Portable MOS Electronic Nose Screening of Virgin Olive Oils with HS-SPME-GC–MS Corroboration: Classification and Estimation of Sunflower-Oil Adulteration
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Experimental Design
- i.
- Oils covering different quality categories: extra virgin olive oil (EVOO), corresponding to fresh oil produced in the same year; virgin olive oil (VOO), corresponding to an EVOO stored for 3 years; lampante olive oil (LOO) obtained from a fresh EVOO that deteriorated; and adulterated EVOO (Ad-EVOO; 25% w/w sunflower oil, SFO); total of 80 oils (n = 20 per class). Each sample was measured with the electronic nose (EN), and a chromatographic profile for each class was obtained by HS-SPME-GC–MS according to the IOC-harmonised method [1,6].
- ii.
- EVOO adulterated with SFO at 5, 10, 20, and 40% (w/w); n = 10 per level. Levels of 5–10% and 20–40% were chosen to sample low versus moderate/high admixtures under a constrained sample size, balancing classes for chemometric modelling and focusing measurements near expected detectability.For the multiclass task, an adulterated EVOO (Ad-EVOO) class at 25% (w/w) sunflower oil (SFO) was used as a model positive control to provide a strong, non-defective counterpoint to EVOO and to minimise confounding with VOO/LOO. A separate blending series (5–40% w/w SFO) was prepared to assess graded detectability and quantification.Samples were sourced from a single industrial supplier and region; therefore, the present dataset should be interpreted as a proof of concept. Future work will include oils from multiple cultivars, crop years, and producers to improve generalisability.
2.2. MOS-EN Device and Data Acquisition
2.3. HS-SPME-GC–MS Analysis of Volatile Compounds
2.4. Data Analysis
- TPR/Recall (sensitivity) = TP/(TP + FN): proportion of class-c samples correctly identified.
- Precision (P) = TP/(TP + FP): fraction of predictions as class c that truly belong to c.
- F1 = 2·(P·Recall)/(P + Recall): harmonic mean-balancing precision and recall.
3. Results and Discussion
3.1. Electronic Nose Screening: Multiclass Classification
3.2. Chemical Corroboration by HS-SPME-GC–MS
3.3. Adulteration AOVE with SFO
3.4. Limitations, Robustness, and Avenues for Improvement
- Increasing sample diversity (cultivars, crop years, and producers) to improve generalisability and reduce overlap at ≤10%.
- Blinded external validation with independent industrial/analytical partners to assess real-world performance.
- Lowering practical detection limits (≤10%) via sensor/data fusion (e.g., combining EN with simple GC-based fingerprints) and targeted model updates.
- Implementing drift compensation and T/RH covariates to enhance long-term stability.
- Integration with electronic-tongue systems to complement olfactory information with gustatory signals.
- Blinded external validation with independent industrial/analytical partners to assess real-world performance.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EN | electronic nose |
| MOS | metal-oxide semiconductor |
| VOC(s) | volatile organic compound(s) |
| LD | linear discriminant (axis in LDA) |
| HS-SPME-GC–MS | headspace solid-phase microextraction gas chromatography–mass spectrometry |
| LDA LOX | linear discriminant analysis lipoxygenase (pathway) |
| LVs | latent variables |
| ANN-DA | artificial neural-network discriminant analysis |
| PLS | partial least-squares regression |
| IOC | International Olive Council |
| EVOO/VOO/LOO | extra virgin/virgin/lampante olive oil |
| Ad-EVOO | adulterated EVOO |
| SFO | sunflower oil |
| Md/Mf | median of defect/median of fruitiness |
| T/RH | temperature/relative humidity |
| IAQ | indoor air quality |
| TVOC | total volatile organic compounds |
| CO2eq | carbon dioxide equivalent (device index) |
| RMSEC/RMSEP | root means square error of calibration/prediction |
| R2cal/R2pred | coefficients of determination (calibration/prediction) |
References
- International Olive Council (IOC). Sensory Analysis of Olive Oil—Method for the Organoleptic Assessment of Virgin Olive Oil; COI/T.20/Doc. No 15/Rev. 11; IOC: Madrid, Spain, 2024. [Google Scholar]
- European Union. Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 Supplementing Regulation (EU) No 1308/2013 as Regards Marketing Standards for Olive Oil (Consolidated 10 June 2024). Available online: http://data.europa.eu/eli/reg_del/2022/2104/oj (accessed on 1 September 2025).
- European Union. Commission Implementing Regulation (EU) 2022/2105 of 29 July 2022 Laying Down Rules on Conformity Checks of Marketing Standards for Olive Oil (Consolidated 11 November 2024). Available online: http://data.europa.eu/eli/reg_impl/2022/2105/oj (accessed on 1 September 2025).
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- International Olive Council (IOC). Method for the Chromatographic Analysis of Volatile Compounds in Virgin Olive Oils (HS-SPME-GC-FID/MS); COI/T.20/Doc. No 37; IOC: Madrid, Spain, 2024. [Google Scholar]
- Valli, E.; Panni, F.; Casadei, E.; Barbieri, S.; Cevoli, C.; Bendini, A.; García-González, D.L.; Gallina Toschi, T. An HS-GC-IMS method for the quality classification of virgin olive oils as screening support for the Panel Test. Foods 2020, 9, 657. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Schwolow, S.; Rohn, S.; Pérez-Cacho, P.R.; Galán-Soldevilla, H.; Arce, L.; Weller, P. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN and SVM. Food Chem. 2019, 278, 720–728. [Google Scholar] [CrossRef]
- Roy, M.; Yadav, B.K. Electronic nose for detection of food adulteration: A review. J. Food Sci. Technol. 2022, 59, 846. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Jeleń, H.H. Detection of olive oil adulteration with rapeseed and sunflower oils using MOS electronic nose and SPME-MS. J. Food Qual. 2010, 33, 21–41. [Google Scholar] [CrossRef]
- Stilo, F.; Jiménez-Carvelo, A.M.; Liberto, E.; Bicchi, C.; Reichenbach, S.E.; Cuadros-Rodríguez, L.; Cordero, C. Chromatographic Fingerprinting Enables Effective Discrimination and Identitation of High-Quality Italian Extra-Virgin Olive Oils. J. Agric. Food Chem. 2021, 69, 8874–8889. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Lozano, J.; Arroyo, P.; Meléndez, F. Detection of 2,4,6-Trichloroanisole in sparkling wines using a portable E-nose and chemometric tools. Chemosensors 2025, 13, 178. [Google Scholar] [CrossRef]
- Poeta, E.; Núñez-Carmona, E.; Sberveglieri, V.; Lozano, J.; Sánchez, R. Monitoring the olfactory evolution of cold-fermented sourdough using an electronic nose. Chemosensors 2025, 13, 187. [Google Scholar] [CrossRef]
- Mutz, Y.S.; Maroum, S.M.; Tessaro, L.L.G.; de Oliveira Souza, N.; de Bem, M.M.; Alves, L.S.; Figueiredo, L.P.; do Rosario, D.K.A.; Bernardes, P.C.; Nunes, C.A. Effectiveness of an E-Nose Based on Metal Oxide Semiconductor Sensors for Coffee Quality Assessment. Chemosensors 2025, 13, 23. [Google Scholar] [CrossRef]
- Barbieri, S.; Cevoli, C.; Bendini, A.; Quintanilla-Casas, B.; García-González, D.L.; Gallina Toschi, T. Flash Gas Chromatography in Tandem with Chemometrics: A Rapid Screening Tool for Quality Grades of Virgin Olive Oils. Foods 2020, 9, 862. [Google Scholar] [CrossRef]
- Grigoletto, I.; Casadei, E.; Panni, F.; Valli, E.; Cevoli, C.; Bendini, A.; García-González, D.L.; Focante, F.; Savino, A.F.; Carpino, S.; et al. Screening tools combined with multivariate data analysis to predict or confirm virgin olive oil classification by the Panel test. Eur. J. Lipid Sci. Technol. 2024, 126, e2300211. [Google Scholar] [CrossRef]
- Circi, S.; Capitani, D.; Randazzo, A.; Ingallina, C.; Mannina, L.; Sobolev, A.P. Panel test and chemical analyses of commercial olive oils: A comparative study. Chem. Biol. Technol. Agric. 2017, 4, 18. [Google Scholar] [CrossRef]
- Ortega-Gavilán, F.; García-Mesa, J.A.; Marzal-Fernández, J.C.; Moreno-Ballesteros, F.J.; Rodríguez-García, F.P.; González-Casado, A.; Cuadros-Rodríguez, L. Innovative and thorough practice to certify reference materials for sensory defects of olive oil. Food Chem. 2022, 380, 132195. [Google Scholar] [CrossRef]
- Teixeira, G.G.; Dias, L.G.; Rodrigues, N.; Marx, I.M.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Application of a Lab-Made Electronic Nose for Extra Virgin Olive Oils Commercial Classification According to the Perceived Fruitiness Intensity. Talanta 2021, 226, 122122. [Google Scholar] [CrossRef] [PubMed]
- Chacón, I.; Roales, J.; Lopes-Costa, T.; Pedrosa, J.M. Analyzing the Organoleptic Quality of Commercial Extra Virgin Olive Oils: IOC Recognized Panel Tests vs. Electronic Nose. Foods 2022, 11, 1477. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.; Anjileh, H.G.; Amirfaridi, H. Fast and portable single-sensor electronic nose for accurate quality assessment of extra virgin olive oil using a temperature-modulated generic gas sensor. Talanta 2025, 296, 128490. [Google Scholar] [CrossRef] [PubMed]
- Parlak, İ.H.; Milli, M.; Milli, N.S. Machine Learning–Based Detection of Olive Oil Adulteration Using BME688 Gas Sensor Matrix. Food Anal. Methods 2025, 18, 1454–1464. [Google Scholar] [CrossRef]
- Liu, T.; Guo, L.; Wang, M.; Su, C.; Wang, D.; Dong, H.; Chen, J.; Wu, W. Review on algorithm design in electronic noses: Challenges, status, and trends. Intell. Comput. 2023, 2, 0012. [Google Scholar] [CrossRef]
- Soldo, B.; Jukić Špika, M.; Pasković, I.; Vuko, E.; Polić Pasković, M.; Ljubenkov, I. The Composition of Volatiles and the Role of Non-Traditional LOX on Target Metabolites in Virgin Olive Oil from Autochthonous Dalmatian Cultivars. Molecules 2024, 29, 1696. [Google Scholar] [CrossRef]
- Tucci, R.; Cevoli, C.; Bendini, A.; Barbieri, S.; Casadei, E.; Valli, E.; Gallina Toschi, T. Changes in the Volatile Profile, Fruity Flavor, and Rancidity in Virgin Olive Oils During Storage by Targeted and Untargeted Analytical Approaches. Foods 2025, 14, 1884. [Google Scholar] [CrossRef]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.A.; Penco-Valenzuela, J.M.; Priego-Capote, F. Cultivar influence on the volatile components of olive oil formed in the lipoxygenase pathway. LWT 2021, 147, 111485. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Vali Zade, S.; Mazaheri, Y.; Mirza Alizadeh, A.; Rastegar, H.; Abdian, Z.; Torbati, M.; Azadmard-Damirchi, S. Recent methods in detection of olive oil adulteration: State-of-the-art. J. Agric. Food Res. 2024, 16, 101123. [Google Scholar] [CrossRef]
- Zarezadeh, M.R.; Aboonajmi, M.; Ghasemi-Varnamkhasti, M. The effect of data fusion on improving the accuracy of olive oil quality measurement. Food Chem. X 2023, 18, 100622. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Zeng, M.; Wang, T.; Wu, Y.; Ni, W.; Chen, L.; Yang, J.; Hu, N.; Zhang, B.; Xuan, F.; et al. Gas sensor drift compensation using semi-supervised ensemble classifiers with multi-level features and center loss. ACS Sens. 2025, 10, 2906–2918. [Google Scholar] [CrossRef]
- Fan, H.; Schaffernicht, E.; Lilienthal, A.J. Ensemble learning-based approach for gas detection using an electronic nose in robotic applications. Front. Chem. 2022, 10, 863838. [Google Scholar] [CrossRef]
- Rudnitskaya, A. Calibration update and drift correction for electronic noses and tongues. Front. Chem. 2018, 6, 433. [Google Scholar] [CrossRef]





| Predicted Values | ||||
|---|---|---|---|---|
| Actual Values | EVOO | Ad-EVOO 25% | VOO | LOO |
| EVOO | 20 | 0 | 0 | 0 |
| Ad-EVOO 25% | 0 | 20 | 0 | 0 |
| VOO | 0 | 0 | 14 | 2 |
| LOO | 0 | 0 | 6 | 18 |
| Class | Precision (P) | Sensitivity | F1-Score |
|---|---|---|---|
| EVOO | 1.00 | 1.00 | 1.00 |
| Ad- EVOO 25% | 1.00 | 1.00 | 1.00 |
| VOO | 0.87 | 0.70 | 0.77 |
| LOO | 0.81 | 0.90 | 0.85 |
| Peak Area (%) | |||||||
|---|---|---|---|---|---|---|---|
| * CAS Number | Volatile Compound | TR | * Odour Descriptors | EVOO | Ad-EVOO | VOO | LOO |
| 4395-73-7 | 2-Formylhistamine | 1.651 | not well documented | 1.54 ± 0.20 a | 0.96 ± 0.40 a | 1.41 ± 0.32 a | 0.1 ± 0.1 b |
| 108-24-7 | Acetic anhydride | 1.751 | pungent, vinegar-like, irritating | 0.63 ± 0.26 c | 2.08 ± 0.36 b | 3.20 ± 0.37 a | 2.18 ± 0.36 b |
| 540-88-5 | 1-methoxy-2-propanol | 1.914 | alcoholic, slightly sweet, solvent-like | 0.11 ± 0.19 c | 3.03 ± 0.33 b | 5.64 ± 0.27 a | 2.77 ± 0.32 b |
| 141-78-6 | ethyl acetate | 2.684 | sweet, fruity, pear-like | 0.43 ± 0.75 c | 8.23 ± 0.41 b | 0.99 ± 0.17 c | 9.18 ± 0.33 a |
| 96-22-0 | 3-Pentanone | 4.447 | fruity, ethereal, slightly minty | 0.92 ± 0.33 a | 0.67 ± 0.44 a | 0.84 ± 0.25 a | 0.89 ± 0.29 a |
| 4748-78-1 | Hexane, 2,4-dimethyl- | 8.88 | gasoline-like, slightly sweet | 0.16 ± 0.28 b | 2.00 ± 0.34 a | 2.44 ± 0.22 a | 2.31 ± 0.30 a |
| 66-25-1 | Hexanal | 8.993 | green, grassy, fatty, citrus-like | 4.51 ± 0.20 c | 4.27 ± 0.22 c | 9.68 ± 0.39 a | 7.19 ± 0.38 b |
| 47-07-03 | Hexane, 1-methoxy- | 11.251 | ether-like, mildly fruity | 0.10 ± 0.18 b | 0.61 ± 0.32 b | 1.42 ± 0.43 a | 0.57 ± 0.21 b |
| 6728-26-3 | (E)-2-hexenal | 13.078 | green, grassy, fresh | 10.93 ± 0.23 a | 9.85 ± 0.39 b | 3.92 ± 0.20 c | 9.86 ± 0.36 b |
| 928-96-1 | 3-Hexen-1-ol. (Z)- | 13.324 | green, fresh, leafy, cut-grass scent | 23.00 ± 0.18 a | 14.88 ± 0.27 c | 20.17 ± 0.34 b | 14.81 ± 0.31 c |
| 928-94-9 | 2-Hexen-1-ol. (Z)- | 14.063 | green, fresh, slightly sweet | 12.98 ± 0.29 a | 9.09 ± 0.23 b | 3.98 ± 0.32 c | 8.74 ± 0.26 b |
| 1565-71-5 | (S)-3.4-Dimethylpentanol | 14.36 | not well documented | 10.09 ± 0.31 a | 10.98 ± 0.43 a | 8.60 ± 0.32 b | 10.53 ± 0.32 a |
| 123-92-2 | isoamyl acetate | 14.808 | banana, fruity, sweet | 0.15 ± 0.26 ab | 0.28 ± 0.28 ab | 0.77 ± 0.27 a | 0.8 ± 0.14 b |
| 111-71-7 | Heptanal | 16.179 | fatty, citrusy, green, slightly fruity | 0.34 ± 0.37 a | 0.27 ± 0.23 a | 0.34 ± 0.25 a | 0.34 ± 0.37 a |
| 1838-79-1 | 3-Ethyl-1.5-octadiene | 18.288 | floral, citrus-like | 1.47 ± 0.41 a | 0.75 ± 0.25 b | 0.77 ± 0.24 b | 0.79 ± 0.21 b |
| 18829-55-5 | 2-Heptenal. (Z)- | 19.32 | fatty, green, herbal | 0.28 ± 0.31 a | 0.48 ± 0.28 a | 1.05 ± 0.39 a | 0.59 ± 0.36 a |
| 698-10-2 | 2(5H)-Furanone, 5-ethyl- | 19.613 | sweet, caramel-like, slightly burnt | 8.43 ± 0.24 a | 0.82 ± 0.22 b | 0.79 ± 0.34 b | 0.78 ± 0.29 b |
| 108-95-2 | Phenol | 20.385 | medicinal, smoky, tar-like | 0.13 ± 0.02 c | 0.76 ± 0.29 ab | 0.23 ± 0.05 bc | 0.90 ± 0.20 a |
| 18829-56-6 | 2.4-Heptadienal. (E.E)- | 21.288 | fatty, green, waxy | 1.91 ± 0.39 a | 1.92 ± 0.23 a | 2.11 ± 0.21 a | 2.17 ± 0.26 a |
| 124-13-0 | octanal | 21.522 | fatty, citrusy, orange-like | 0.20 ± 0.28 a | 0.22 ± 0.21 a | 0.22 ± 0.20 a | 0.25 ± 0.18 a |
| 32797-50-5 | Hexenol acetate | 21.55 | green, fruity, apple-like | 3.82 ± 0.12 d | 11.17 ± 0.24 b | 8.70 ± 0.15 c | 12.35 ± 0.27 a |
| 142-92-7 | Hexyl acetate | 21.939 | fruity, apple, banana | 6.04 ± 0.22 a | 2.10 ± 0.34 c | 4.72 ± 0.18 b | 2.16 ± 0.40 c |
| 100-51-6 | Benzyl alcohol | 23.042 | floral, slightly sweet, almond-like | 0.51 ± 0.37 a | 0.58 ± 0.32 a | 0.59 ± 0.28 a | 0.61 ± 0.21 a |
| 3779-61-1 | (E)-β-ocimene | 23.364 | sweet, citrusy, floral | 0.89 ± 0.36 c | 2.20 ± 0.24 b | 4.92 ± 0.34 a | 2.34 ± 0.44 b |
| 150-76-5 | Phenol, 4-methoxy- | 25.12 | anisic, sweet, medicinal | 0.23 ± 0.32 b | 1.61 ± 0.31 a | 0.37 ± 0.24 b | 1.45 ± 0.22 a |
| 93-58-3 | Methyl benzoate | 25.54 | floral, fruity, slightly minty | 0.10 ± 0.11 a | 0.33 ± 0.20 a | 0.49 ± 0.38 a | 0.29 ± 0.30 a |
| 124-19-6 | Nonanal | 25.953 | waxy, citrusy, floral | 2.15 ± 0.31 b | 2.50 ± 0.38 b | 4.04 ± 0.13 a | 2.70 ± 0.43 b |
| 60-12-8 | Phenylethyl Alcohol | 26.374 | rose-like, floral, honey | 1.69 ± 0.30 b | 2.55 ± 0.26 a | 2.16 ± 0.29 ab | 1.97 ± 0.34 ab |
| 1745-81-9 | 2-propenylphenol | 28.331 | spicy, clove-like | 1.46 ± 0.41 a | 0.78 ± 0.28 ab | 0.47 ± 0.28 b | 0.19 ± 0.18 b |
| 4748-78-1 | Benzaldehyde, 4-ethyl- | 29.005 | almond, cherry-like | 0.57 ± 0.44 a | 0.11 ± 0.11 a | 0.31 ± 0.35 a | 0.31 ± 0.36 a |
| 119-36-8 | Methyl salicylate | 29.42 | wintergreen, minty | 1.36 ± 0.29 a | 0.47 ± 0.16 b | 0.56 ± 0.17 b | 0.49 ± 0.29 b |
| 623-27-8 | 1.4-Benzenedicarboxaldehyde | 31.024 | not well documented | 0.77 ± 0.25 a | 0.20 ± 0.16 a | 0.24 ± 0.24 a | 0.25 ± 0.25 a |
| 626-19-7 | Isophthalaldehyde | 31.261 | slightly sweet, aldehydic | 1.09 ± 0.37 a | 0.22 ± 0.20 b | 0.50 ± 0.31 ab | 0.31 ± 0.38 ab |
| 104-94-9 | p-anisaldehyde | 31.832 | sweet, floral, anisic | 0.25 ± 0.24 a | 0.07 ± 0.09 a | 0.20 ± 0.28 a | 0.15 ± 0.25 a |
| 112-05-0 | Nonanoic acid | 32.191 | waxy, fatty, rancid | 0.25 ± 0.20 a | 0.26 ± 0.20 a | 0.24 ± 0.30 a | 0.13 ± 0.21 a |
| 6066-49-5 | Butyl phthalide-3-N | 34.772 | celery-like, herbal | 1.04 ± 0.39 a | 0.22 ± 0.23 b | 0.28 ± 0.21 ab | 0.29 ± 0.30 ab |
| 637-33-2 | Hydrazine, 1-(3-hydroxybenzyl)- | 37.467 | not well documented | 1.09 ± 0.32 a | 0.90 ± 0.33 a | 0.05 ± 0.09 b | 0.15 ± 0.26 b |
| 501-94-0 | p-Tyrosol | 37.495 | mildly floral, slightly phenolic | 1.27 ± 0.35 a | 1.03 ± 0.24 a | 0.89 ± 0.41 a | 1.21 ± 0.30 a |
| Real Values | Predicted Values | |||||
|---|---|---|---|---|---|---|
| SFO 100% | EVOO 100% | Ad-EVOO 5% | Ad-EVOO 10% | Ad-EVOO 20% | Ad-EVOO 40% | |
| SFO 100% | 10 | 0 | 0 | 0 | 0 | 0 |
| EVOO 100% | 0 | 8 | 0 | 1 | 0 | 0 |
| Ad-EVOO 5% | 0 | 0 | 9 | 1 | 0 | 1 |
| Ad-EVOO 10% | 0 | 2 | 1 | 8 | 1 | 0 |
| Ad-EVOO 20% | 0 | 0 | 0 | 0 | 9 | 1 |
| Ad-EVOO 40% | 0 | 0 | 0 | 0 | 0 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, R.; Díaz, F.; Melo, L. Portable MOS Electronic Nose Screening of Virgin Olive Oils with HS-SPME-GC–MS Corroboration: Classification and Estimation of Sunflower-Oil Adulteration. Chemosensors 2025, 13, 374. https://doi.org/10.3390/chemosensors13100374
Sánchez R, Díaz F, Melo L. Portable MOS Electronic Nose Screening of Virgin Olive Oils with HS-SPME-GC–MS Corroboration: Classification and Estimation of Sunflower-Oil Adulteration. Chemosensors. 2025; 13(10):374. https://doi.org/10.3390/chemosensors13100374
Chicago/Turabian StyleSánchez, Ramiro, Fernando Díaz, and Lina Melo. 2025. "Portable MOS Electronic Nose Screening of Virgin Olive Oils with HS-SPME-GC–MS Corroboration: Classification and Estimation of Sunflower-Oil Adulteration" Chemosensors 13, no. 10: 374. https://doi.org/10.3390/chemosensors13100374
APA StyleSánchez, R., Díaz, F., & Melo, L. (2025). Portable MOS Electronic Nose Screening of Virgin Olive Oils with HS-SPME-GC–MS Corroboration: Classification and Estimation of Sunflower-Oil Adulteration. Chemosensors, 13(10), 374. https://doi.org/10.3390/chemosensors13100374

