Environmental Sustainability Study for the Determination of Ketoprofen in the Presence of Its Main Photo-Degradation Products in River Water Using Solid-Contact Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Chemicals, Reagents, and Standard Solutions
2.3. Preparation of Ion Pair
2.4. Preparation of the Electrode
2.5. Optimization and Calibration of the Fabricated Membranes
2.6. Application
2.6.1. Measuring KTP Among Its Primary Photo-Degradation Products
2.6.2. Measuring KTP in Various Samples of Water
3. Results
3.1. Evaluation and Validation of the Fabricated Sensors
3.2. Method Application
3.2.1. Measuring KTP Among Its Primary Photo-Degradants
3.2.2. Analysis of Different Water Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marguery, M.C.; Chouini-Lalanne, N.; Ader, J.C.; Paillous, N. Comparison of the DNA damage photoinduced by fenofibrate and ketoprofen, two phototoxic drugs of parent structure. Photochem. Photobiol. 1998, 68, 679–684. [Google Scholar] [CrossRef]
- Kosjek, T.; Heath, E.; Krbavcic, A. Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ. Int. 2005, 31, 679–685. [Google Scholar] [CrossRef]
- Vieno, N.M.; Tuhkanen, T.; Kronberg, L. Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ. Sci. Technol. 2005, 39, 8220–8226. [Google Scholar] [CrossRef]
- Lahoz, A.; Hernandez, D.; Miranda, M.A.; Perez-Prieto, J.; Morera, I.M.; Castell, J.V. Antibodies directed to drug epitopes to investigate the structure of drug-protein photoadducts. Recognition of a common photobound substructure in tiaprofenic acid/ketoprofen crossphotoreactivity. Chem. Res. Toxicol. 2001, 14, 1486–1491. [Google Scholar] [CrossRef]
- Radschuweit, A.; Ruttinger, H.H.; Nuhn, P.; Wohlrab, W.; Huschka, C. UV-induces formation of hydrogen peroxide based on the photochemisty of ketoprofen. Photochem. Photobiol. 2001, 73, 119–127. [Google Scholar] [CrossRef]
- Bosca, F.; Miranda, M.A. Photosensitizing drugs containing benzophenone chromophore. J. Photochem. Photobiol. B 1998, 43, 1–26. [Google Scholar] [CrossRef]
- Bosca, F.; Miranda, M.A.; Carganico, G.; Mauleon, D. Photochemical and photobiological properties of ketoprofen associated with the benzophenone chromophore. Photochem. Photobiol. 1994, 60, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Kosjek, T.; Perko, S.; Heath, E.; Kralj, B.; Žigon, D. Application of complementary mass spectrometric techniques to the identification of ketoprofen phototransformation products. J. Mass Spectrom. 2011, 46, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, P.; Jönsson, T.E.; Nilsson, B.; Wollheim, F. Determination of ketoprofen in plasma by extractive methylation and electron-capture gas chromatography. J. Chromatogr. A 1979, 177, 145–148. [Google Scholar] [CrossRef]
- Dvořák, J.; Hajkova, R.; Matysova, L.; Novakova, L.; Koupparis, M.A.; Solich, P. Simultaneous HPLC determination of ketoprofen and its degradation products in the presence of preservatives in pharmaceuticals. J. Pharmaceut. Biomed. Anal. 2004, 36, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Shafique, A.; Alothman, Z.A.; Akram, S.; Akram, S.; Sohail, C.S.; Mushtaq, M. An expedient and rapid High-Performance Liquid Chromatographic method for the kinetic study of Ketoprofen. J. King Saud Univ. Sci. 2020, 32, 2212–2218. [Google Scholar] [CrossRef]
- Vozniuk, O.; Kejík, Z.; Veselá, K.; Skaličková, M.; Novotný, P.; Hromádka, R.; Hajduch, J.; Martásek, P.; Jakubek, M.A. Fast HPLC/UV Method for Determination of Ketoprofen in Cellular Media. ChemistryOpen 2024, 13, e202300147. [Google Scholar] [CrossRef]
- Tsvetkova, B.; Peikova, L. HPLC determination of ketoprofen in tablet dosage forms. Trakia J. Sci. 2013, 11, 55. [Google Scholar]
- Friedberg, M.; Shihabi, Z.K. Ketoprofen analysis in serum by capillary electrophoresis. J. Chromatogr. B 1997, 695, 193–198. [Google Scholar] [CrossRef] [PubMed]
- El-Sadek, M.; El-Adl, S.; Abou-Kull, M.; Sakr, S.M. Spectrophotometric determination of ketoprofen in pharmaceutical preparations by means of charge transfer complex formation. Talanta 1993, 40, 585–588. [Google Scholar] [CrossRef]
- Lucca, L.G.; de Matos, S.P.; Weimer, P.; Teixeira, H.F.; Koester, L.S. Improved skin delivery and validation of novel stability-indicating HPLC method for ketoprofen nanoemulsion. Arab. J. Chem. 2020, 13, 4505–4511. [Google Scholar] [CrossRef]
- Yadav, N.K.; Raghuvanshi, A.; Sharma, G.; Beg, S.; Katare, O.P.; Nanda, S. QbD-based development and validation of a stability-indicating HPLC method for estimating ketoprofen in bulk drug and proniosomal vesicular system. J. Chromatogr. Sci. 2016, 54, 377–389. [Google Scholar] [CrossRef]
- Patil, P.M.; Wankhede, S.B.; Chaudhari, P.D. Stability-indicating HPTLC method for simultaneous determination of Ketoprofen, Methyl Paraben and Propyl Paraben in gel formulation. J. Pharm. Res. 2013, 6, 945–953. [Google Scholar] [CrossRef]
- Bempong, D.K.; Bhattacharyya, L. Development and validation of a stability-indicating high-performance liquid chromatographic assay for ketoprofen topical penetrating gel. J. Chromatogr. A 2005, 1073, 341–346. [Google Scholar] [CrossRef]
- Gaber, M.; Abu Shawish Hazem, M.; Khedr, A.M.; Abed-Almonem, K.I. Determination of benzalkonium chloride preservative in pharmaceutical formulation of eye and ear drops using new potentiometric sensors. Mater. Sci. Eng. C 2012, 32, 2299–2305. [Google Scholar] [CrossRef]
- Rizk, M.S.; Abdel-Haleem, F.M. Plastic membrane electrodes for the determination of flavoxate hydrochloride and cyclopentolate hydrochloride. Electrochim. Acta 2010, 55, 5592–5597. [Google Scholar] [CrossRef]
- Kharitonov, S.V. Ion-selective electrodes in medicinal drug determination. Russ. Chem. Rev. 2007, 76, 361. [Google Scholar] [CrossRef]
- Lenik, J. Properties of ion-selective electrodes with polymeric membranes for ketoprofen determination. J. Anal. Chem. 2012, 67, 543–549. [Google Scholar] [CrossRef]
- Lenik, J.; Łyszczek, R. A Potentiometric Sensor for Ketoprofen Based on a β-Cyclodextrin Derivative. J. Anal. Chem. 2022, 77, 246–256. [Google Scholar] [CrossRef]
- Urbanowicz, M.; Pijanowska, D.; Jasiński, A.; Ekman, M.; Bocheńska, M. A miniaturized solid-contact potentiometric multi sensor platform for determination of ionic profiles in human saliva. J. Solid State Electrochem. 2019, 23, 3299–3308. [Google Scholar] [CrossRef]
- Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem. 2008, 80, 85–104. [Google Scholar] [CrossRef]
- Othman, A.M.; Rizk, N.M.H.; El-Shahawi, M.S. Polymer membrane sensors for sildenafil citrate (Viagra) determination in pharmaceutical preparations. Anal. Chim. Acta 2004, 515, 303–309. [Google Scholar] [CrossRef]
- Salvo-Comino, C.; Alonso-Pastor, L.E.; Pérez-González, C.; Pettinelli, S.; Carrero, K.C.N.; Rodríguez-Pérez, M.Á.; Rodríguez-Méndez, M.L. Impact of molecular structure and plasticization of PVC membranes in the response of solid-state ion-selective electrodes. Sens. Actuators Rep. 2025, 9, 100301. [Google Scholar] [CrossRef]




| Reference No. | Technique Used | Type of Sample | Disadvantages | Advantages |
|---|---|---|---|---|
| [9] | Gas chromatography | Plasma | Complex sample preparation and derivatization. Also, expensive instruments and maintenance. | Capable of detecting analytes in very low concentrations and high separation power. |
| [10] | HPLC | Dosage forms | High costs for equipment and consumables, complex operation requiring specialized training, and time-consuming sample preparation. Also, there are potential safety hazards from high pressure and hazardous solvents. | High separation power, high-throughput analysis, and considering stability aspects. |
| [11] | Plasma and urine | High separation power, high-throughput analysis, and application to different sample forms. | ||
| [12] | Cell culture media | |||
| [13] | Tablets | |||
| [16] | Nano-emulsion | High separation power, high-throughput analysis, and stability-indicating assay. | ||
| [17] | Bulk drug and proniosomal vesicular system | High separation power, high-throughput analysis, stability-indicating assay, and applicability in different body fluids. | ||
| [19] | Topical penetrating gel | High separation power, high-throughput analysis, and stability-indicating assay. | ||
| [18] | HPTLC | Gel formulation | High cost and the need for specialized equipment and skilled personnel. | High sample throughput and consumes minimal solvents. |
| [14] | Capillary electrophoresis | Serum | Limited sample loadability and need complex sample pretreatment. | High separation efficiency and good resolution. |
| [15] | Spectrophotometry | Pharmaceutical preparations | Low sensitivity and selectivity. | Simple and economic technique. |
| [23,24] | Ion-selective electrodes | Pharmaceutical preparations | Requiring periodic calibration and susceptibility to interference from other ions. | Straightforward, inexpensive technique, safe, environmentally friendly, and long lifetime. |
| Number of Electrodes | Composition of the Electrode (mg) | |||||
|---|---|---|---|---|---|---|
| PVC | TBP | DOP | o-NPOE | DBS | KTP-TOA | |
| 1 | 150 | 75 | 225 | - | - | 50 |
| 2 | 150 | 75 | - | 225 | - | 50 |
| 3 | 150 | 75 | - | - | 225 | 50 |
| Parameter | DOP-Membrane | DBS-Membrane | o-NPOE-Membrane |
|---|---|---|---|
| Slope (mV/decade) * | −58.80 ± 0.90 | −57.90 ± 0.80 | −56.80 ± 1.10 |
| Response time (s) | 11 | 15 | 18 |
| Working pH range | 5.5–9.5 | 6.50–9.5 | 6.50–8.5 |
| Linearity range (M) | 1 × 10−5–1 × 10−1 | 1 × 10−5–1 × 10−1 | 1 × 10−5–1 × 10−1 |
| Stability (Months) | 11 | 10 | 10 |
| Accuracy (Mean * ± SD) | 100.94 ± 0.64 | 101.68 ± 0.73 | 99.68 ± 0.98 |
| Detection limit (M) ∞ | 5.20 × 10−6 | 5.60 × 10−6 | 6.01 × 10−6 |
| Ruggedness † | 100.56 * ± 1.15 | 101.57 * ± 1.45 | 102.21 * ± 1.35 |
| Robustness Ψ | 101.34 * ± 0.59 | 102.18 * ± 0.76 | 102.36 * ± 0.98 |
| Interferent | DOP-Membrane (Mean * ± S.D. × 10−4) | DBS-Membrane (Mean * ± S.D. × 10−4) | o-NPOE-Membrane (Mean * ± S.D. × 10−4) |
|---|---|---|---|
| Cl− | 4.6 × 10−3 ± 0.87 | 4.5 × 10−3 ± 0.67 | 4.2 × 10−3 ± 0.59 |
| NO3− | 3.6 × 10−4 ± 0.77 | 3.6 × 10−4 ± 0.59 | 3.5 × 10−4 ± 0.99 |
| Br− | 5.1 × 10−4 ± 0.86 | 5.2 × 10−4 ± 0.67 | 5.1 × 10−4 ± 0.97 |
| Benzoate | 3.4 × 10−4 ± 0.67 | 3.3 × 10−4 ± 0.83 | 3.2 × 10−4 ± 0.74 |
| Formate | 6.1 × 10−4 ± 0.45 | 6.2 × 10−4 ± 0.87 | 6.3 × 10−4 ± 0.94 |
| Ibuprofen | 2.8 × 10−4 ± 0.89 | 2.7 × 10−4 ± 0.75 | 2.9 × 10−4 ± 0.59 |
| Diclofenac sodium | 3.5 × 10−4 ± 0.64 | 3.5 × 10−4 ± 0.78 | 3.6 × 10−4 ± 0.54 |
| Intact KTP | 3-Ethyl Benzophenone (EBP) | 3-Acetyl Benzophenone (ABP) | DOP-Membrane (Mean * ± S.D.) | DBS-Membrane (Mean * ± S.D.) | o-NPOE-Membrane (Mean * ± S.D.) |
|---|---|---|---|---|---|
| 90% (9 × 10−4 M) | 5% | 5% | 101.56 ± 0.37 | 101.50 ± 0.79 | 101.33 ± 0.45 |
| 70% (7 × 10−4 M) | 15% | 15% | 102.13 ± 0.79 | 99.89 ± 0.76 | 99.76 ± 0.35 |
| 50% (5 × 10−4 M) | 25% | 25% | 101.59 ± 0.95 | 99.23 ± 0.56 | 99.54 ± 0.56 |
| 30% (3 × 10−4 M) | 35% | 35% | 101.31 ± 0.65 | 101.34 ± 0.90 | 100.56 ± 0.67 |
| 10% (1 × 10−4 M) | 45% | 45% | 100.16 ± 0.54 | 101.55 ± 0.70 | 101.56 ± 0.76 |
| Specimen | Added Conc. (M) | DOP-Membrane Found Conc. | DOP-Membrane (Rec.% * ± S.D.) | DBS-Membrane Found Conc. | DBS-Membrane (Rec.% * ± S.D.) | o-NPOE-Membrane Found Conc. | o-NPOE-Membrane (Rec.% * ± S.D.) |
|---|---|---|---|---|---|---|---|
| Distilled water | 1 × 10−2 | 1.02 × 10−2 | 102.00 ± 0.65 | 1.00 × 10−2 | 100.00 ± 0.79 | 1.01 × 10−2 | 101.00 ± 0.68 |
| Tap water | 1 × 10−3 | 1.02 × 10−3 | 102.00 ± 0.79 | 1.02 × 10−3 | 102.00 ± 0.45 | 1.01 × 10−3 | 101.00 ± 0.67 |
| Sample 1 | 1 × 10−2 | 1.00 × 10−2 | 100.00 ± 0.56 | 1.01 × 10−2 | 101.00 ± 0.56 | 1.01 × 10−2 | 101.00 ± 0.67 |
| Sample 2 | 1 × 10−3 | 1.01 × 10−3 | 101.00 ± 1.11 | 1.02 × 10−3 | 102.00 ± 0.79 | 1.02 × 10−3 | 102.00 ± 0.89 |
| Sample 3 | 1 × 10−4 | 1.03 × 10−4 | 103.00 ± 0.98 | 1.02 × 10−4 | 102.00 ± 0.54 | 1.03 × 10−4 | 103.00 ± 0.96 |
| Sample No. | DOP-Membrane Found Conc. (M) | DBS-Membrane Found Conc. (M) | o-NPOE-Membrane Found Conc. (M) | Reference Method [10] * Found Conc. (M) |
|---|---|---|---|---|
| Sample 1 | 4.10 × 10−4 | 4.15 × 10−4 | 4.20 × 10−4 | 4.21 × 10−4 |
| Sample 2 | 5.40 × 10−5 | 5.39 × 10−5 | 5.35 × 10−5 | 5.44 × 10−5 |
| Sample 3 | 2.15 × 10−4 | 2.21 × 10−4 | 2.18 × 10−4 | 2.21 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altharawi, A.; Abdel-Gawad, S.A. Environmental Sustainability Study for the Determination of Ketoprofen in the Presence of Its Main Photo-Degradation Products in River Water Using Solid-Contact Electrodes. Chemosensors 2025, 13, 375. https://doi.org/10.3390/chemosensors13110375
Altharawi A, Abdel-Gawad SA. Environmental Sustainability Study for the Determination of Ketoprofen in the Presence of Its Main Photo-Degradation Products in River Water Using Solid-Contact Electrodes. Chemosensors. 2025; 13(11):375. https://doi.org/10.3390/chemosensors13110375
Chicago/Turabian StyleAltharawi, Ali, and Sherif A. Abdel-Gawad. 2025. "Environmental Sustainability Study for the Determination of Ketoprofen in the Presence of Its Main Photo-Degradation Products in River Water Using Solid-Contact Electrodes" Chemosensors 13, no. 11: 375. https://doi.org/10.3390/chemosensors13110375
APA StyleAltharawi, A., & Abdel-Gawad, S. A. (2025). Environmental Sustainability Study for the Determination of Ketoprofen in the Presence of Its Main Photo-Degradation Products in River Water Using Solid-Contact Electrodes. Chemosensors, 13(11), 375. https://doi.org/10.3390/chemosensors13110375

