Implicit Measurement of Sweetness Intensity and Affective Value Based on fNIRS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sweetness Stimuli
2.3. fNIRS Measurement
2.4. Experimental Procedure
2.5. Experimental Setup
2.6. Data Analysis
2.6.1. Explicit Analysis Based on Self-Report
2.6.2. Implicit Analysis Based on fNIRS Data
- Preprocessing of fNIRS data
- Feature Extraction of fNIRS data
- Univariate activation analysis
- Multivariable decoding analysis
2.6.3. Relationship Analysis Between Explicit and Implicit Measurement
3. Results
3.1. Self-Report-Based Explicit Analysis Results
3.1.1. Sweetness Intensity
3.1.2. Affective Value
3.2. fNIRS-Based Implicit Data Analysis Results
3.2.1. Sweetness Intensity
3.2.2. Affect Value
3.3. Relationship Between Explicit and Implicit Measurement
3.3.1. Sweetness Intensity
3.3.2. Affect Value
4. Discussion
4.1. Effectiveness and Feasibility of fNIRS in Sweetness Perception Research
4.1.1. Neural Activation Patterns
4.1.2. Decoding Accuracy and Classification
4.2. Correlation and Complementarity Between Implicit and Explicit Measures
4.3. Implications for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grunert, K.G.; Seo, H.-S.; Fang, D.; Hogan, V.J.; Nayga, R.M., Jr. Sustainability Information, Taste Perception and Willingness to Pay: The Case of Bird-Friendly Coffee. Food Qual. Prefer. 2024, 115, 105124. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Affective Value, Intensity and Quality of Liquid Tastants/Food Discernment in the Human Brain: An Activation Likelihood Estimation Meta-Analysis. NeuroImage 2018, 169, 189–199. [Google Scholar] [CrossRef]
- Habara, M.; Horiguchi, T. Impact of Coffee Roasting and Grind Size on Acidity and Bitterness: Sensory Evaluation Using Electronic Tongue. Chemosensors 2024, 12, 196. [Google Scholar] [CrossRef]
- Coricelli, C.; Foroni, F.; Osimo, S.A.; Rumiati, R.I. Implicit and Explicit Evaluations of Foods: The Natural and Transformed Dimension. Food Qual. Prefer. 2019, 73, 143–153. [Google Scholar] [CrossRef]
- Galler, M.; Grendstad, Å.R.; Ares, G.; Varela, P. Capturing Food-Elicited Emotions: Facial Decoding of Children’s Implicit and Explicit Responses to Tasted Samples. Food Qual. Prefer. 2022, 99, 104551. [Google Scholar] [CrossRef]
- Kytö, E.; Bult, H.; Aarts, E.; Wegman, J.; Ruijschop, R.M.A.J.; Mustonen, S. Comparison of Explicit vs. Implicit Measurements in Predicting Food Purchases. Food Qual. Prefer. 2019, 78, 103733. [Google Scholar] [CrossRef]
- Weerawarna, N.R.P.M.; Godfrey, A.J.R.; Loudon, M.; Foster, M.; Hort, J. Comparing Traditional Check-All-That-Apply (CATA) and Implicit Response Time Go/No-Go Approaches for Profiling Consumer Emotional Response When Tasting Food. Food Qual. Prefer. 2023, 112, 105027. [Google Scholar] [CrossRef]
- de Wijk, R.A.; Noldus, L.P.J.J. Using Implicit Rather than Explicit Measures of Emotions. Food Qual. Prefer. 2021, 92, 104125. [Google Scholar] [CrossRef]
- Niedziela, M.M.; Ambroze, K. The Future of Consumer Neuroscience in Food Research. Food Qual. Prefer. 2021, 92, 104124. [Google Scholar] [CrossRef]
- Chikazoe, J.; Lee, D.H.; Kriegeskorte, N.; Anderson, A.K. Distinct Representations of Basic Taste Qualities in Human Gustatory Cortex. Nat. Commun. 2019, 10, 1048. [Google Scholar] [CrossRef]
- Crouzet, S.M.; Busch, N.A.; Ohla, K. Taste Quality Decoding Parallels Taste Sensations. Curr. Biol. 2015, 25, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Ye, Z.; Deng, Y.; Chen, J.; Chen, J.; Liu, D.; Ye, X.; Cheng, H. An Advance in Novel Intelligent Sensory Technologies: From an Implicit-tracking Perspective of Food Perception. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13327. [Google Scholar] [CrossRef]
- Funane, T.; Kiguchi, M.; Atsumori, H.; Sato, H.; Kubota, K.; Koizumi, H. Synchronous Activity of Two People’s Prefrontal Cortices during a Cooperative Task Measured by Simultaneous near-Infrared Spectroscopy. J. Biomed. Opt. 2011, 16, 077011. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Bryant, D.M.; Reiss, A.L. NIRS-Based Hyperscanning Reveals Increased Interpersonal Coherence in Superior Frontal Cortex during Cooperation. NeuroImage 2012, 59, 2430–2437. [Google Scholar] [CrossRef]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Mata Pavia, J.; Wolf, U.; Wolf, M. A Review on Continuous Wave Functional Near-Infrared Spectroscopy and Imaging Instrumentation and Methodology. NeuroImage 2014, 85, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Peru, D.; Maloney, V.P.; Najafizadeh, L. Cortical Activity Changes as Related to Oral Irritation-an fNIRS Study. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Repbulic of Korea, 11–15 July 2017; pp. 2558–2561. [Google Scholar]
- Chapman, J.; Elbourne, A.; Truong, V.K.; Newman, L.; Gangadoo, S.; Rajapaksha Pathirannahalage, P.; Cheeseman, S.; Cozzolino, D. Sensomics-From Conventional to Functional NIR Spectroscopy-Shining Light over the Aroma and Taste of Foods. Trends Food Sci. Technol. 2019, 91, 274–281. [Google Scholar] [CrossRef]
- Laves, K.; Mehlhose, C.; Risius, A. Sensory Measurements of Taste: Aiming to Visualize Sensory Differences in Taste Perception by Consumers—An Experiential fNIRS Approach. J. Int. Food Agribus. Mark. 2023, 35, 582–602. [Google Scholar] [CrossRef]
- Meyerding, S.G.H.; He, X.; Bauer, A. Neuronal Correlates of Basic Taste Perception and Hedonic Evaluation Using Functional Near-Infrared Spectroscopy (fNIRS). Appl. Food Res. 2024, 4, 100477. [Google Scholar] [CrossRef]
- Minematsu, Y.; Ueji, K.; Yamamoto, T. Activity of Frontal Pole Cortex Reflecting Hedonic Tone of Food and Drink: fNIRS Study in Humans. Sci. Rep. 2018, 8, 16197. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Basic Taste Processing Recruits Bilateral Anteroventral and Middle Dorsal Insulae: An Activation Likelihood Estimation Meta-analysis of fMRI Studies. Brain Behav. 2017, 7, e00655. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.A.; Liu, A.G.; Ingeholm, J.E.; Riddell, C.D.; Gotts, S.J.; Martin, A. Taste Quality Representation in the Human Brain. J. Neurosci. 2020, 40, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Ai, T.; Wu, X.; Onodera, T.; Ikezaki, H.; Toko, K. Elucidation of Response Mechanism of a Potentiometric Sweetness Sensor with a Lipid/Polymer Membrane for Uncharged Sweeteners. Chemosensors 2022, 10, 166. [Google Scholar] [CrossRef]
- Da Costa Arca, V.; Peres, A.M.; Machado, A.A.S.C.; Bona, E.; Dias, L.G. Sugars’ Quantifications Using a Potentiometric Electronic Tongue with Cross-Selective Sensors: Influence of an Ionic Background. Chemosensors 2019, 7, 43. [Google Scholar] [CrossRef]
- Veldhuizen, M.G.; Albrecht, J.; Zelano, C.; Boesveldt, S.; Breslin, P.; Lundström, J.N. Identification of Human Gustatory Cortex by Activation Likelihood Estimation. Hum. Brain Mapp. 2011, 32, 2256–2266. [Google Scholar] [CrossRef] [PubMed]
- Dans, P.W.; Foglia, S.D.; Nelson, A.J. Data Processing in Functional Near-Infrared Spectroscopy (fNIRS) Motor Control Research. Brain Sci. 2021, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- Yücel, M.A.; Selb, J.; Cooper, R.J.; Boas, D.A. Targeted Principle Component Analysis: A New Motion Artifact Correction Approach for near-Infrared Spectroscopy. J. Innov. Opt. Health Sci. 2014, 07, 1350066. [Google Scholar] [CrossRef]
- Biscaglia, F.; Caroppo, A.; Prontera, C.T.; Sciurti, E.; Signore, M.A.; Kuznetsova, I.; Leone, A.; Siciliano, P.; Francioso, L. A Comparison between Different Machine Learning Approaches Combined with Anodic Stripping Voltammetry for Copper Ions and pH Detection in Cell Culture Media. Chemosensors 2023, 11, 61. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, J.; Zhang, Y.; Chen, Y.; Liu, S.; Li, Y.; Qiao, L.; Wei, Z.; Jiang, S.; Meng, J. Research Progress of Taste Biosensors in Simulating Taste Transduction Mechanism. Chemosensors 2024, 12, 189. [Google Scholar] [CrossRef]
- Li, J.; Streletskaya, N.A.; Gómez, M.I. Does Taste Sensitivity Matter? The Effect of Coffee Sensory Tasting Information and Taste Sensitivity on Consumer Preferences. Food Qual. Prefer. 2019, 71, 447–451. [Google Scholar] [CrossRef]
- Prescott, J. Multisensory Processes in Flavour Perception and Their Influence on Food Choice. Curr. Opin. Food Sci. 2015, 3, 47–52. [Google Scholar] [CrossRef]
- Spinelli, S.; Pierguidi, L.; Gavazzi, G.; Dinnella, C.; De Toffoli, A.; Prescott, J.; Monteleone, E. Skin Conductance Responses to Oral Stimuli: The Role of Taste Quality and Intensity, and Personality Traits. Food Qual. Prefer. 2023, 109, 104917. [Google Scholar] [CrossRef]
- Fuster, J.M.; Alexander, G.E. Neuron Activity Related to Short-Term Memory. Sci. New Ser. 1971, 173, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Petrides, M. Frontal Lobes and Behaviour. Curr. Opin. Neurobiol. 1994, 4, 207–211. [Google Scholar] [CrossRef]
- Duncan, J.; Owen, A.M. Common Regions of the Human Frontal Lobe Recruited by Diverse Cognitive Demands. Trends Neurosci. 2000, 23, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.B.; Toni, I.; Josephs, O.; Frackowiak, R.S.J.; Passingham, R.E. The Prefrontal Cortex: Response Selection or Maintenance Within Working Memory? Science 2000, 288, 1656–1660. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S. Architecture of the Prefrontal Cortex and the Central Executive. Ann. N. Y. Acad. Sci. 1995, 769, 71–84. [Google Scholar] [CrossRef]
- Kringelbach, M.L. Activation of the Human Orbitofrontal Cortex to a Liquid Food Stimulus Is Correlated with Its Subjective Pleasantness. Cereb. Cortex 2003, 13, 1064–1071. [Google Scholar] [CrossRef]
- Zhu, R.; Feng, C.; Zhang, S.; Mai, X.; Liu, C. Differentiating Guilt and Shame in an Interpersonal Context with Univariate Activation and Multivariate Pattern Analyses. NeuroImage 2019, 186, 476–486. [Google Scholar] [CrossRef]
- Emberson, L.L.; Zinszer, B.D.; Raizada, R.D.S.; Aslin, R.N. Decoding the Infant Mind: Multivariate Pattern Analysis (MVPA) Using fNIRS. PLoS ONE 2017, 12, e0172500. [Google Scholar] [CrossRef]
- Norman, K.A.; Polyn, S.M.; Detre, G.J.; Haxby, J.V. Beyond Mind-Reading: Multi-Voxel Pattern Analysis of fMRI Data. Trends Cogn. Sci. 2006, 10, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Aguayo, I.; Garcia-Burgos, D.; Catena, A.; González, F. Implicit and Explicit Measures of the Sensory and Hedonic Analysis of Beer: The Role of Tasting Expertise. Food Res. Int. 2022, 152, 110873. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.-M.; Hogervorst, M.A.; Van Erp, J.B.F.; Grootjen, M.; Van Dam, E.; Zandstra, E.H. Measuring Cooking Experience Implicitly and Explicitly: Physiology, Facial Expression and Subjective Ratings. Food Qual. Prefer. 2019, 78, 103726. [Google Scholar] [CrossRef]
- Cerf-Ducastel, B.; Haase, L.; Murphy, C. Effect of Magnitude Estimation of Pleasantness and Intensity on fMRI Activation to Taste. Chemosens. Percept. 2012, 5, 100–109. [Google Scholar] [CrossRef]
- Lagast, S.; Gellynck, X.; Schouteten, J.J.; De Herdt, V.; De Steur, H. Consumers’ Emotions Elicited by Food: A Systematic Review of Explicit and Implicit Methods. Trends Food Sci. Technol. 2017, 69, 172–189. [Google Scholar] [CrossRef]
- Mehta, A.; Sharma, C.; Kanala, M.; Thakur, M.; Harrison, R.; Torrico, D.D. Self-Reported Emotions and Facial Expressions on Consumer Acceptability: A Study Using Energy Drinks. Foods 2021, 10, 330. [Google Scholar] [CrossRef]
- Danner, L.; Haindl, S.; Joechl, M.; Duerrschmid, K. Facial Expressions and Autonomous Nervous System Responses Elicited by Tasting Different Juices. Food Res. Int. 2014, 64, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Meyerding, S.G.H.; Mehlhose, C.M. Can Neuromarketing Add Value to the Traditional Marketing Research? An Exemplary Experiment with Functional near-Infrared Spectroscopy (fNIRS). J. Bus. Res. 2020, 107, 172–185. [Google Scholar] [CrossRef]
- Palmer, R.K.; Servant, G. (Eds.) The Pharmacology of Taste; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2022; Volume 275, ISBN 978-3-031-06449-4. [Google Scholar]
- Wu, A.; Dvoryanchikov, G.; Pereira, E.; Chaudhari, N.; Roper, S.D. Breadth of Tuning in Taste Afferent Neurons Varies with Stimulus Strength. Nat. Commun. 2015, 6, 8171. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; He, H. Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition. Cogn. Comput. 2018, 10, 368–380. [Google Scholar] [CrossRef]
- Zheng, W.-L.; Zhu, J.-Y.; Lu, B.-L. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2019, 10, 417–429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, J.; Li, S.; Wei, Z.; Sun, Y. Implicit Measurement of Sweetness Intensity and Affective Value Based on fNIRS. Chemosensors 2025, 13, 36. https://doi.org/10.3390/chemosensors13020036
Mai J, Li S, Wei Z, Sun Y. Implicit Measurement of Sweetness Intensity and Affective Value Based on fNIRS. Chemosensors. 2025; 13(2):36. https://doi.org/10.3390/chemosensors13020036
Chicago/Turabian StyleMai, Jiayu, Siying Li, Zhenbo Wei, and Yi Sun. 2025. "Implicit Measurement of Sweetness Intensity and Affective Value Based on fNIRS" Chemosensors 13, no. 2: 36. https://doi.org/10.3390/chemosensors13020036
APA StyleMai, J., Li, S., Wei, Z., & Sun, Y. (2025). Implicit Measurement of Sweetness Intensity and Affective Value Based on fNIRS. Chemosensors, 13(2), 36. https://doi.org/10.3390/chemosensors13020036