Exploring Lactate Electrochemical Biosensors: From Current Technologies to Future Market Impact
Abstract
1. Introduction
2. Fundamentals of Lactate Biosensing
Enzyme Immobilization Strategies
3. Electrochemical L-Lactate Biosensor Design and Fabrication: Structured Overview
3.1. Modification Strategies on the Working Electrode Surface
3.1.1. Nanomaterials
3.1.2. Sol–Gel
3.1.3. Polymers
3.1.4. Membranes
| Modification Strategy | Advantages | Disadvantages | Materials | Linear Range | Lod | Ref. |
|---|---|---|---|---|---|---|
| Nanomaterial-Based | High surface area for immobilization, sensitivity, mechanical stability, and supports multiple immobilization methods. | High material costs, difficulty uniform dispersion, and possible toxicity in some uses. | MWCNT-Av with LOx | 100–700 µmol L−1 | 33 µmol L−1 | [57] |
| Peroxidase-Mimetic Nanozyme with AuNPs and LOx | 5.0–140 µmol L−1 | 2.0 µmol L−1 | [58] | |||
| Sol–Gel-Based | Use of a silicate or oxide matrix, chemically inert and porous. The matrix maintains enzyme stability and permits substrate diffusion. | Limit substrate and product diffusion, reduce sensitivity and response time, mechanical stability challenges in the sol–gel matrix, and risk enzyme inactivation during curing. | Porous nickel oxide by sol–gel based on P133 in inverse micelle method | 10–7750 µmol L−1 | 27 µmol L−1 | [64] |
| Polymer-Based | Use polymer films, such as chitosan and polyaniline. Capable of immobilizing enzymes by entrapment or covalent bonding. | Regulate the permeability and density of the polymer to avoid diffusion limitations. Selecting polymer is a complex process, searching the compatibility with enzyme and the electrode. | Prussian blue (PB), LOx and a membrane with tetradodecylammonium tetrakis(4-chlorophenyl) borate (ETH 500), polyvinyl chloride (PVC), and bis(2-ethylhexyl) sebacate (DOS) | 1.0–50 µmol L−1 | 0.11 µmol L−1 | [70] |
| MgO, LOx and, 2-naphthoquinone, integrated with polydimethylsiloxane (PDMS) | 0–10 mmol L−1 | 0.3 mmol L−1 | [71] | |||
| Membrane-Based | Selective barrier, shields enzymes from interferents, and regulation of substrate diffusion to the electrode. | Slow response time and reduce sensitivity for diffusion limits; membrane choice is crucial, and application adds a fabrication step. | Polyphenylenediamine semi-permeable membrane with LOx in bovine serum albumin | 7.0–1000 μmol L−1 | 7.0 µmol L−1 | [74] |
| LOx in membrane based on alkoxysilane monomers (3-aminopropyl)trimethoxysilane (APTMS) and trimethoxyl [3-(methylamino)propyl]silane (MAPS) | 1.0–1000 μmol L−1 | 0.5 µmol L−1 | [75] |
4. Emerging and Alternative Lactate Biosensor Platforms
4.1. Other Lactate Biosensors
4.2. Lactate Microfluidic Devices
4.3. Lactate Paper Devices
5. Commercial and Translational Aspects (Revised for Coherence)
5.1. Cost of Production of Lactate Biosensor Production Can Be Volatile
5.2. Technology Readiness Levels (TRLs) and Market Entry for a Lactate Biosensor
5.3. Optimizing Lactate Biosensors for Commercialization: The Role of Electrode Surface Modification
6. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
| AI | artificial intelligence |
| ANVISA | National Health Surveillance Agency |
| BSA | Bovine serum albumin |
| CE | Counter electrode |
| CE-IVD | Conformité Européenne—In Vitro Diagnostic |
| CNTs | Carbon nanotubes |
| CPE | Carbon paste electrodes |
| CV | Cyclic voltammetry |
| DET | Direct electron transfer |
| EDC | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide |
| ELB | Lactic acid biosensor |
| FADH2 | Flavin adenine dinucleotide |
| FDA | Food and Drug Administration |
| GCE | Glassy carbon electrodes |
| GMP | Good Manufacturing Practice |
| IP | Intellectual property |
| KPIs | Key Performance Indicators |
| LA | Lactate acid |
| LDH | Lactate dehydrogenase |
| LOD | Limit of Detection |
| LOx | Lactate Oxidase |
| LSG | Laser-scribed graphene |
| MIPs | Molecularly Imprinted Polymers |
| MOFs | Metal-organic frameworks |
| NAD+ | oxidized form of nicotinamide Adenine Dinucleotide |
| NADH | Nicotinamide Adenine Dinucleotide |
| NHS | N-hydroxysuccinimide |
| PAM | Polyacrylamide |
| PANI | Polyaniline |
| pH | Potential of hydrogen |
| POC | point-of-care |
| PPy | Polypyrrole |
| PVA | Polyvinyl alcohol |
| QMS | Quality Management System |
| RE | Reference electrode |
| SA | Sodium alginate |
| SPEs | Screen-printed electrodes |
| TRL | Technology Readiness Level |
| WE | Working electrode |
References
- Ojo, A.O.; de Smidt, O. Lactic Acid: A Comprehensive Review of Production to Purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
- Moradi, S.; Firoozbakhtian, A.; Hosseini, M.; Karaman, O.; Kalikeri, S.; Raja, G.G.; Karimi-Maleh, H. Advancements in wearable technology for monitoring lactate levels using lactate oxidase enzyme and free enzyme as analytical approaches: A review. Int. J. Biol. Macromol. 2024, 254, 127577. [Google Scholar] [CrossRef]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [PubMed]
- García-Guzmán, J.J.; Sierra-Padilla, A.; Palacios-Santander, J.M.; Fernández-Alba, J.J.; Macías, C.G.; Cubillana-Aguilera, L. What is left for real-life lactate monitoring? Current advances in electrochemical lactate (bio) sensors for agrifood and biomedical applications. Biosensors 2022, 12, 919. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Narwal, V.; Batra, B. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosens. Bioelectron. 2016, 86, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Monroe, G.R.; van Eerde, A.M.; Tessadori, F.; Duran, K.J.; Savelberg, S.M.C.; van Alfen, J.C.; Terhal, P.A.; van der Crabben, S.N.; Lichtenbelt, K.D.; Fuchs, S.A.; et al. Identification of human D lactate dehydrogenase deficiency. Nat. Commun. 2019, 10, 1477. [Google Scholar] [CrossRef]
- Lafuente, J.-L.; González, S.; Aibar, C.; Rivera, D.; Avilés, E.; Beunza, J.-J. Continuous and non-invasive lactate monitoring techniques in critical care patients. Biosensors 2024, 14, 148. [Google Scholar] [CrossRef]
- Li, J.; Ma, P.; Liu, Z.; Xie, J. L- and D-Lactate: Unveiling their hidden functions in disease and health. Cell Commun. Signal. 2025, 23, 134. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, L.; Wen, J.; Ma, Y.; Dai, G.; Mo, F.; Wang, J. A Comprehensive Review of Advanced Lactate Biosensor Materials, Methods, and Applications in Modern Healthcare. Sensors 2025, 25, 1045. [Google Scholar] [CrossRef]
- Rattu, G.; Khansili, N.; Maurya, V.K.; Krishna, P.M. Lactate detection sensors for food, clinical and biological applications: A review. Environ. Chem. Lett. 2021, 19, 1135–1152. [Google Scholar] [CrossRef]
- Hernández-Ibáñez, N.; García-Cruz, L.; Montiel, V.; Foster, C.W.; Banks, C.E.; Iniesta, J. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens. Bioelectron. 2016, 77, 1168–1174. [Google Scholar] [CrossRef]
- Brazaca, L.C.; Sempionatto, J.R. Biosensors in Precision Medicine: From Fundamentals to Future Trends; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Prabhakar, T.; Giaretta, J.; Zulli, R.; Rath, R.J.; Farajikhah, S.; Talebian, S.; Dehghani, F. Covalent immobilization: A review from an enzyme perspective. Chem. Eng. J. 2025, 503, 158054. [Google Scholar] [CrossRef]
- Gil, B.; Hall, T.A.G.; Freeman, D.M.E.; Ming, D.; Kechagias, S.; Nabilla, S.; Cegla, F.; van Arkel, R.J. Wireless implantable bioelectronics with a direct electron transfer lactate enzyme for detection of surgical site infection in orthopaedics. Biosens. Bioelectron. 2024, 263, 116571. [Google Scholar] [CrossRef] [PubMed]
- Saputra, H.A.; Karim, M.M. Enzymatic and Enzyme-Free Electrochemical Lactate Sensors: A Review of the Recent Developments. Electrochem. Sci. Adv. 2025, 5, e202400021. [Google Scholar] [CrossRef]
- Tsvik, L.; Steiner, B.; Herzog, P.; Haltrich, D.; Sützl, L. Flavin mononucleotide-dependent L-lactate dehydrogenases: Expanding the toolbox of enzymes for L-lactate biosensors. ACS Omega 2022, 7, 41480–41492. [Google Scholar] [CrossRef]
- Rassaei, L.; Olthuis, W.; Tsujimura, S.; Sudhölter, E.J.R.; van den Berg, A. Lactate biosensors: Current status and outlook. Anal. Bioanal. Chem. 2014, 406, 123–137. [Google Scholar] [CrossRef]
- Maeda-Yorita, K.; Aki, K.; Sagai, H.; Misaki, H.; Massey, V. L-lactate oxidase and L-lactate monooxygenase: Mechanistic variations on a common structural theme. Biochimie 1995, 77, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Sirvent, P.; Py, G.; Koralsztein, J.-P.; Mercier, J. The concept of maximal lactate steady state: A bridge between biochemistry, physiology and sport science. Sports Med. 2003, 33, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Orzari, L.O.; Kalinke, C.; Silva-Neto, H.A.; Rocha, D.S.; Camargo, J.R.; Coltro, W.K.T.; Janegitz, B.C. Screen-printing vs additive manufacturing approaches: Recent aspects and trends involving the fabrication of electrochemical sensors. Anal. Chem. 2025, 97, 1482–1494. [Google Scholar] [CrossRef]
- Castrovilli, M.C.; Scognamiglio, V.; Tempesta, E.; Chiarinelli, J.; Parracino, M.; Frisulli, V.; Giardi, M.T.; Avaldi, L.; Rossi, D.; Cartoni, A. Improved reuse and storage performances at room temperature of a new environmentally friendly lactate oxidase biosensor prepared by ambient electrospray immobilization. Green Chem. 2023, 25, 5257–5266. [Google Scholar] [CrossRef]
- He, X.; Yu, J.; Ge, S.; Zhang, X.; Lin, Q.; Zhu, H.; Feng, S.; Yuan, L.; Huang, J. Amperometric L-lactate biosensor based on sol-gel film and multi-walled carbon nanotubes/platinum nanoparticles enhancement. Chin. J. Anal. Chem. 2010, 38, 57–61. (In Chinese) [Google Scholar] [CrossRef]
- Haghighi, B.; Bozorgzadeh, S. Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled carbon nanotubes. Talanta 2011, 85, 2189–2193. [Google Scholar] [CrossRef]
- Kucherenko, D.Y.; Kucherenko, I.S.; Soldatkin, O.O.; Topolnikova, Y.V.; Dzyadevych, S.V.; Soldatkin, A.P. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate. Bioelectrochemistry 2019, 128, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.; Sánchez, S.; Fabregas, E. Enzymatic strategies to construct L-lactate biosensors based on polysulfone/carbon nanotubes membranes. Electroanalysis 2012, 24, 967–974. [Google Scholar] [CrossRef]
- Lamas-Ardisana, P.J.; Loaiza, O.A.; Añorga, L.; Jubete, E.; Borghei, M.; Ruiz, V.; Ochoteco, E.; Cabañero, G.; Grande, H.J. Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly (diallyldimethylammonium chloride) films. Biosens. Bioelectron. 2014, 56, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Azzouzi, S.; Rotariu, L.; Benito, A.M.; Maser, W.K.; Ali, M.B.; Bala, C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens. Bioelectron. 2015, 69, 280–286. [Google Scholar] [CrossRef]
- Shimomura, T.; Sumiya, T.; Ono, M.; Ito, T.; Hanaoka, T.-a. Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal. Chim. Acta 2012, 714, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Hirst, N.A.; Hazelwood, L.D.; Jayne, D.G.; Millner, P.A. An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly (ethyleneimine) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis. Sens. Actuators B Chem. 2013, 186, 674–680. [Google Scholar] [CrossRef]
- Minami, T.; Sato, T.; Minamiki, T.; Fukuda, K.; Kumaki, D.; Tokito, S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 2015, 74, 45–48. [Google Scholar] [CrossRef]
- Briones, M.; Casero, E.; Vázquez, L.; Pariente, F.; Lorenzo, E.; Petit-Domínguez, M.D. Diamond nanoparticles as a way to improve electron transfer in sol–gel l-lactate biosensing platforms. Anal. Chim. Acta 2016, 908, 141–149. [Google Scholar] [CrossRef]
- Shkotova, L.V.; Piechniakova, N.Y.; Kukla, O.L.; Dzyadevych, S.V. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine. Food Chem. 2016, 197, 972–978. [Google Scholar] [CrossRef]
- Hashemzadeh, S.; Omidi, Y.; Rafii-Tabar, H. Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite. Microchim. Acta 2019, 186, 680. [Google Scholar] [CrossRef]
- Reza, M.S.; Seonu, S.; Zahed, M.A.; Asaduzzaman, M.; Song, H.; Jeong, S.H.; Park, J.Y. Reduced graphene oxide-functionalized polymer microneedle for continuous and wide-range monitoring of lactate in interstitial fluid. Talanta 2024, 270, 125582. [Google Scholar] [CrossRef]
- Phamonpon, W.; Promphet, N.; Saengkiettiyut, K.; Boonyongmaneerat, Y.; Rattanawaleedirojn, P.; Hinestroza, J.P.; Rodthongkum, N. Novel bioelectrode for sweat lactate sensor based on platinum nanoparticles/reduced graphene oxide modified carbonized silk cocoon. Sens. Actuators B Chem. 2025, 423, 136717. [Google Scholar] [CrossRef]
- Konno, S.; Suzuki, Y.; Suzuki, M.; Kudo, H. Evaluation of exercise intensity by real-time skin lactate monitoring system. Electron. Commun. Jpn. 2020, 103, 97–102. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Qing, X.; Wang, Y.; Zhong, W.; Wang, W.; Chen, Y.; Liu, Q.; Li, M.; Wang, D. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Anal. Bioanal. Chem. 2020, 412, 7515–7524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, X.; Wu, Q.; Liu, X. A thread-based wearable sweat nanobiosensor. Biosens. Bioelectron. 2021, 188, 113270. [Google Scholar] [CrossRef]
- Saha, T.; Songkakul, T.; Knisely, C.T.; Yokus, M.A.; Daniele, M.A.; Dickey, M.D.; Bozkurt, A.; Velev, O.D. Wireless wearable electrochemical sensing platform with zero-power osmotic sweat extraction for continuous lactate monitoring. ACS Sens. 2022, 7, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Shitanda, I.; Ozone, Y.; Morishita, Y.; Matsui, H.; Loew, N.; Motosuke, M.; Mukaimoto, T.; Kobayashi, M.; Mitsuhara, T.; Sugita, Y. Air-bubble-insensitive microfluidic lactate biosensor for continuous monitoring of lactate in sweat. ACS Sens. 2023, 8, 2368–2374. [Google Scholar] [CrossRef]
- Weng, X.; Li, M.; Chen, L.; Peng, B.; Jiang, H. A wearable nanozyme–enzyme electrochemical biosensor for sweat lactate monitoring. Talanta 2024, 279, 126675. [Google Scholar] [CrossRef]
- Asadian, E.; Hekmat, F.; Kahnamouei, M.H.; Mohammadpour, R.; Shahrokhian, S.; Sasanpour, P. Supercapacitor-powered wearable biosensor for continuous lactate monitoring from sweat. Biosens. Bioelectron. 2025, 275, 117226. [Google Scholar] [CrossRef]
- Derbyshire, P.J.; Barr, H.; Davis, F.; Higson, S.P.J. Lactate in human sweat: A critical review of research to the present day. J. Physiol. Sci. 2012, 62, 429–440. [Google Scholar] [CrossRef]
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Enzyme immobilization: An overview on techniques and support materials. 3 Biotech 2013, 3, 1–9. [Google Scholar] [CrossRef]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: An update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef]
- Asal, M.; Özen, Ö.; Şahinler, M.; Baysal, H.T.; Polatoğlu, İ. An overview of biomolecules, immobilization methods and support materials of biosensors. Sens. Rev. 2019, 39, 377–386. [Google Scholar] [CrossRef]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [PubMed]
- Mohidem, N.A.; Mohamad, M.; Rashid, M.U.; Norizan, M.N.; Hamzah, F.; Mat, H.b. Recent advances in enzyme immobilisation strategies: An overview of techniques and composite carriers. J. Compos. Sci. 2023, 7, 488. [Google Scholar] [CrossRef]
- Vicentini, F.C.; Silva, L.R.G.; Stefano, J.S.; Lima, A.R.F.; Prakash, J.; Bonacin, J.A.; Janegitz, B.C. Starch-based electrochemical sensors and biosensors: A review. Biomed. Mater. Devices 2023, 1, 319–338. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, C.; He, H.; Zhang, M.; Wang, H.; Ji, K.; Wei, L.; Mao, X.; Sun, R.; Zhou, F. Recent advances in wearable biosensors for non-invasive detection of human lactate. Biosensors 2022, 12, 1164. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, J.; Wang, L.; Zhang, J.; Ding, L.; Liu, H.; Yu, X. Nanozyme-enhanced electrochemical biosensors: Mechanisms and applications. Small 2024, 20, 2307815. [Google Scholar] [CrossRef]
- Tamborelli, A.; Mujica, M.L.; Amaranto, M.; Barra, J.L.; Rivas, G.; Godino, A.; Dalmasso, P. L-Lactate Electrochemical Biosensor Based on an Integrated Supramolecular Architecture of Multiwalled Carbon Nanotubes Functionalized with Avidin and a Recombinant Biotinylated Lactate Oxidase. Biosensors 2024, 14, 196. [Google Scholar] [CrossRef]
- Smutok, O.; Kavetskyy, T.; Prokopiv, T.; Serkiz, R.; Šauša, O.; Novák, I.; Švajdlenková, H.; Maťko, I.; Gonchar, M.; Katz, E. Biosensor based on peroxidase-mimetic nanozyme and lactate oxidase for accurate L-lactate analysis in beverages. Biosensors 2022, 12, 1042. [Google Scholar] [CrossRef]
- Jannath, K.A.; Karim, M.M.; Saputra, H.A.; Seo, K.D.; Kim, K.B.; Shim, Y.B. A review on the recent advancements in nanomaterials for nonenzymatic lactate sensing. Bull. Korean Chem. Soc. 2023, 44, 407–419. [Google Scholar] [CrossRef]
- Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors 2022, 13, 40. [Google Scholar] [CrossRef]
- Rusling, J.F. Nanomaterials-based electrochemical immunosensors for proteins. Chem. Rec. 2012, 12, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Ferrag, C.; Kerman, K. Grand challenges in nanomaterial-based electrochemical sensors. Front. Sens. 2020, 1, 583822. [Google Scholar] [CrossRef]
- Park, T.-M.; Iwuoha, E.I.; Smyth, M.R.; Freaney, R.; McShane, A.J. Sol-gel based amperometric biosensor incorporating an osmium redox polymer as mediator for detection of L-lactate. Talanta 1997, 44, 973–978. [Google Scholar] [CrossRef]
- Kim, S.; Yang, W.S.; Kim, H.-J.; Lee, H.-N.; Park, T.J.; Seo, S.-J.; Park, Y.M. Highly sensitive non-enzymatic lactate biosensor driven by porous nanostructured nickel oxide. Ceram. Int. 2019, 45, 23370–23376. [Google Scholar] [CrossRef]
- Zhao, Y.; Geng, X.; Zhou, X.; Xu, L.; Li, S.; Li, Z.; Guo, Y.; Li, C. A novel high-stability bioelectrochemical sensor based on sol-gel immobilization of lactate dehydrogenase and AuNPs-rGO signal enhancement for serum pyruvate detection. Anal. Chim. Acta 2023, 1265, 341335. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S. Sol-Gel Synthesis Strategies for Tailored Catalytic Materials; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Preda, G.; Bizerea, O.; Vlad-Oros, B. Sol-gel technology in enzymatic electrochemical biosensors for clinical analysis. In Biosensors for Health, Environment and Biosecurity; Serra, P.A., Ed.; IntechOpen: London, UK, 2011; pp. 363–368. [Google Scholar]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Madden, J.; Vaughan, E.; Thompson, M.; O’Riordan, A.; Galvin, P.; Iacopino, D.; Teixeira, S.R. Electrochemical sensor for enzymatic lactate detection based on laser-scribed graphitic carbon modified with platinum, chitosan and lactate oxidase. Talanta 2022, 246, 123492. [Google Scholar] [CrossRef]
- Xuan, X.; Perez-Rafols, C.; Chen, C.; Cuartero, M.; Crespo, G.A. Lactate biosensing for reliable on-body sweat analysis. ACS Sens. 2021, 6, 2763–2771. [Google Scholar] [CrossRef]
- Shitanda, I.; Mitsumoto, M.; Loew, N.; Yoshihara, Y.; Watanabe, H.; Mikawa, T.; Tsujimura, S.; Itagaki, M.; Motosuke, M. Continuous sweat lactate monitoring system with integrated screen-printed MgO-templated carbon-lactate oxidase biosensor and microfluidic sweat collector. Electrochim. Acta 2021, 368, 137620. [Google Scholar] [CrossRef]
- Lanzalaco, S.; Molina, B.G. Polymers and plastics modified electrodes for biosensors: A review. Molecules 2020, 25, 2446. [Google Scholar] [CrossRef] [PubMed]
- Freigang, M.; Wurster, C.D.; Hagenacker, T.; Stolte, B.; Weiler, M.; Kamm, C.; Schreiber-Katz, O.; Osmanovic, A.; Petri, S.; Kowski, A.; et al. Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment. Ann. Clin. Transl. Neurol. 2021, 8, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Berketa, K.; Buzhak, A.; Vakhovskyi, Y.; Mruga, D.; Sverstiuk, A.; Soldatkina, O.; Lyubovych, O.; Marchuk, O.; Dzyadevych, S.; Soldatkin, O. Amperometric Biosensor Based on a Semipermeable Poly-Meta-Phenylenediamine Membrane and Immobilized Lactate Oxidase for Highly Accurate l-Lactate Determination in Blood Serum. Electroanalysis 2025, 37, e12011. [Google Scholar] [CrossRef]
- Vokhmyanina, D.V.; Sharapova, O.E.; Buryanovataya, K.E.; Karyakin, A.A. Novel siloxane derivatives as membrane precursors for lactate oxidase immobilization. Sensors 2023, 23, 4014. [Google Scholar] [CrossRef]
- Liu, M.; Yang, M.; Wang, M.; Wang, H.; Cheng, J. A flexible dual-analyte electrochemical biosensor for salivary glucose and lactate detection. Biosensors 2022, 12, 210. [Google Scholar] [CrossRef]
- Khan, I.; Lee, J.H.; Park, J.; Wooh, S. Nano/micro-structural engineering of Nafion membranes for advanced electrochemical applications. J. Saudi Chem. Soc. 2022, 26, 101511. [Google Scholar] [CrossRef]
- Banks, C.E.; Foster, C.W.; Kadara, R.O. Screen-Printing Electrochemical Architectures; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Iula, G.; Miglione, A.; Kalligosfyri, P.M.; Spinelli, M.; Amoresano, A.; Di Natale, C.; Darwish, I.A.; Cinti, S. On-body electrochemical measurement of sweat lactate with the use of paper-based fluidics and 3D-printed flexible wearable biosensor. Anal. Bioanal. Chem. 2025, 417, 3825. [Google Scholar]
- Yashina, E.I.; Borisova, A.V.; Karyakina, E.E.; Shchegolikhina, O.I.; Vagin, M.Y.; Sakharov, D.A.; Tonevitsky, A.G.; Karyakin, A.A. Sol− gel immobilization of lactate oxidase from organic solvent: Toward the advanced lactate biosensor. Anal. Chem. 2010, 82, 1601–1604. [Google Scholar] [CrossRef] [PubMed]
- Dykstra, G.; Chapa, I.; Liu, Y. Reagent-free lactate detection using Prussian blue and electropolymerized-molecularly imprinted polymers-based electrochemical biosensors. ACS Appl. Mater. Interfaces 2024, 16, 66921–66931. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V. A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends 2021, 5, 100116. [Google Scholar] [CrossRef]
- Promsuwan, K.; Saichanapan, J.; Soleh, A.; Saisahas, K.; Samoson, K.; Wangchuk, S.; Limbut, W. Bio-functionalized conductive poly(acrylic acid):poly(3,4-Ethylenedioxythiophene)-Prussian blue hybrid transducer for biosensors and bioelectronics interfaces. Mater. Today Chem. 2024, 40, 102271. [Google Scholar] [CrossRef]
- Yang, C.; Yu, S.; Yang, Q.; Wang, Q.; Xie, S.; Yang, H. Graphene Supported Platinum Nanoparticles Modified Electrode and Its Enzymatic Biosensing for Lactic Acid. J. Electrochem. Soc. 2018, 165, B665. [Google Scholar] [CrossRef]
- Halpin, G.; Herdman, K.; Dempsey, E. Electrochemical investigations into enzymatic polymerisation of 1,10-phenanthroline-5,6-dione as a redox mediator for lactate sensing. Sens. Actuators Rep. 2021, 3, 100032. [Google Scholar] [CrossRef]
- Fitriana, M.; Hiraka, K.; Ikebukuro, K.; Sode, K.; Tsugawa, W. A Thiol-reactive Phenazine Ethosulfate–A Novel Redox Mediator for Quasi-direct Electron-transfer-type Sensors. Sens. Mater. 2022, 34, 2105–2124. [Google Scholar] [CrossRef]
- Demkiv, O.; Gayda, G.; Stasyuk, N.; Moroz, A.; Serkiz, R.; Kausaite-Minkstimiene, A.; Gonchar, M.; Nisnevitch, M. Flavocytochrome b2-Mediated Electroactive Nanoparticles for Developing Amperometric L-Lactate Biosensors. Biosensors 2023, 13, 587. [Google Scholar] [CrossRef]
- Pagán, M.; Suazo, D.; del Toro, N.; Griebenow, K. A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor. Biosens. Bioelectron. 2015, 64, 138–146. [Google Scholar] [CrossRef]
- Uzunoglu, A.; Stanciu, L.A. Novel CeO2–CuO-decorated enzymatic lactate biosensors operating in low oxygen environments. Anal. Chim. Acta 2016, 909, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Uzunoglu, A. CeO2-ZrO2 Nanoparticle-Modified Enzymatic Lactate Biosensors with Reduced Oxygen Susceptibility. J. Electrochem. Soc. 2018, 165, B436. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, C. Wearable electrochemical sensors for noninvasive monitoring of health—A perspective. Curr. Opin. Electrochem. 2020, 23, 42–46. [Google Scholar] [CrossRef]
- Milić, L.; Zambry, N.S.; Ibrahim, F.B.; Petrović, B.; Kojić, S.; Thiha, A.; Joseph, K.; Jamaluddin, N.F.; Stojanović, G.M. Advances in textile-based microfluidics for biomolecule sensing. Biomicrofluidics 2024, 18, 051502. [Google Scholar] [CrossRef]
- Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.; Kumar, S.; Malhotra, B.D. Recent advances in 3D printing technologies for wearable (bio)sensors. Addit. Manuf. 2021, 46, 102088. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Miyazaki, M. Enzyme-immobilized microfluidic devices for biomolecule detection. TrAC Trends Anal. Chem. 2023, 159, 116908. [Google Scholar] [CrossRef]
- Zhang, C.; Su, Y.; Liang, Y.; Lai, W. Microfluidic cloth-based analytical devices: Emerging technologies and applications. Biosens. Bioelectron. 2020, 168, 112391. [Google Scholar] [CrossRef] [PubMed]
- Pappa, A.M.; Curto, V.F.; Braendlein, M.; Strakosas, X.; Donahue, M.J.; Fiocchi, M.; Malliaras, G.G.; Owens, R.M. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 2016, 5, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Berkheimer, Z.A.; Tahir, A.; Nordin, G.P.; Paixão, T.R.L.C.; Woolley, A.T.; do Nascimento, G.H.M.; de Araujo, W.R.; Pradela-Filho, L.A. Extruded filament electrodes for lactate biosensing in continuous-injection paper-based microfluidic devices. Biosens. Bioelectron. 2025, 278, 117390. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, J.; Liu, Y.; Wong, T.; Su, J.; Yao, K.; Zhou, J.; Huang, Y.; Li, H.; Li, D.; et al. Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Des. Manuf. 2022, 5, 201–209. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Liu, R.; Li, J.; Zhang, Q.; Shi, G.; Li, Y.; Hou, C.; Wang, H. A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens. Bioelectron. 2021, 174, 112828. [Google Scholar] [CrossRef]
- Vinoth, R.; Nakagawa, T.; Mathiyarasu, J.; Mohan, A.M.V. Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis. ACS Sens. 2021, 6, 1174–1186. [Google Scholar] [CrossRef]
- Cicatiello, C.; Gowers, S.A.N.; Smith, G.K.; Pinggera, D.; Orlob, S.; Wallner, B.; Schiefecker, A.; Moser, N.; Georgiou, P.; Helbok, R.; et al. The Neurochemical Signature of Cardiac Arrest: A Multianalyte Online Microdialysis Study. ACS Chem. Neurosci. 2025, 16, 1323–1334. [Google Scholar] [CrossRef]
- Samper, I.C.; Gowers, S.A.N.; Rogers, M.L.; Murray, D.R.K.; Jewell, S.L.; Pahl, C.; Strong, A.J.; Boutelle, M.G. 3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate. Lab Chip 2019, 19, 2038–2048. [Google Scholar] [CrossRef]
- Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sens. 2016, 1, 464–482. [Google Scholar] [CrossRef]
- Adam, H.; Gopinath, S.C.B.; Md Arshad, M.K.; Adam, T.; Hashim, U.; Sauli, Z.; Fakhri, M.A.; Subramaniam, S.; Chen, Y.; Sasidharan, S.; et al. Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: An overview. J. Taiwan Inst. Chem. Eng. 2023, 146, 104814. [Google Scholar] [CrossRef]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef]
- Chen, W.-T.; Yan, C.-F.; Yu, C.-J.; Liao, Y.-C.; Chen, C.-F. Highly catalytic Prussian blue analogues and their application on the three-dimensional origami paper-based sweat sensors. Biosens. Bioelectron. 2024, 254, 116188. [Google Scholar] [CrossRef]
- Campos-Arias, L.; Peřinka, N.; Lau, Y.C.; Castro, N.; Pereira, N.; Correia, V.M.G.; Costa, P.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. Improving Definition of Screen-Printed Functional Materials for Sensing Application. ACS Appl. Electron. Mater. 2024, 6, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Abbas, N.; Ali, A. Inkjet Printing: A Viable Technology for Biosensor Fabrication. Chemosensors 2022, 10, 103. [Google Scholar] [CrossRef]
- Huttunen, O.-H.; Happonen, T.; Hiitola-Keinänen, J.; Korhonen, P.; Ollila, J.; Hiltunen, J. Roll-To-Roll Screen-Printed Silver Conductors on a Polydimethyl Siloxane Substrate for Stretchable Electronics. Ind. Eng. Chem. Res. 2019, 58, 19909–19916. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zheng, S.; Zhang, L.; Shi, X.; He, J.; Chou, X.; Wu, Z.-S. Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. J. Energy Chem. 2021, 63, 498–513. [Google Scholar] [CrossRef]
- Boček, Ž.; Zubak, M.; Kassal, P. Fully Inkjet-Printed Flexible Graphene–Prussian Blue Platform for Electrochemical Biosensing. Biosensors 2025, 15, 28. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilância Sanitária-ANVISA. Good Manufacturing Practices. Available online: www.gov.br/anvisa/pt-br/english/regulation-of-companies (accessed on 31 May 2025).
- World Health Organization. Good Manufacturing. Available online: www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards/gmp (accessed on 31 May 2025).
- Qin, Y.; Ouyang, X.; Lv, Y.; Liu, W.; Liu, Q.; Wang, S. A Review of Carbon-Based Conductive Inks and Their Printing Technologies for Integrated Circuits. Coatings 2023, 13, 1769. [Google Scholar] [CrossRef]
- Business Research Insights. Electrochemical Biosensors Market Report Overview. Available online: www.businessresearchinsights.com/market-reports/electrochemical-biosensors-market-103057#:~:text=The%20global%20electrochemical%20biosensors%20market,7.05%25%20during%20the%20forecast%20period (accessed on 1 June 2025).
- U.S. Department of Health & Human Services. Technology Readiness Levels (Trls) for Medical Countermeasure Products (Diagnostics and Medical Devices). Available online: www.medicalcountermeasures.gov/trl/trls-for-medical-devices (accessed on 1 June 2025).
- Ronan, Y. Medical Device Design and Development: Process, Phases and Technologies. Available online: www.3erp.com/blog/medical-device-design-and-development/ (accessed on 1 June 2025).
- Agência Nacional de Vigilância Sanitária-ANVISA. Approval of Medical Devices in Brazil. Available online: www.gov.br/anvisa/pt-br/english/regulation-of-products/medical-devices (accessed on 1 June 2025).
- News Medical Life Sciences. Nova Biomedical Capillary Blood Testing for Lactate, Hb and Hct with the StatStrip® LAC/Hb/Hct*. Available online: www.news-medical.net/suppliers/Nova-Biomedical.aspx (accessed on 31 July 2025).
- Zimmer & Peacock. Lactate in Sweat. Available online: www.zimmerpeacock.com/2024/06/24/lactate-in-sweat/ (accessed on 31 July 2025).
- Shenzhen Sieman Technology Co. M-2000 plus Bioprocess Biochemistry Analyzer. Available online: www.siemanbio.com/ (accessed on 31 July 2025).
- Zhao, Y.; Fang, X.; Gu, Y.; Yan, X.; Kang, Z.; Zheng, X.; Lin, P.; Zhao, L.; Zhang, Y. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced l-lactate sensing. Colloids Surf. B Biointerfaces 2015, 126, 476–480. [Google Scholar] [CrossRef]
- Chan, D.; Barsan, M.M.; Korpan, Y.; Brett, C.M.A. L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochim. Acta 2017, 231, 209–215. [Google Scholar] [CrossRef]
- Tu, D.; He, Y.; Rong, Y.; Wang, Y.; Li, G. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene. Meas. Sci. Technol. 2016, 27, 045108. [Google Scholar] [CrossRef]
- Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 2016, 7, 11650. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, W.; Zhang, Y.; Jiang, Q.; He, J.-H.; Baeumner, A.J.; Wolfbeis, O.S.; Wang, Z.L.; Salama, K.N.; Alshareef, H.N. A MXene-Based Wearable Biosensor System for High-Performance In Vitro Perspiration Analysis. Small 2019, 15, 1901190. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Nakagawa, T.; Pavinatto, A.; Mensah, S.T.; Imani, S.; Mercier, P.; Wang, J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 2017, 17, 1834–1842. [Google Scholar] [PubMed]
- Pappa, A.M.; Ohayon, D.; Giovannitti, A.; Maria, I.P.; Savva, A.; Uguz, I.; Rivnay, J.; McCulloch, I.; Owens, R.M.; Inal, S. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv. 2018, 4, eaat0911. [Google Scholar] [CrossRef]
- Wang, R.; Zhai, Q.; An, T.; Gong, S.; Cheng, W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 2021, 222, 121484. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, D.; Xu, C.; Ge, Y.; Liu, X.; Wei, Q.; Huang, L.; Ren, X.; Wang, C.; Wang, Y. Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sens. Actuators B Chem. 2020, 320, 128325. [Google Scholar] [CrossRef]
- Hickey, D.P.; Reid, R.C.; Milton, R.D.; Minteer, S.D. A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens. Bioelectron. 2016, 77, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Parra-Alfambra, A.M.; Casero, E.; Vázquez, L.; Quintana, C.; del Pozo, M.; Petit-Domínguez, M.D. MoS2 nanosheets for improving analytical performance of lactate biosensors. Sens. Actuators B Chem. 2018, 274, 310–317. [Google Scholar] [CrossRef]
- Chang, A.S.; Memon, N.N.; Amin, S.; Chang, F.; Aftab, U.; Abro, M.I.; dad Chandio, A.; Shah, A.A.; Ibupoto, M.H.; Ansari, M.A.; et al. Facile Non-enzymatic Lactic Acid Sensor Based on Cobalt Oxide Nanostructures. Electroanalysis 2019, 31, 1296–1303. [Google Scholar] [CrossRef]
- Zhou, L. Molecularly Imprinted Sensor based on Ag-Au NPs/SPCE for Lactate Determination in Sweat for Healthcare and Sport Monitoring. Int. J. Electrochem. Sci. 2021, 16, 211043. [Google Scholar] [CrossRef]
- Kumar, N.; Lin, Y.-J.; Huang, Y.-C.; Liao, Y.-T.; Lin, S.-P. Detection of lactate in human sweat via surface-modified, screen-printed carbon electrodes. Talanta 2023, 265, 124888. [Google Scholar] [CrossRef]
- Schmitt, R.E.; Molitor, H.R.; Wu, T. Voltammetric Method for the Determination of Lactic Acid Using a Carbon Paste Electrode Modified with Cobalt Phthalocyanine. Int. J. Electrochem. Sci. 2012, 7, 10835–10841. [Google Scholar] [CrossRef]
- Sajna, M.S.; Cabibihan, J.-J.; Malik, R.A.; Kumar Sadasivuni, K.; Geetha, M.; Khalid Alahmad, J.; Anwar Hijazi, D.; Alsaedi, F. Nonenzymatic electrochemical lactic acid sensor using CuO nanocomposite. Mater. Sci. Eng. B 2023, 288, 116217. [Google Scholar] [CrossRef]
- Zhu, C.; Xue, H.; Zhao, H.; Fei, T.; Liu, S.; Chen, Q.; Gao, B.; Zhang, T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta 2022, 242, 123289. [Google Scholar] [CrossRef] [PubMed]






| KIPs | Definition | Significance for Accurate Lactate Monitoring | Common Methods for Improvement |
|---|---|---|---|
| Sensitivity | Degree of change in sensor output signal per unit change in analyte concentration. | Crucial for detecting minute physiological fluctuations and early diagnosis. | Nanomaterials (metal oxides, carbon nanotubes, graphene), porous materials. |
| Limit of detection | Lowest analyte concentration reliably detected or identified. | Enables detection of low lactate concentrations, vital for early disease indicators. | Strategic addition of nanomaterials. |
| Selectivity | The capability to accurately identify the target analyte while minimizing interference from other substances. | Ensures accurate lactate measurement in complex biological fluids. | Enzymes (LDH, LOx), Prussian blue, semi-permeable membranes (Nafion). |
| Response Time | Time for the sensor to react to the analyte change and stabilize to a reliable value. | Essential for continuous, real-time dynamic monitoring and rapid interventions. | Higher activity of the recognition element, thinner electrode modification films. |
| Analyte | Electrode | Electrochemical Technique | Linear Range (mmol L−1) | LOD (mmol L−1) | Analyzed Samples | Ref. |
|---|---|---|---|---|---|---|
| L-lactate | Au/ZnO/FTO a | Amperometry | 0.01–0.6 | 6 × 10−3 | − | [123] |
| L-lactate | LDH−NAD+/PyrOx/SPCE b | EIS c | 0.01−0.25 | 0.017 | yogurt | [124] |
| L-lactate | LOD/K3[Fe(CN)6]/OerGO/SPCE d | Amperometry | 0.5−15 | 0.06 | − | [125] |
| Lactate | Prussian blue/LOx/SPE e | Amperometry | 0–28 | − | sweat | [126] |
| Lactate; glucose | CNTs/Ti3C2Tx/PB/CFMs f | Chronoamperometry | 0−22; 0.01−1.5 | 6.7 × 10−4; 3.3 × 10−4 | artificial sweat | [127] |
| Lactate; potassium | Prussian blue/graphite electrode | Chronoamperometry; Potentiometry | 0–140; 0.1−100 | 0.39; 0.12 | sweat | [128] |
| Lactate | LOx/P-90–based OECT g | Chronoamperometry | 0.01−10 | 1.0 | − | [129] |
| Glucose; Lactate; Cholesterol | PEDOT:PSS/PVA/OECT h | Chronoamperometry | 0.2–1; 0.1–2; 0.01–0.7 | − | saliva | [96] |
| Lactate | LOx/PB/PVC/DOS/ETH500 i | Amperometry | 1.0−50.0 | 0.032 | sweat | [70] |
| Lactate | LOx/PB/CS coated gold fiber j | Chronoamperometry | 0.0–30.0 | 0.137 | artificial sweat | [130] |
| Lactate | MIPs-AgNWs/SPE k | DPV l | 0.001−100 | 2.2 × 10−4 | sweat | [131] |
| L-lactate | MWCNTs/FcMe/CS/HRP/BSA/LOx/SPBGE m | Chronoamperometry | 30.4−243.9 | 22.6 | commercial embryonic cell culture | [11] |
| Lactate | FcMe2-LPEI/Lox n | Amperometry | 0.0−5.0 | 3 × 10−3 | sweat | [132] |
| Lactate; Na+; K+ | PCB/SPCE o | Chronoamperometry; Potentiometry | 1.0−25.0; 0.2−20.0; 0.1−10.0 | − | sweat | [100] |
| L-lactate | LDH/RGO-AuNPs/SPCE p | Amperometry | 0.01–5.0 | 1.3 × 10−4 | artificial serum | [27] |
| L-lactate | GS/MoS2/Lox | Voltammetry | 0.056–0.77 | 17.0 × 10−3 | human Sweat | [133] |
| Lactic Acid | Cobalt Oxide Nanostructures | Voltammetry | 0.05–3.0 | 0.006 | alkaline media | [134] |
| L-Lactate | MIP/Ag-Au NPs/SPCE | Amperometry | 1.0–220.0 × 10−3 | 0.003 × 10−3 | sweat | [135] |
| L-Lactate | GCE/MWCNT-Av/bLOx | Amperometry | 0.100–0.700 | 0.033 | fermented milk and reconstituted serum | [57] |
| L-Lactate | SPE/CuO NPs/Lox | Amperometry | 0.05–10.0 | 0.008 | blood serum and artificial saliva | [136] |
| Lactic Acid | CPE/CoPC q | Voltammetry | 11.9–188.0 | 1.54 | - | [137] |
| Lactic Acid | GCE/CuO NPs | Chronoamperometric | 0.05–40.0 | 0.027 | human body fluids | [138] |
| L-Lactate | PANI/SPCE/Nafion | Amperometry | 0.25–10 | 0.083 | sweat | [139] |
| L-Lactate | SPCE/PB/eMIP r | DPV and * EIS | 1.0–35.0 | 0.20 | artificial sweat | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, K.; Matias, R.; Cardoso, A.; Freitas, R.C.; de Oliveira, A.M.; Silva, T.A.; Janegitz, B.C. Exploring Lactate Electrochemical Biosensors: From Current Technologies to Future Market Impact. Chemosensors 2025, 13, 402. https://doi.org/10.3390/chemosensors13110402
Castro K, Matias R, Cardoso A, Freitas RC, de Oliveira AM, Silva TA, Janegitz BC. Exploring Lactate Electrochemical Biosensors: From Current Technologies to Future Market Impact. Chemosensors. 2025; 13(11):402. https://doi.org/10.3390/chemosensors13110402
Chicago/Turabian StyleCastro, Karla, Rafael Matias, Arielly Cardoso, Rafaela C. Freitas, Aline Martins de Oliveira, Tiago Almeida Silva, and Bruno C. Janegitz. 2025. "Exploring Lactate Electrochemical Biosensors: From Current Technologies to Future Market Impact" Chemosensors 13, no. 11: 402. https://doi.org/10.3390/chemosensors13110402
APA StyleCastro, K., Matias, R., Cardoso, A., Freitas, R. C., de Oliveira, A. M., Silva, T. A., & Janegitz, B. C. (2025). Exploring Lactate Electrochemical Biosensors: From Current Technologies to Future Market Impact. Chemosensors, 13(11), 402. https://doi.org/10.3390/chemosensors13110402

