monitoring in serum. ACS Appl. Mater. Interfaces 2020, 12, 8592–8603. [Google Scholar] [CrossRef]
- Hao, Z.; Luo, Y.; Huang, C.; Wang, Z.; Song, G.; Pan, Y.; Zhao, X.; Liu, S. An intelligent graphene-based biosensing device for cytokine storm syndrome biomarkers detection in human biofluids. Small 2021, 17, e2101508. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Rinawati, M.; Zhan, J.-D.; Lin, K.-Y.; Huang, C.-J.; Chen, K.-J.; Mizuguchi, H.; Jiang, J.-C.; Hwang, B.-J.; Yeh, M.-H. Boron-doped graphene quantum dots anchored to carbon nanotubes as noble metal-free electrocatalysts of uric acid for a wearable sweat sensor. ACS Appl. Nano Mater. 2022, 5, 11100–11110. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Li, J.; Cui, C.; Zhou, Z.; Wen, L. Surface engineering of laser-induced graphene enables long-term monitoring of on-body uric acid and ph simultaneously. Nano Lett. 2022, 22, 5451–5458. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liang, X.; Wang, H.; Lu, H.; Zhu, M.; Wang, H.; Zhang, M.; Qiu, X.; Song, Y.; et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 2022, 13, 5416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, Q.; Wang, Y.; Fan, Z.; Lin, L.; Zhang, W.; Xiong, J. Wirelessly powered multi-functional wearable humidity sensor based on RGO-WS2 heterojunctions. Sens. Actuators B 2021, 329, 129077. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef]
- Mondal, S.; Kim, S.J.; Choi, C.G. Honeycomb-like MoS2 nanotube array-based wearable sensors for noninvasive detection of human skin moisture. ACS Appl. Mater. Interfaces 2020, 12, 17029–17038. [Google Scholar] [CrossRef]
- Choudhury, S.; Deepak, D.; Bhattacharya, G.; McLaughlign, J.; Roy, S.S. MoS2-polyaniline based flexible electrochemical biosensor: Toward ph monitoring in human sweat. Macromol. Mater. Eng. 2023, 308, 2300007. [Google Scholar] [CrossRef]
- Ying, Z.; Qiao, L.; Liu, B.; Gao, L.; Zhang, P. Development of a microfluidic wearable electrochemical sensor for the non-invasive monitoring of oxidative stress biomarkers in human sweat. Biosens. Bioelectron. 2024, 261, 116502. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.Y.; Tang, C.Y.; Zha, X.J.; Liu, Y.; Su, B.H.; Ke, K.; Bao, R.Y.; Yang, M.B.; Yang, W. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 2020, 14, 8793–8805. [Google Scholar] [CrossRef]
- Zahed, M.A.; Sharifuzzaman, M.; Yoon, H.; Asaduzzaman, M.; Kim, D.K.; Jeong, S.; Pradhan, G.B.; Shin, Y.D.; Yoon, S.H.; Sharma, S. A nanoporous carbon-MXene heterostructured nanocomposite-based epidermal patch for real-time biopotentials and sweat glucose monitoring. Adv. Funct. Mater. 2022, 32, 2208344. [Google Scholar] [CrossRef]
- Myndrul, V.; Coy, E.; Babayevska, N.; Zahorodna, V.; Balitskyi, V.; Baginskiy, I.; Gogotsi, O.; Bechelany, M.; Giardi, M.T.; Iatsunskyi, I. MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor. Biosens. Bioelectron. 2022, 207, 114141. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Chen, L.; Lin, H.; Han, D.; Bao, Y.; Wang, W.; Niu, L. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti(3)C(2)T(x) MXene for the Real-Time Monitoring of Uric Acid Metabolite. Anal. Chem. 2024, 96, 3914–3924. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Wang, X.; Zhang, D.; Ma, X.; Yu, S. Flexible wearable humidity sensor based on cerium oxide/graphitic carbon nitride nanocomposite self-powered by motion-driven alternator and its application for human physiological detection. J. Mater. Chem. A 2021, 9, 5619–5629. [Google Scholar] [CrossRef]
- Gray, M.; Meehan, J.; Ward, C.; Langdon, S.P.; Kunkler, I.H.; Murray, A.; Argyle, D. Implantable biosensors and their contribution to the future of precision medicine. Vet. J. 2018, 239, 21–29. [Google Scholar] [CrossRef]
- Scholten, K.; Meng, E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int. J. Pharm. 2018, 544, 319–334. [Google Scholar] [CrossRef]
- Li, Z.; Xu, E.; Zhang, Y.; Du, C.; Geng, Y.; Zhu, H.; Zhang, R.; Ma, C.; Zhang, D. Deciphering spatiotemporal molecular pattern of traumatic brain injury by resveratrol-engineered two-dimensional-material-based field-effect-transistor biopatch. Biosens. Bioelectron. 2025, 279, 117360. [Google Scholar] [CrossRef]
- Kim, J.; Hong, J.; Park, K.; Lee, S.; Hoang, A.T.; Pak, S.; Zhao, H.; Ji, S.; Yang, S.; Chung, C.K.; et al. Injectable 2D material-based sensor array for minimally invasive neural implants. Adv. Mater. 2024, 36, e2400261. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhang, N.; Matarasso, A.; Heck, I.; Li, H.; Lu, W.; Phaup, J.G.; Schneider, M.J.; Wu, Y.; Weng, Z.; et al. Implantable aptamer-graphene microtransistors for real-time monitoring of neurochemical release in vivo. Nano Lett. 2022, 22, 3668–3677. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xuan, X.; Li, M.; Jiang, D.; Li, H. Implantable antenna immunosensor based on Au-decorated graphene film for wireless CEA detection. Sens. Actuators B 2024, 416, 136037. [Google Scholar] [CrossRef]
- Li, C.; Cai, Y.; Hu, J.; Liu, J.; Dai, H.; Xu, Q.; Zhang, C.; Zhang, X.; Liu, K.; Kosinova, M.L. SiC/Graphene film by laser CVD as an implantable sensor material for dopamine detection. ACS Appl. Mater. Interfaces 2023, 15, 27399–27410. [Google Scholar] [CrossRef]
- Hjort, R.G.; Pola, C.C.; Soares, R.R.; Opare-Addo, J.; Smith, E.A.; Claussen, J.C.; Gomes, C.L. Laser-induced graphene decorated with platinum nanoparticles for electrochemical analysis of saliva. ACS Appl. Nano Mater. 2023, 6, 20801–20811. [Google Scholar] [CrossRef]
- Fadeel, B.; Bussy, C.; Merino, S.; Vazquez, E.; Flahaut, E.; Mouchet, F.; Evariste, L.; Gauthier, L.; Koivisto, A.J.; Vogel, U.; et al. Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano 2018, 12, 10582–10620. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Zhu, W.P.; Qiu, Y.; Yi, X.; von dem Bussche, A.; Kane, A.; Gao, H.J.; Koski, K.; Hurt, R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 1750–1780. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, G.A.; Arshad, F.; Almas, M.; Hassan, I.U.; Pedram, M.Z.; Aljabali, A.A.A.; Mishra, V.; Serrano-Aroca, A.; Birkett, M.; Charbe, N.B.; et al. 2D materials, synthesis, characterization and toxicity: A critical review. Chem. Biol. Interact. 2022, 365, 110081. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Yu, Y.Y.; Su, G.X. Safety assessment of 2D Mxenes: In vitro and in vivo. Nanomaterials 2022, 12, 828. [Google Scholar] [CrossRef]
- Fan, T.J.; Yan, L.; He, S.L.; Hong, Q.C.; Ai, F.J.; He, S.Q.; Ji, T.; Hu, X.; Ha, E.; Zhang, B.; et al. Biodistribution, degradability and clearance of 2D materials for their biomedical applications. Chem. Soc. Rev. 2022, 51, 7732–7751. [Google Scholar] [CrossRef]
- Lin, H.; Buerki-Thurnherr, T.; Kaur, J.; Wick, P.; Pelin, M.; Tubaro, A.; Carniel, F.C.; Tretiach, M.; Flahaut, E.; Iglesias, D.; et al. Environmental and health impacts of graphene and other two-dimensional materials: A graphene flagship perspective. ACS Nano 2024, 18, 6038–6094. [Google Scholar] [CrossRef]
- Domanico, M.; Fukuto, A.; Tran, L.M.; Bustamante, J.M.; Edwards, P.C.; Pinkerton, K.E.; Thomasy, S.M.; Van Winkle, L.S. Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium. Nanoimpact 2022, 26, 100404. [Google Scholar] [CrossRef]
- Lin, H.; Peng, S.Y.; Guo, S.; Ma, B.J.; Lucherelli, M.A.; Royer, C.; Ippolito, S.; Samorì, P.; Bianco, A. 2d materials and primary human dendritic cells: A comparative cytotoxicity study. Small 2022, 18, 2107652. [Google Scholar] [CrossRef]
- Parvez, K.; Casiraghi, C. Biocompatible 2D material inks enabled by supramolecular chemistry: From synthesis to applications. Acc. Chem. Res. 2025, 58, 189–198. [Google Scholar] [CrossRef]
- Chen, S.H.; Bell, D.R.; Luan, B.Q. Understanding interactions between biomolecules and two-dimensional nanomaterials using microscopes. Adv. Drug Deliv. Rev. 2022, 186, 114336. [Google Scholar] [CrossRef]
- Roy, S.; Aastha; Deo, K.A.; Dey, K.; Gaharwar, A.K.; Jaiswal, A. Nanobio interface between proteins and 2D nanomaterials. ACS Appl. Mater. Interfaces 2023, 15, 35753–35787. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart. Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- Tang, Z.M.; Xiao, Y.F.; Kong, N.; Liu, C.; Chen, W.; Huang, X.G.; Xu, D.Y.; Ouyang, J.; Feng, C.; Wang, C.; et al. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharm. Sin. B 2021, 11, 3447–3464. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Moschetta, M.; Rodrigues, J.; Alpuim, P.; Capasso, A. Interactions between 2D materials and living matter: A review on graphene and hexagonal boron nitride coatings. Front. Bioeng. Biotech. 2021, 9, 612669. [Google Scholar] [CrossRef]
- Sims, C.M.; Hanna, S.K.; Heller, D.A.; Horoszko, C.P.; Johnson, M.E.; Bustos, A.R.M.; Reipa, V.; Riley, K.R.; Nelson, B.C. Redox-active nanomaterials for nanomedicine applications. Nanoscale 2017, 9, 15226–15251. [Google Scholar] [CrossRef] [PubMed]
- Takhar, V.; Singh, S. Nanomaterials ROS: A comprehensive review for environmental applications. Environ. Sci. Nano 2025, 12, 2516–2550. [Google Scholar] [CrossRef]
- Dai, Y.; Guo, Y.F.; Tang, W.C.; Chen, D.; Xue, L.R.; Chen, Y.; Guo, Y.C.; Wei, S.M.; Wu, M.; Dai, J.; et al. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J. Nanobiotechnol. 2024, 22, 252. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, L.; Yang, Q.; Zupanic, A.; Xu, Q.; Jiang, L. Using MoS2 nanomaterials to generate or remove reactive oxygen species: A review. ACS Appl. Nano Mater. 2021, 4, 7523–7537. [Google Scholar] [CrossRef]
- Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Qu, G.; Yu, X.F.; Cao, D.; Liu, Q.; Jiang, G. Molecular-level degradation pathways of black phosphorus revealed by mass spectrometry fingerprinting. Chem. Sci. 2023, 14, 6669–6678. [Google Scholar] [CrossRef]
- Gunathilaka, T.M.; Shimomura, M. Nanoscale evaluation of the degradation stability of black phosphorus nanosheets functionalized with PEG and glutathione-stabilized doxorubicin drug-loaded gold nanoparticles in real functionalized system. Molecules 2024, 29, 1746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wan, Y.; Xie, H.; Mu, Y.; Du, P.; Wang, D.; Wu, X.; Ji, H.; Wan, L. Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J. Am. Chem. Soc. 2018, 140, 7561–7567. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.B.; Xia, T.; Zhou, W.H.; Zhang, X.; Zhang, H.Y.; Hu, L.G.; Shi, J.B.; Yu, X.F.; Jiang, G.B. Property-activity relationship of black phosphorus at the nano-bio interface: From molecules to organisms. Chem. Rev. 2020, 120, 2288–2346. [Google Scholar] [CrossRef]
- Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.F.; Zhao, Y.; Zhang, H.; et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, L.; Lu, Q.; Yang, S.; Yang, L.; Cheng, Y.; Wang, Y.; Wang, S.; Song, Y.; Tan, F.; et al. Ultrasmall MoS2 nanodots-doped biodegradable sio2 nanoparticles for clearable FL/CT/MSOT Imaging-guided PTT/PDT combination tumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 5771–5781. [Google Scholar] [CrossRef]
- Wang, Z.; von dem Bussche, A.; Qiu, Y.; Valentin, T.M.; Gion, K.; Kane, A.B.; Hurt, R.H. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media. Environ. Sci. Technol. 2016, 50, 7208–7217. [Google Scholar] [CrossRef]
- Sun, S.X.; Yuan, R.X.; Ling, S.W.; Zhou, T.T.; Wu, Z.Q.; Fu, M.Y.; He, H.N.; Li, X.L.; Zhang, C.H. Self-healable, self-adhesive and degradable MXene-based multifunctional hydrogel for flexible epidermal sensors. ACS Appl. Mater. Interfaces 2024, 16, 7826–7837. [Google Scholar] [CrossRef]
- Dmytriv, T.R.; Lushchak, V.I. Potential biosafety of MXenes: Stability, biodegradability, toxicity and biocompatibility. Chem. Rec. 2024, 24, e202300338. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, L.; Li, Y.; Chao, M.; Li, M.; Wan, P.; Zhang, L. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 2021, 15, 7765–7773. [Google Scholar] [CrossRef]
- Lin, H.; Gao, S.; Dai, C.; Chen, Y.; Shi, J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247. [Google Scholar] [CrossRef]
- Kim, S.H.; Ki, M.R.; Han, Y.; Pack, S.P. Biomineral-based composite materials in regenerative medicine. Int. J. Mol. Sci. 2024, 25, 6147. [Google Scholar] [CrossRef]
- Abdelhamid, M.A.A.; Ki, M.R.; Pack, S.P. Biominerals and bioinspired materials in biosensing: Recent advancements and applications. Int. J. Mol. Sci. 2024, 25, 4678. [Google Scholar] [CrossRef]
- Abdelhamid, M.A.A.; Pack, S.P. Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomater. 2021, 120, 38–56. [Google Scholar] [CrossRef]
- Youn, S.; Ki, M.R.; Abdelhamid, M.A.A.; Pack, S.P. Biomimetic materials for skin tissue regeneration and electronic skin. Biomimetics 2024, 9, 278. [Google Scholar] [CrossRef] [PubMed]
- Min, K.H.; Kim, D.H.; Youn, S.; Pack, S.P. Biomimetic diatom biosilica and its potential for biomedical applications and prospects: A review. Int. J. Mol. Sci. 2024, 25, 2023. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, M.A.A.; Khalifa, H.O.; Ki, M.R.; Pack, S.P. Nanoengineered silica-based biomaterials for regenerative medicine. Int. J. Mol. Sci. 2024, 25, 6125. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Min, K.H.; Pack, S.P. Efficient bioactive surface coatings with calcium minerals: Step-wise biomimetic transformation of vaterite to carbonated apatite. Biomimetics 2024, 9, 402. [Google Scholar] [CrossRef]
- Lee, D.K.; Ki, M.R.; Kim, E.H.; Park, C.J.; Ryu, J.J.; Jang, H.S.; Pack, S.P.; Jo, Y.K.; Jun, S.H. Biosilicated collagen/beta-tricalcium phosphate composites as a BMP-2-delivering bone-graft substitute for accelerated craniofacial bone regeneration. Biomater. Res. 2021, 25, 13. [Google Scholar] [CrossRef]
- Min, K.H.; Kim, D.H.; Kim, K.H.; Seo, J.H.; Pack, S.P. Biomimetic scaffolds of calcium-based materials for bone regeneration. Biomimetics 2024, 9, 511. [Google Scholar] [CrossRef]
- Tang, B.S.; Sivan, M.; Leong, J.F.; Xu, Z.F.; Zhang, Y.; Li, J.N.; Wan, R.Y.; Wan, Q.Z.; Zamburg, E.; Thean, A.V.Y. Solution-processable 2D materials for monolithic 3D memory-sensing-computing platforms: Opportunities and challenges. Npj 2D Mater. Appl. 2024, 8, 74. [Google Scholar] [CrossRef]
- Kostarelos, K.; Novoselov, K.S. Exploring the interface of graphene and biology. Science 2014, 344, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.J.; Huang, R.; Kim, J.S.; Li, T.; Li, Y.; et al. A review on mechanics and mechanical properties of 2D materials-graphene and beyond. Extrem. Mech. Lett. 2017, 13, 42–77. [Google Scholar] [CrossRef]
- Chamlagain, B.; Khondaker, S.I. Rapid degradation of the electrical properties of 2D MoS2 thin films under long-term ambient exposure. ACS Omega 2021, 6, 24075–24081. [Google Scholar] [CrossRef] [PubMed]
Materials | Target | Features | Ref. | |
---|---|---|---|---|
Graphene | Aptamer | Dopamine |
| [158] |
Au nanoparticle Antibody | Carcinoembryonic antigen |
| [159] | |
Silicon carbide | Dopamine |
| [160] | |
Platinum nanoparticle Lactate oxidase | Lactate Potassium ion |
| [161] | |
TMDC | MoS2 | Temperature Pressure |
| [157] |
MXene | Resveratrol Silver nanowire Antibody | Glial fibrillary acidic protein |
| [156] |
Target | Materials | LOD | Sensitivity | Linear Range | Ref. |
---|---|---|---|---|---|
Glucose | PB-RGO/GOx | 7.94 μM | 27.78 μA mM −1 cm−2 | 0–4 mM, 4–8 mM | [124] |
MoS2/Au/PI/GOx | 0.1 mM | 1794.4 μA mM −1 cm−2 | - | [128] | |
NPC@MXene/PtNPs/GOx | 7 μM | 100.85 μA mM −1 cm−2 | 3 μM–21 mM | [150] | |
ZnO TPs/MXene/GOx | 17 μM | 29 μA mM −1 cm−2 | 50–700 μM | [151] | |
MXene/CeO2NP/GOx | 0.49 μM | 7.6 μA/μM | 100 μM–10 mM | [133] | |
GOx/CNQDs/PANI | 0.029 μM | 49.71 μA μM −1 cm−2 | 0–500 μM | [136] | |
Uric acid | BGQDs/CNTs | 0.99 μM | 8.92 μA μM −1 cm−2 | 0–50 μM | [140] |
Hemin/GDY/G/GCE | 0.081 μM | - | 1–300 μM | [126] | |
Chitosan-Au-LIG | 0.5 μM | 3.11 μA μM −1 cm−2 | 0–100 μM | [141] | |
LEG | 0.74 μM | 3.50 μA μM−1 cm−2 | - | [144] | |
PyTS@Ti3C2Tx | 0.029 μM | 49.71 μA μM−1 cm−2 | 10–100 μM | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, K.H.; Kim, K.H.; Pack, S.P. Two-Dimensional Materials for Biosensing: Emerging Bio-Converged Strategies for Wearable and Implantable Platforms. Chemosensors 2025, 13, 209. https://doi.org/10.3390/chemosensors13060209
Min KH, Kim KH, Pack SP. Two-Dimensional Materials for Biosensing: Emerging Bio-Converged Strategies for Wearable and Implantable Platforms. Chemosensors. 2025; 13(6):209. https://doi.org/10.3390/chemosensors13060209
Chicago/Turabian StyleMin, Ki Ha, Koung Hee Kim, and Seung Pil Pack. 2025. "Two-Dimensional Materials for Biosensing: Emerging Bio-Converged Strategies for Wearable and Implantable Platforms" Chemosensors 13, no. 6: 209. https://doi.org/10.3390/chemosensors13060209
APA StyleMin, K. H., Kim, K. H., & Pack, S. P. (2025). Two-Dimensional Materials for Biosensing: Emerging Bio-Converged Strategies for Wearable and Implantable Platforms. Chemosensors, 13(6), 209. https://doi.org/10.3390/chemosensors13060209