A Microelectrode Sensor Chip for Detecting Mercury and Arsenic with Wide Concentration Ranges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Fabrication of the Microelectrode Sensor Chip
2.3. Modification of the Microelectrode Sensor Chip
2.4. Test of the Microelectrode Sensor Chip
3. Results
3.1. Electrode Preparation and Characterization
3.2. Optimization of Detection Parameters for Hg(II) and As(III)
3.3. Detection of Hg(II) and As(III)
3.4. Repeatability, Stability and Anti-Interference Capability
3.5. Determination in Actual Water Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Miranda Ferrari, A.; Carrington, P.; Rowley-Neale, S.J.; Banks, C.E. Recent advances in portable heavy metal electrochemical sensing platforms. Environ. Sci. Water Res. Technol. 2020, 6, 2676–2690. [Google Scholar] [CrossRef]
- Jose, J.; Prakash, P.; Jeyaprabha, B.; Abraham, R.; Mathew, R.M.; Zacharia, E.S.; Thomas, V.; Thomas, J. Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: A review. J. Iran. Chem. Soc. 2023, 20, 775–791. [Google Scholar] [CrossRef]
- Lin, Y.; Peng, Y.; Di, J. Electrochemical detection of Hg(II) ions based on nanoporous gold nanoparticles modified indium tin oxide electrode. Sens. Actuators B Chem. 2015, 220, 1086–1090. [Google Scholar] [CrossRef]
- Saint’Pierre, T.D.; Rocha, R.C.C.; Duyck, C.B. Determination of Hg in water associate to crude oil production by electrothermal vaporization inductively coupled plasma mass spectrometry. Microchem. J. 2013, 109, 41–45. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Ni, Y.; Kokot, S. A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sens. Actuators B Chem. 2015, 207, 490–497. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, X. Speciation analysis of mercury in water samples using dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. Anal. Chim. Acta 2011, 702, 50–55. [Google Scholar] [CrossRef]
- Alves, E.M.; Rodrigues, R.J.; Dos Santos Correa, C.; Fidemann, T.; Rocha, J.C.; Buzzo, J.L.L.; de Oliva Neto, P.; Nunez, E.G.F. Use of ultraviolet-visible spectrophotometry associated with artificial neural networks as an alternative for determining the water quality index. Environ. Monit. Assess. 2018, 190, 319. [Google Scholar] [CrossRef]
- Palanisamy, S.; Karuppiah, C.; Chen, S.-M.; Periakaruppan, P. Highly sensitive and selective amperometric nitrite sensor based on electrochemically activated graphite modified screen printed carbon electrode. J. Electroanal. Chem. 2014, 727, 34–38. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, J. Preparation of Ti3C2-PANI Composite as Sensor for Electrochemical Determination of Mercury Ions in Water. Int. J. Electrochem. Sci. 2020, 15, 2295–2306. [Google Scholar] [CrossRef]
- Bu, L.; Xie, Q.; Ming, H. Gold nanoparticles decorated three-dimensional porous graphitic carbon nitrides for sensitive anodic stripping voltammetric analysis of trace arsenic(III). J. Alloys Compd. 2020, 823, 153723. [Google Scholar] [CrossRef]
- Hu, H.; Xie, B.; Lu, Y.; Zhu, J. Advances in Electrochemical Detection Electrodes for As(III). Nanomaterials 2022, 12, 781. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, M.; Ponnusamy, V.K.; Sangilimuthu, S.N. A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium(II), mercury(II), lead(II) and zinc(II). Mikrochim. Acta 2019, 186, 69. [Google Scholar] [CrossRef] [PubMed]
- Kempegowda, R.; Antony, D.; Malingappa, P. Graphene–platinum nanocomposite as a sensitive and selective voltammetric sensor for trace level arsenic quantification. Int. J. Smart Nano Mater. 2014, 5, 17–32. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, R.; Anoop, M.D.; Kulshrestha, V.; Srivastava, D.N.; Ray, K.; Kothari, S.L.; Awasthi, K.; Kumar, M. Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Appl. Phys. A 2018, 124, 737. [Google Scholar] [CrossRef]
- Sahoo, S.; Satpati, A.K.; Reddy, A.V. Electrochemically deposited gold nanoparticles on a carbon paste electrode surface for the determination of mercury. J. AOAC Int. 2015, 98, 506–511. [Google Scholar] [CrossRef]
- Hu, H.; Lu, W.; Liu, X.; Meng, F.; Zhu, J. A High-Response Electrochemical As(III) Sensor Using Fe3O4–rGO Nanocomposite Materials. Chemosensors 2021, 9, 150. [Google Scholar] [CrossRef]
- Dutta, S.; Strack, G.; Kurup, P. Gold nanostar electrodes for heavy metal detection. Sens. Actuators B Chem. 2019, 281, 383–391. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Cong, A.; Tong, J.; Bian, C. Ultramicro Interdigitated Array Electrode Chip with Optimized Construction for Detection of Ammonia Nitrogen in Water. Micromachines 2023, 14, 629. [Google Scholar] [CrossRef]
- Tanwar, A.; Gandhi, H.A.; Kushwaha, D.; Bhattacharya, J. A review on microelectrode array fabrication techniques and their applications. Mater. Today Chem. 2022, 26, 101153. [Google Scholar] [CrossRef]
- Bani-Yaseen, A.D.; Kawaguchi, T.; Jankowiak, R. Electrochemically deposited metal nanoparticles for enhancing the performance of microfluidic MEMS in biochemical analysis. Int. J. Nanomanufact. 2009, 4, 99–107. [Google Scholar] [CrossRef]
- Wang, J.; Bian, C.; Tong, J.; Sun, J.; Xia, S. L-Aspartic acid/L-cysteine/gold nanoparticle modified microelectrode for simultaneous detection of copper and lead. Thin Solid Films 2012, 520, 6658–6663. [Google Scholar] [CrossRef]
- Xiao, D.; Zhai, J.; Shen, Z.; Wang, Q.; Wei, S.; Li, Y.; Bian, C. A Novel Thin-Layer Flow Cell Sensor System Based on BDD Electrode for Heavy Metal Ion Detection. Micromachines 2024, 15, 363. [Google Scholar] [CrossRef] [PubMed]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Zheng, H.; Hong, J.; Luo, X.; Li, S.; Wang, M.; Yang, B.; Wang, M. Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples. Microchem. J. 2019, 145, 806–812. [Google Scholar] [CrossRef]
- Thongsaw, A.; Sananmuang, R.; Udnan, Y.; Ampiah-Bonney, R.J.; Chaiyasith, W.C. Immobilized activated carbon as sorbent in solid phase extraction with cold vapor atomic absorption spectrometry for the preconcentration and determination of mercury species in water and freshwater fish samples. Anal. Sci. 2019, 35, 1195–1202. [Google Scholar]
- Zhu, Z.; Liu, J.; Zhang, S.; Na, X.; Zhang, X. Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer. Anal. Chim. Acta 2008, 607, 136–141. [Google Scholar] [CrossRef]
- Han, M.; Xie, Y.; Wang, R.; Li, Y.; Bian, C.; Xia, S. 4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions. Micromachines 2023, 14, 739. [Google Scholar] [CrossRef]
- Shakeel, S.; Talpur, F.N.; Sirajuddin; Anwar, N.; Iqbal, M.A.; Ibrahim, A.; Afridi, H.I.; Unar, A.; Khalid, A.; Ahmed, I.A.; et al. Xanthan Gum-Mediated Silver Nanoparticles for Ultrasensitive Electrochemical Detection of Hg2+ Ions from Water. Catalysts 2023, 13, 208. [Google Scholar] [CrossRef]
- Bernalte, E.; Arévalo, S.; Pérez-Taborda, J.; Wenk, J.; Estrela, P.; Avila, A.; Di Lorenzo, M. Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sens. Actuators B Chem. 2020, 307, 127620. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Veerapandian, M.; Krishnan, U.M.; Rayappan, J.B. Simultaneous electrochemical detection of Cd(II), Pb(II), As(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite. Talanta 2017, 162, 574–582. [Google Scholar] [CrossRef]
- Ismail, S.; Yusof, N.A.; Abdullah, J.; Abd Rahman, S.F. Electrochemical Detection of Arsenite Using a Silica Nanoparticles-Modified Screen-Printed Carbon Electrode. Materials 2020, 13, 3168. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yu, S.; Jiang, S.; Liu, J.; Wang, Z.; Ye, B.C. A novel and sensitive electrochemical sensor based on nanoporous gold for determination of As(III). Mikrochim. Acta 2020, 187, 395. [Google Scholar] [CrossRef] [PubMed]
- Nodehi, M.; Baghayeri, M.; Veisi, H. Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta 2021, 230, 122288. [Google Scholar] [CrossRef] [PubMed]
- Khamcharoen, W.; Duchda, P.; Songsrirote, K.; Ratanawimarnwong, N.; Limchoowong, N.; Jittangprasert, P.; Mantim, T.; Siangproh, W. An application of miniaturized electrochemical sensing for determination of arsenic in herbal medicines. Anal. Methods 2022, 14, 3087–3093. [Google Scholar] [CrossRef]
Method | Electrode Type | Analyte | Preconcentration | Linear Range (μg/L) | Detection Limit (μg/L) | Repeatability RSD (%) | Stability | References |
---|---|---|---|---|---|---|---|---|
HGAFS | / | Hg(II) | CPE (EF = 15.1) | 0.2–4.0 | 0.007 | 2.7 (n = 6) | / | [24] |
FI-CVAAS | / | Hg(II) | SPE (EF = 20) | 0.015–3.0 | 0.0155 | 1.25 (n = 6) | / | [25] |
HGAFS | / | As(III) | / | 0.5–50 | 0.04 | 1.6 (n = 11) | / | [26] |
DPV | 4-MPY/Au | Hg(II) | / | 0.1–500 | 0.02 | 0.63 (n = 7) | / | [27] |
SWV | XG-AgNPs/GCE | Hg(II) | / | 0.2–6 | 0.18 | 2.5 (n = 6) | 1 d | [28] |
SWV | Au-SPE | Hg(II) | / | 5–300 | 1.3 | 15.8 (n = 32) | / | [29] |
SWV | [Ru(bpy)3]2+-GO/Au | Hg(II) As(III) | / | 3.8–20.1 3.8–135 | 0.32 0.17 | 2.44 (n = 10) 1.87 (n = 10) | 60 d 60 d | [30] |
LSV | SiNPs/SPCE | As(III) | / | 5–30 | 6.2 | 4.78 (n = 6) | Should be freshly prepared | [31] |
DPV | 3D NPG/ITO | As(III) | / | 0.1–50 | 0.054 | 4.9 (n = 10) | 30 d | [32] |
SWV | GO/Fe3O4@PMDA/AuNPs/GCE | As(III) | / | 5–500 | 0.15 | 2.3 (n = 20) | 13 d | [33] |
SWV | In situ AuNPs/SPGE | As(III) | / | 100–3000 | 6.2 | <5 (n = 3) | In situ preparation | [34] |
DPV | AuNPs/MESC | Hg(II) As(III) | / | 5–1000 5–5000 | 1.4 2.4 | 0.85 (n = 20) 2.75 (n = 20) | 15 d | This work |
Sample | Added (μg/L) | Detected (μg/L) | Recovery (%) |
---|---|---|---|
Water 1 | 50 (Hg(II)) | 45.28 | 91 |
40 (As(III)) | 42.92 | 107 | |
Water 2 | 50 (Hg(II)) | 45.84 | 92 |
40 (As(III)) | 35.55 | 89 | |
Water 3 | 50 (Hg(II)) | 47.32 | 95 |
40 (As(III)) | 38.49 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, Y.; Li, Y.; Bian, C. A Microelectrode Sensor Chip for Detecting Mercury and Arsenic with Wide Concentration Ranges. Chemosensors 2025, 13, 129. https://doi.org/10.3390/chemosensors13040129
Zhang Z, Liu Y, Li Y, Bian C. A Microelectrode Sensor Chip for Detecting Mercury and Arsenic with Wide Concentration Ranges. Chemosensors. 2025; 13(4):129. https://doi.org/10.3390/chemosensors13040129
Chicago/Turabian StyleZhang, Zhihao, Yuqi Liu, Yang Li, and Chao Bian. 2025. "A Microelectrode Sensor Chip for Detecting Mercury and Arsenic with Wide Concentration Ranges" Chemosensors 13, no. 4: 129. https://doi.org/10.3390/chemosensors13040129
APA StyleZhang, Z., Liu, Y., Li, Y., & Bian, C. (2025). A Microelectrode Sensor Chip for Detecting Mercury and Arsenic with Wide Concentration Ranges. Chemosensors, 13(4), 129. https://doi.org/10.3390/chemosensors13040129