Sensing and Degradation of Organophosphorus Compounds by Exploitation of Heat-Loving Enzymes
Abstract
:1. Introduction
2. OP Structures and Mechanism of Toxicity
3. Sensing of OP Compounds: An Enzymatic Approach
3.1. Sensing of OPs
3.2. Thermostable Carboxylesterases of the Hormone-Sensitive Lipase (HSL) Family: Structure and Function
3.3. EST2 Used as Biosensor
4. OP Decontamination and Detoxification
4.1. Phosphotriesterase and Phosphotriesterase-like Lactonase (PLL) Enzymes: Structure and Function
4.2. Discovery of the PLL Family
4.3. Molecular Evolution of PLLs to Improve Decontamination of OPs
5. The Benefit of Thermostable Enzymes: Applications in Sensing and Bioremediation of OPs
Recent Advancements and Applications of BIOSENSORS: A Further Example of Integrated System
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, H.; Wang, C.; Chang, W.-Y.; Liu, H. Factors Affecting Chinese Farmers’ Environment-Friendly Pesticide Application Behavior: A Meta-Analysis. J. Clean. Prod. 2023, 409, 137277. [Google Scholar] [CrossRef]
- He, Y.; Guo, C.; Lv, J.; Deng, Y.; Xu, J. Occurrence, Sources, and Ecological Risks of Three Classes of Insecticides in Sediments of the Liaohe River Basin, China. Environ. Sci. Pollut. Res. 2021, 28, 62726–62735. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhu, J.; Pan, Y.; Wu, S.; Dang, Y.; Xu, B.; Yang, H. The Positive Impacts of Landscape Fragmentation on the Diversification of Agricultural Production in Zhejiang Province, China. J. Clean. Prod. 2020, 251, 119722. [Google Scholar] [CrossRef]
- Zhang, D.; Xiao, Y.; Xu, P.; Yang, X.; Wu, Q.; Wu, K. Insecticide Resistance Monitoring for the Invasive Populations of Fall Armyworm, Spodoptera Frugiperda in China. J. Integr. Agric. 2021, 20, 783–791. [Google Scholar] [CrossRef]
- Voorhees, J.R.; Rohlman, D.S.; Lein, P.J.; Pieper, A.A. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Front. Neurosci. 2017, 10, 590. [Google Scholar] [CrossRef]
- Simonelli, A.; Carfora, A.; Basilicata, P.; Liguori, B.; Mascolo, P.; Policino, F.; Niola, M.; Campobasso, C.P. Suicide by Pesticide (Phorate) Ingestion: Case Report and Review of Literature. Toxics 2022, 10, 205. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations. Preventing Suicide: A Resource for Pesticide Registrars and Regulators; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Eddleston, M. Novel Clinical Toxicology and Pharmacology of Organophosphorus Insecticide Self-Poisoning. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 341–360. [Google Scholar] [CrossRef]
- Enserink, M.U.N. Taps Special Labs to Investigate Syrian Attack. Science 2013, 341, 1050–1051. [Google Scholar] [CrossRef]
- Sprague, R.M.; Ladd, M.; Ashurst, J.V. EMS Resuscitation During Contamination While Wearing PPE. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Picard, B.; Chataigner, I.; Maddaluno, J.; Legros, J. Introduction to Chemical Warfare Agents, Relevant Simulants and Modern Neutralisation Methods. Org. Biomol. Chem. 2019, 17, 6528–6537. [Google Scholar] [CrossRef]
- Vale, J.A.; Marrs, T.C.; Maynard, R.L. Novichok: A Murderous Nerve Agent Attack in the UK. Clin. Toxicol. 2018, 56, 1093–1097. [Google Scholar] [CrossRef]
- Plaza, P.I.; Martínez-López, E.; Lambertucci, S.A. The Perfect Threat: Pesticides and Vultures. Sci. Total Environ. 2019, 687, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Afriat, L.; Roodveldt, C.; Manco, G.; Tawfik, D.S. The Latent Promiscuity of Newly Identified Microbial Lactonases Is Linked to a Recently Diverged Phosphotriesterase. Biochemistry 2006, 45, 13677–13686. [Google Scholar] [CrossRef] [PubMed]
- Manco, G.; Merone, L.; Mandrich, L. Structural and Kinetic Overview of the Carboxylesterase EST2 from Alicyclobacillus Acidocaldarius: A Comparison with the Other Members Ofthe HSL Family. Protein Pept. Lett. 2009, 16, 1189–1200. [Google Scholar] [CrossRef]
- Mukherjee, S.; Gupta, R.D. Organophosphorus Nerve Agents: Types, Toxicity, and Treatments. J. Toxicol. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Balali-Mood, B. Chemistry and Classification of OP Compounds. In Basic and Clinical Toxicology of Organophosphorus Compounds; Balali-Mood, M., Abdollahi, M., Eds.; Springer: London, UK, 2014; pp. 1–23. ISBN 978-1-4471-5624-6. [Google Scholar]
- Kumar, S.; Kaushik, G.; Villarreal-Chiu, J.F. Scenario of Organophosphate Pollution and Toxicity in India: A Review. Environ. Sci. Pollut. Res. 2016, 23, 9480–9491. [Google Scholar] [CrossRef]
- Gupta, R.C. Classification and Uses of Organophosphates and Carbamates. In Toxicology of Organophosphate & Carbamate Compounds; Elsevier: Amsterdam, The Netherlands, 2006; pp. 5–24. ISBN 978-0-12-088523-7. [Google Scholar]
- Organisation for the Prohibition of Chemical Weapons. 2019. Available online: https://www.opcw.org/ (accessed on 7 October 2024).
- Kranawetvogl, A.; Küppers, J.; Siegert, M.; Gütschow, M.; Worek, F.; Thiermann, H.; Elsinghorst, P.W.; John, H. Bioanalytical Verification of V-Type Nerve Agent Exposure: Simultaneous Detection of Phosphonylated Tyrosines and Cysteine-Containing Disulfide-Adducts Derived from Human Albumin. Anal. Bioanal. Chem. 2018, 410, 1463–1474. [Google Scholar] [CrossRef]
- Moshiri, M.; Darchini-Maragheh, E.; Balali-Mood, M. Advances in Toxicology and Medical Treatment of Chemical Warfare Nerve Agents. DARU J. Pharm. Sci. 2012, 20, 81. [Google Scholar] [CrossRef]
- Bajgar, J. Nerve Agents Poisoning and Its Treatment in Schematic Figures and Tables; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Hulse, E.J.; Haslam, J.D.; Emmett, S.R.; Woolley, T. Organophosphorus Nerve Agent Poisoning: Managing the Poisoned Patient. Br. J. Anaesth. 2019, 123, 457–463. [Google Scholar] [CrossRef]
- Holmgaard, R.; Nielsen, J.B. Dermal Absorption of Pesticides—Valuation of Variability and Prevention; DANISH Ministry of the Environment, Environment Protection Agency: Odense, Denmark, 2009. [Google Scholar]
- Chai, P.R.; Hayes, B.D.; Erickson, T.B.; Boyer, E.W. Novichok Agents: A Historical, Current, and Toxicological Perspective. Toxicol. Commun. 2018, 2, 45–48. [Google Scholar] [CrossRef]
- Franca, T.; Kitagawa, D.; Cavalcante, S.; Da Silva, J.; Nepovimova, E.; Kuca, K. Novichoks: The Dangerous Fourth Generation of Chemical Weapons. Int. J. Mol. Sci. 2019, 20, 1222. [Google Scholar] [CrossRef]
- Charejoo, A.; Arabfard, M.; Jafari, A.; Nourian, Y.H. A Complete, Evidence-Based Review on Novichok Poisoning Based on Epidemiological Aspects and Clinical Management. Front. Toxicol. 2023, 4, 1004705. [Google Scholar] [CrossRef] [PubMed]
- Smithson, A.E.; Mirrzayanov, V.S.; Lajoie, R. Chemical Weapons Disarmament in Russia: Problems and Prospects; Stimson Center: Washington, DC, USA, 1995. [Google Scholar]
- Harvey, S.P.; McMahon, L.R.; Berg, F.J. Hydrolysis and Enzymatic Degradation of Novichok Nerve Agents. Heliyon 2020, 6, e03153. [Google Scholar] [CrossRef]
- Mousavi, M.; Hellström-Lindahl, E.; Guan, Z.-Z.; Bednar, I.; Nordberg, A. Expression of Nicotinic Acetylcholine Receptors in Human and Rat Adrenal Medulla. Life Sci. 2001, 70, 577–590. [Google Scholar] [CrossRef]
- Aroniadou-Anderjaska, V.; Apland, J.P.; Figueiredo, T.H.; De Araujo Furtado, M.; Braga, M.F. Acetylcholinesterase Inhibitors (Nerve Agents) as Weapons of Mass Destruction: History, Mechanisms of Action, and Medical Countermeasures. Neuropharmacology 2020, 181, 108298. [Google Scholar] [CrossRef]
- Mew, E.J.; Padmanathan, P.; Konradsen, F.; Eddleston, M.; Chang, S.-S.; Phillips, M.R.; Gunnell, D. The Global Burden of Fatal Self-Poisoning with Pesticides 2006-15: Systematic Review. J. Affect. Disord. 2017, 219, 93–104. [Google Scholar] [CrossRef]
- Ojha, A.; Gupta, Y. Evaluation of Genotoxic Potential of Commonly Used Organophosphate Pesticides in Peripheral Blood Lymphocytes of Rats. Hum. Exp. Toxicol. 2015, 34, 390–400. [Google Scholar] [CrossRef]
- Salazar-Arredondo, E.; Solís-Heredia, M.D.J.; Rojas-García, E.; Hernández-Ochoa, I.; Quintanilla-Vega, B. Sperm Chromatin Alteration and DNA Damage by Methyl-Parathion, Chlorpyrifos and Diazinon and Their Oxon Metabolites in Human Spermatozoa. Reprod. Toxicol. 2008, 25, 455–460. [Google Scholar] [CrossRef]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of Tetrachlorvinphos, Parathion, Malathion, Diazinon, and Glyphosate. Lancet Oncol. 2015, 16, 490–491. [Google Scholar] [CrossRef]
- Pszczolińska, K.; Michel, M. The QuEChERS Approach for the Determination of Pesticide Residues in Soil Samples: An Overview. J. AOAC Int. 2016, 99, 1403–1414. [Google Scholar] [CrossRef]
- Pasupuleti, R.R.; Tsai, P.; Lin, P.D.; Wu, M.; Ponnusamy, V.K. Rapid and Sensitive Analytical Procedure for Biomonitoring of Organophosphate Pesticide Metabolites in Human Urine Samples Using a Vortex-assisted Salt-induced Liquid–Liquid Microextraction Technique Coupled with Ultra-high-performance Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8565. [Google Scholar] [CrossRef]
- Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Organophosphorus Pesticides Extraction with Polyvinyl Alcohol Coated Magnetic Graphene Oxide Particles and Analysis by Gas Chromatography-Mass Spectrometry: Application to Apple Juice and Environmental Water. Talanta 2021, 227, 122078. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, F. Biochemical Strategies for the Detection and Detoxification of Toxic Chemicals in the Environment. World J. Biol. Chem. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, M.; Yu, H.; She, Y.; Cao, Z.; Ye, J.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Wang, J.; Lao, S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. J. Agric. Food Chem. 2020, 68, 7298–7315. [Google Scholar] [CrossRef] [PubMed]
- Lyagin, I.V.; Efremenko, E.N.; Varfolomeev, S.D. Enzymatic Biosensors for Determination of Pesticides. Russ. Chem. Rev. 2017, 86, 339–355. [Google Scholar] [CrossRef]
- Raushel, F.M. Catalytic Detoxification. Nature 2011, 469, 310–311. [Google Scholar] [CrossRef]
- Wille, T.; Kaltenbach, L.; Thiermann, H.; Worek, F. Investigation of Kinetic Interactions between Approved Oximes and Human Acetylcholinesterase Inhibited by Pesticide Carbamates. Chem.-Biol. Interact. 2013, 206, 569–572. [Google Scholar] [CrossRef]
- Gupta, R.D.; Goldsmith, M.; Ashani, Y.; Simo, Y.; Mullokandov, G.; Bar, H.; Ben-David, M.; Leader, H.; Margalit, R.; Silman, I.; et al. Directed Evolution of Hydrolases for Prevention of G-Type Nerve Agent Intoxication. Nat. Chem. Biol. 2011, 7, 120–125. [Google Scholar] [CrossRef]
- Masson, P.; Nachon, F. Cholinesterase Reactivators and Bioscavengers for Pre- and Post-exposure Treatments of Organophosphorus Poisoning. J. Neurochem. 2017, 142, 26–40. [Google Scholar] [CrossRef]
- Merone, L.; Mandrich, L.; Porzio, E.; Rossi, M.; Müller, S.; Reiter, G.; Worek, F.; Manco, G. Improving the Promiscuous Nerve Agent Hydrolase Activity of a Thermostable Archaeal Lactonase. Bioresour. Technol. 2010, 101, 9204–9212. [Google Scholar] [CrossRef]
- Del Giudice, I.; Coppolecchia, R.; Merone, L.; Porzio, E.; Carusone, T.M.; Mandrich, L.; Worek, F.; Manco, G. An Efficient Thermostable Organophosphate Hydrolase and Its Application in Pesticide Decontamination. Biotechnol. Bioeng. 2016, 113, 724–734. [Google Scholar] [CrossRef]
- LeJeune, K.E.; Wild, J.R.; Russell, A.J. Nerve Agents Degraded by Enzymatic Foams. Nature 1998, 395, 27–28. [Google Scholar] [CrossRef] [PubMed]
- LeJeune, K.E.; Russell, A.J. Covalent Binding of a Nerve Agent Hydrolyzing Enzyme within Polyurethane Foams. Biotechnol. Bioeng. 2000, 51, 450–457. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Pittman, T.W.; Zhang, X.; Punyadeera, C.; Henry, C.S. Electrochemical Immunosensor for the Quantification of Galectin-3 in Saliva. Sens. Actuators B Chem. 2024, 400, 134811. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, Z.; Khalife, M.; Costache, V.; Camacho, M.J.; Cardoso, S.; Martins, V.; Gadjanski, I.; Radovic, M.; Vidic, J. Rapid Detection and Identification of Vancomycin-Sensitive Bacteria Using an Electrochemical Apta-Sensor. ACS Omega 2024, 9, 2841–2849. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-Care Diagnostics for Infectious Diseases: From Methods to Devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef]
- Morrison, D.W.G.; Dokmeci, M.R.; Demirci, U.; Khademhosseini, A. Clinical Applications of Micro- and Nanoscale Biosensors. In Biomedical Nanostructures; Gonsalves, K.E., Halberstadt, C.R., Laurencin, C.T., Nair, L.S., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 439–460. ISBN 978-0-471-92552-1. [Google Scholar]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Freitas, A.C.; Pereira, R.; Duarte, A.C.; Rocha Santos, T.A.P. Recent Developments in Recognition Elements for Chemical Sensors and Biosensors. TrAC Trends Anal. Chem. 2015, 68, 2–17. [Google Scholar] [CrossRef]
- Lim, S.A.; Ahmed, M.U. Introduction to Food Biosensors. In Food Biosensors; Ahmed, M.U., Zourob, M., Tamiya, E., Eds.; The Royal Society of Chemistry: Cambridge, 2016; pp. 1–21. ISBN 978-1-78262-361-8. [Google Scholar]
- Perumal, V.; Hashim, U. Advances in Biosensors: Principle, Architecture and Applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Liu, H.; Ge, J.; Ma, E.; Yang, L. Advanced Biomaterials for Biosensor and Theranostics. In Biomaterials in Translational Medicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 213–255. ISBN 978-0-12-813477-1. [Google Scholar]
- Öndeş, B.; Akpınar, F.; Uygun, M.; Muti, M.; Aktaş Uygun, D. High Stability Potentiometric Urea Biosensor Based on Enzyme Attached Nanoparticles. Microchem. J. 2021, 160, 105667. [Google Scholar] [CrossRef]
- Schroeder, H.W.; Cavacini, L. Structure and Function of Immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [PubMed]
- Facure, M.H.M.; Mercante, L.A.; Mattoso, L.H.C.; Correa, D.S. Detection of Trace Levels of Organophosphate Pesticides Using an Electronic Tongue Based on Graphene Hybrid Nanocomposites. Talanta 2017, 167, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Fan, C.; Chen, M.; Zhang, X.; Yan, Q.; Wang, Y.; Zhang, S.; Gong, Z.; Shi, L.; Li, X.; et al. Recent Advances of Fluorescent Biosensors Based on Cyclic Signal Amplification Technology in Biomedical Detection. J. Nanobiotechnol. 2021, 19, 403. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Noumani, A.; Yadav, A.K.; Solanki, P.R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics 2023, 13, 1375. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.; Zhou, X.; Fan, F.; Chen, Z.; Shi, G. A Fluorescence Biosensor for Therapeutic Drug Monitoring of Vancomycin Using in Vivo Microdialysis. Anal. Chim. Acta 2021, 1151, 338250. [Google Scholar] [CrossRef]
- Levine, M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front. Chem. 2021, 9, 616815. [Google Scholar] [CrossRef]
- Choi, H.K.; Yoon, J. Enzymatic Electrochemical/Fluorescent Nanobiosensor for Detection of Small Chemicals. Biosensors 2023, 13, 492. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Li, Q.; Tian, Y.; Gao, X.; Zhang, W.; Sun, Z.; Mou, Y.; Sun, X.; Guo, Y.; et al. Development of a Fluorescent Sensor Based on TPE-Fc and GSH-AuNCs for the Detection of Organophosphorus Pesticide Residues in Vegetables. Food Chem. 2024, 431, 137067. [Google Scholar] [CrossRef]
- Krejci, E.; Duval, N.; Chatonnet, A.; Vincens, P.; Massoulié, J. Cholinesterase-like Domains in Enzymes and Structural Proteins: Functional and Evolutionary Relationships and Identification of a Catalytically Essential Aspartic Acid. Proc. Natl. Acad. Sci. USA 1991, 88, 6647–6651. [Google Scholar] [CrossRef]
- Langin, D.; Laurell, H.; Holst, L.S.; Belfrage, P.; Holm, C. Gene Organization and Primary Structure of Human Hormone-Sensitive Lipase: Possible Significance of a Sequence Homology with a Lipase of Moraxella TA144, an Antarctic Bacterium. Proc. Natl. Acad. Sci. USA 1993, 90, 4897–4901. [Google Scholar] [CrossRef]
- Hemilä, H.; Koivula, T.T.; Palva, I. Hormone-Sensitive Lipase Is Closely Related to Several Bacterial Proteins, and Distantly Related to Acetylcholinesterase and Lipoprotein Lipase: Identification of a Superfamily of Esterases and Lipases. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1994, 1210, 249–253. [Google Scholar] [CrossRef]
- Lenfant, N.; Hotelier, T.; Velluet, E.; Bourne, Y.; Marchot, P.; Chatonnet, A. ESTHER, the Database of the α/β-Hydrolase Fold Superfamily of Proteins: Tools to Explore Diversity of Functions. Nucleic Acids Res. 2012, 41, D423–D429. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, A.; Perochon, M.; Velluet, E.; Marchot, P. The ESTHER Database on Alpha/Beta Hydrolase Fold Proteins—An Overview of Recent Developments. Chem.-Biol. Interact. 2023, 383, 110671. [Google Scholar] [CrossRef]
- Holm, C.; Kirchgessner, T.G.; Svenson, K.L.; Fredrikson, G.; Nilsson, S.; Miller, C.G.; Shively, J.E.; Heinzmann, C.; Sparkes, R.S.; Mohandas, T.; et al. Hormone-Sensitive Lipase: Sequence, Expression, and Chromosomal Localization to 19 Cent-Q13.3. Science 1988, 241, 1503–1506. [Google Scholar] [CrossRef]
- Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011, 155, 219–223. [Google Scholar] [CrossRef]
- Pohanka, M. Butyrylcholinesterase as a Biochemical Marker. Bratisl. Lek. Listy 2013, 114, 726–734. [Google Scholar] [CrossRef]
- Pohanka, M. Acetylcholinesterase Inhibitors: A Patent Review (2008–Present). Expert. Opin. Ther. Pat. 2012, 22, 871–886. [Google Scholar] [CrossRef]
- Julian, P.L.; Pikl, J. Studies in the Indole Series. III. On the Synthesis of Physostigmine. J. Am. Chem. Soc. 1935, 57, 539–544. [Google Scholar] [CrossRef]
- Lilienfeld, S. Galantamine—A Novel Cholinergic Drug with a Unique Dual Mode of Action for the Treatment of Patients with Alzheimer’s Disease. CNS Drug Rev. 2002, 8, 159–176. [Google Scholar] [CrossRef]
- Silver, A. The Biology of Cholinesterases; Front. Biol.; North-Holland Publishing Company (Elsevier): Amsterdam, The Netherlands, 1974. [Google Scholar]
- Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.-M. Molecular and Cellular Biology of Cholinesterases. Prog. Neurobiol. 1993, 41, 31–91. [Google Scholar] [CrossRef]
- Cohen, J.A.; Oosterbaan, R.A. Cholinesterases and Anticholinesterase Agents; Koelle, G.B., Ed.; Springer: Berlin/Heidelberg, Germany, 1963; pp. 299–373. [Google Scholar]
- Millard, C.B.; Broomfield, C.A. A Computer Model of Glycosylated Human Butyrylcholinesterase. Biochem. Biophys. Res. Commun. 1992, 189, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Tsigelny, I.; Taylor, P.; Bourne, P.E.; Shindyalov, I.N.; Südhof, T.C. Common EF-hand Motifs in Cholinesterases and Neuroligins Suggest a Role for Ca2+ Binding in Cell Surface Associations. Protein Sci. 2000, 9, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.; Guillozet, A.; Shaw, P.; Quinn, B. Widely Spread Butyrylcholinesterase Can Hydrolyze Acetylcholine in the Normal and Alzheimer Brain. Neurobiol. Dis. 2002, 9, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Froment, M.-T.; Fortier, P.-L.; Visicchio, J.-E.; Bartels, C.F.; Lockridge, O. Butyrylcholinesterase-Catalysed Hydrolysis of Aspirin, a Negatively Charged Ester, and Aspirin-Related Neutral Esters. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1998, 1387, 41–52. [Google Scholar] [CrossRef]
- Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of Butyrylcholinesterase. Nat. Rev. Neurosci. 2003, 4, 131–138. [Google Scholar] [CrossRef]
- Manco, G.; Adinolfi, E.; Pisani, F.M.; Ottolina, G.; Carrea, G.; Rossi, M. Overexpression and Properties of a New Thermophilic and Thermostable Esterase from Bacillus Acidocaldarius with Sequence Similarity to Hormone-Sensitive Lipase Subfamily. Biochem. J. 1998, 332 Pt 1, 203–212. [Google Scholar] [CrossRef]
- Manco, G.; Febbraio, F.; Adinolfi, E.; Rossi, M. Homology Modeling and Active-site Residues Probing of the Thermophilic Alicyclobacillus Acidocaldarius Esterase 2. Protein Sci. 1999, 8, 1789–1796. [Google Scholar] [CrossRef]
- Mandrich, L.; De Santi, C.; De Pascale, D.; Manco, G. Effect of Low Organic Solvents Concentration on the Stability and Catalytic Activity of HSL-like Carboxylesterases: Analysis from Psychrophiles to (Hyper)Thermophiles. J. Mol. Catal. B Enzym. 2012, 82, 46–52. [Google Scholar] [CrossRef]
- Pennacchio, A.; Mandrich, L.; Manco, G.; Trincone, A. Enlarging the Substrate Portfolio of the Thermophilic Esterase EST2 from Alicyclobacillus Acidocaldarius. Extremophiles 2015, 19, 1001–1011. [Google Scholar] [CrossRef]
- De Simone, G.; Galdiero, S.; Manco, G.; Lang, D.; Rossi, M.; Pedone, C. A Snapshot of a Transition State Analogue of a Novel Thermophilic Esterase Belonging to the Subfamily of Mammalian Hormone-Sensitive Lipase 1 1Edited by D. Rees. J. Mol. Biol. 2000, 303, 761–771. [Google Scholar] [CrossRef]
- Febbraio, F.; D’Andrea, S.E.; Mandrich, L.; Merone, L.; Rossi, M.; Nucci, R.; Manco, G. Irreversible Inhibition of the Thermophilic Esterase EST2 from Alicyclobacillus Acidocaldarius. Extremophiles 2008, 12, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Pezzullo, M.; Del Vecchio, P.; Mandrich, L.; Nucci, R.; Rossi, M.; Manco, G. Comprehensive Analysis of Surface Charged Residues Involved in Thermal Stability in Alicyclobacillus Acidocaldarius Esterase 2. Protein Eng. Des. Sel. 2013, 26, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Porzio, E.; Bettazzi, F.; Mandrich, L.; Del Giudice, I.; Restaino, O.F.; Laschi, S.; Febbraio, F.; De Luca, V.; Borzacchiello, M.G.; Carusone, T.M.; et al. Innovative Biocatalysts as Tools to Detect and Inactivate Nerve Agents. Sci. Rep. 2018, 8, 13773. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Singh, P.K. Enzyme-Based Optical Biosensors for Organophosphate Class of Pesticide Detection. Phys. Chem. Chem. Phys. 2020, 22, 15105–15119. [Google Scholar] [CrossRef]
- Kim, M.; Kwon, J.E.; Lee, K.; Koh, W.-G. Signal-Amplifying Nanoparticle/Hydrogel Hybrid Microarray Biosensor for Metal-Enhanced Fluorescence Detection of Organophosphorus Compounds. Biofabrication 2018, 10, 035002. [Google Scholar] [CrossRef]
- Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y. Carbon Quantum Dots as Fluorescence Resonance Energy Transfer Sensors for Organophosphate Pesticides Determination. Biosens. Bioelectron. 2017, 94, 292–297. [Google Scholar] [CrossRef]
- Yan, X.; Li, H.; Han, X.; Su, X. A Ratiometric Fluorescent Quantum Dots Based Biosensor for Organophosphorus Pesticides Detection by Inner-Filter Effect. Biosens. Bioelectron. 2015, 74, 277–283. [Google Scholar] [CrossRef]
- Kamelipour, N.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Khoshnevisan, K.; Allameh, A.; Milani, M.M.; Najavand, S.; Etemadikia, B. Fluorometric Determination of Paraoxon in Human Serum Using a Gold Nanoparticle-Immobilized Organophosphorus Hydrolase and Coumarin 1 as a Competitive Inhibitor. Microchim. Acta 2014, 181, 239–248. [Google Scholar] [CrossRef]
- Rodrigues, A.C.M.; Barbieri, M.V.; Chino, M.; Manco, G.; Febbraio, F. A 3D Printable Adapter for Solid-State Fluorescence Measurements: The Case of an Immobilized Enzymatic Bioreceptor for Organophosphate Pesticides Detection. Anal. Bioanal. Chem. 2022, 414, 1999–2008. [Google Scholar] [CrossRef]
- De Luca, V.; Mandrich, L.; Manco, G. Development of a Qualitative Test to Detect the Presence of Organophosphate Pesticides on Fruits and Vegetables. Life 2023, 13, 490. [Google Scholar] [CrossRef]
- Febbraio, F.; Merone, L.; Cetrangolo, G.P.; Rossi, M.; Nucci, R.; Manco, G. Thermostable Esterase 2 from Alicyclobacillus Acidocaldarius as Biosensor for the Detection of Organophosphate Pesticides. Anal. Chem. 2011, 83, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Purcarea, C.; Ruginescu, R.; Banciu, R.M.; Vasilescu, A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. Biosensors 2024, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Carullo, P.; Chino, M.; Cetrangolo, G.P.; Terreri, S.; Lombardi, A.; Manco, G.; Cimmino, A.; Febbraio, F. Direct Detection of Organophosphate Compounds in Water by a Fluorescence-Based Biosensing Device. Sens. Actuators B Chem. 2018, 255, 3257–3266. [Google Scholar] [CrossRef]
- Barbieri, M.V.; Rodrigues, A.C.; Febbraio, F. Monitoring of Pesticide Amount in Water and Drinkable Food by a Fluorescence-based Biosensor. EFSA J. 2022, 20, e200403. [Google Scholar] [CrossRef]
- Cetrangolo, G.P.; Gori, C.; Rusko, J.; Terreri, S.; Manco, G.; Cimmino, A.; Febbraio, F. Determination of Picomolar Concentrations of Paraoxon in Human Urine by Fluorescence-Based Enzymatic Assay. Sensors 2019, 19, 4852. [Google Scholar] [CrossRef]
- Garefalaki, V.; Manco, G.; Porzio, E.; Institute of Biochemistry and Cell Biology-National Research Council (IBBC-CNR), Italy. Use of Biosensors for Rapid and Sensitive Detection of Pesticides in Food Samples for Food Safety Chemical Risk Assessment. EFSA J. 2022, 20, e200922. [Google Scholar] [CrossRef]
- Carullo, P.; Cetrangolo, G.P.; Mandrich, L.; Manco, G.; Febbraio, F. Fluorescence Spectroscopy Approaches for the Development of a Real-Time Organophosphate Detection System Using an Enzymatic Sensor. Sensors 2015, 15, 3932–3951. [Google Scholar] [CrossRef]
- Tortora, F.; Porzio, E.; Galoppo, C.; Febbraio, F.; Manco, G. Development of a Fluorescence-Based Biosensor for Coumaphos. Sens. Transducers 2021, 253, 18–22. [Google Scholar]
- Doctor, B.P.; Saxena, A. Bioscavengers for the Protection of Humans against Organophosphate Toxicity. Chem.-Biol. Interact. 2005, 157–158, 167–171. [Google Scholar] [CrossRef]
- Braue, E.H., Jr.; Hobson, S.T. Active Topical Skin Protectants Containing OPAA Enzymes and Clecs. US6410604B1, 2001. [Google Scholar]
- Rosenberg, Y.J.; Laube, B.; Mao, L.; Jiang, X.; Hernandez-Abanto, S.; Lee, K.D.; Adams, R. Pulmonary Delivery of an Aerosolized Recombinant Human Butyrylcholinesterase Pretreatment Protects against Aerosolized Paraoxon in Macaques. Chem.-Biol. Interact. 2013, 203, 167–171. [Google Scholar] [CrossRef]
- Rosenberg, Y.J.; Adams, R.J.; Hernandez-Abanto, S.; Jiang, X.; Sun, W.; Mao, L.; Lee, K.D. Pharmacokinetics and Immunogenicity of a Recombinant Human Butyrylcholinesterase Bioscavenger in Macaques Following Intravenous and Pulmonary Delivery. Chem.-Biol. Interact. 2015, 242, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Lushchekina, S.V.; Schopfer, L.M.; Grigorenko, B.L.; Nemukhin, A.V.; Varfolomeev, S.D.; Lockridge, O.; Masson, P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front. Pharmacol. 2018, 9, 211. [Google Scholar] [CrossRef]
- Yang, Y.-C. ChemInform Abstract: Chemical Detoxification of Nerve Agent VX. ChemInform 2010, 30. [Google Scholar] [CrossRef]
- Pearson, G.S.; Magee, R.S. Critical Evaluation of Proven Chemical Weapon Destruction Technologies (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 187–316. [Google Scholar] [CrossRef]
- Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Tucker, M. Reduced Weight Decontamination Formulation for Neutralization of Chemical and Biological Warfare Agents. U.S. Patent 8741174 B1, 3 June 2014. [Google Scholar]
- Poirier, L.; Jacquet, P.; Elias, M.; Daudé, D.; Chabrière, E. Decontamination of organophosphorus compounds: Towards new alternatives. Ann. Pharm. Fr. 2017, 75, 209–226. [Google Scholar] [CrossRef]
- Pearson, J.P.; Gray, K.M.; Passador, L.; Tucker, K.D.; Eberhard, A.; Iglewski, B.H.; Greenberg, E.P. Structure of the Autoinducer Required for Expression of Pseudomonas Aeruginosa Virulence Genes. Proc. Natl. Acad. Sci. USA 1994, 91, 197–201. [Google Scholar] [CrossRef]
- Reddy, P.V.L.; Kim, K.-H. A Review of Photochemical Approaches for the Treatment of a Wide Range of Pesticides. J. Hazard. Mater. 2015, 285, 325–335. [Google Scholar] [CrossRef]
- Pashirova, T.; Shaihutdinova, Z.; Mansurova, M.; Kazakova, R.; Shambazova, D.; Bogdanov, A.; Tatarinov, D.; Daudé, D.; Jacquet, P.; Chabrière, E.; et al. Enzyme Nanoreactor for In Vivo Detoxification of Organophosphates. ACS Appl. Mater. Interfaces 2022, 14, 19241–19252. [Google Scholar] [CrossRef]
- Xu, F.; Kang, T.; Deng, J.; Liu, J.; Chen, X.; Wang, Y.; Ouyang, L.; Du, T.; Tang, H.; Xu, X.; et al. Functional Nanoparticles Activate a Decellularized Liver Scaffold for Blood Detoxification. Small 2016, 12, 2067–2076. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, J.; Li, W.; Luo, Y.; Sui, X.; Li, J.; Wang, Y.; Yang, J. A Protein Nanocomposite for Ultra-Fast, Efficient and Non-Irritating Skin Decontamination of Nerve Agents. Nanoscale 2020, 12, 4400–4409. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, M.; Zhang, Y.; Lee, J.H.; Escajadillo, T.; Gong, H.; Fang, R.H.; Gao, W.; Nizet, V.; Zhang, L. Antivirulence Therapy: Broad-Spectrum Neutralization of Pore-Forming Toxins with Human Erythrocyte Membrane-Coated Nanosponges (Adv. Healthcare Mater. 13/2018). Adv. Healthc. Mater. 2018, 7, 1870049. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Yan, M.; Lau, M.Y.; Hu, J.; Han, H.; Yang, O.O.; Liang, S.; Wei, W.; Wang, H.; et al. Biomimetic Enzyme Nanocomplexes and Their Use as Antidotes and Preventive Measures for Alcohol Intoxication. Nat. Nanotechnol. 2013, 8, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Xing, R.; Guan, J.; Yang, B.; Zhao, X.; Yang, J.; Zhan, C.; Zhang, S. A Nanoantidote Alleviates Glioblastoma Chemotoxicity without Efficacy Compromise. Nano Lett. 2021, 21, 5158–5166. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Lu, Y. Enzyme Therapeutics for Systemic Detoxification. Adv. Drug Deliv. Rev. 2015, 90, 24–39. [Google Scholar] [CrossRef]
- Forster, V.; Leroux, J.-C. Nano-Antidotes for Drug Overdose and Poisoning. Sci. Transl. Med. 2015, 7, 290ps14. [Google Scholar] [CrossRef]
- Rabanel, J.-M.; Delbreil, P.; Banquy, X.; Brambilla, D.; Ramassamy, C. Periphery-Confined Particulate Systems for the Management of Neurodegenerative Diseases and Toxicity: Avoiding the Blood-Brain-Barrier Challenge. J. Control. Release 2020, 322, 286–299. [Google Scholar] [CrossRef]
- Serdar, C.M.; Gibson, D.T.; Munnecke, D.M.; Lancaster, J.H. Plasmid Involvement in Parathion Hydrolysis by Pseudomonas Diminuta. Appl. Environ. Microbiol. 1982, 44, 246–249. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Lyagin, I.V.; Klyachko, N.L.; Bronich, T.; Zavyalova, N.V.; Jiang, Y.; Kabanov, A.V. A Simple and Highly Effective Catalytic Nanozyme Scavenger for Organophosphorus Neurotoxins. J. Control. Release 2017, 247, 175–181. [Google Scholar] [CrossRef]
- Bigley, A.N.; Harvey, S.P.; Narindoshvili, T.; Raushel, F.M. Substrate Analogues for the Enzyme-Catalyzed Detoxification of the Organophosphate Nerve Agents—Sarin, Soman, and Cyclosarin. Biochemistry 2021, 60, 2875–2887. [Google Scholar] [CrossRef]
- Seibert, C.M.; Raushel, F.M. Structural and Catalytic Diversity within the Amidohydrolase Superfamily. Biochemistry 2005, 44, 6383–6391. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.-C.; Bigley, A.; Li, Y.; Ghanem, E.; Cadieux, C.L.; Kasten, S.A.; Reeves, T.E.; Cerasoli, D.M.; Raushel, F.M. Stereoselective Hydrolysis of Organophosphate Nerve Agents by the Bacterial Phosphotriesterase. Biochemistry 2010, 49, 7978–7987. [Google Scholar] [CrossRef] [PubMed]
- Holden, H.M.; Raushel, F.M. From the Three-Dimensional Structure of Phosphotriesterase. Biochemistry 2021, 60, 3413–3415. [Google Scholar] [CrossRef]
- Dumas, D.P.; Caldwell, S.R.; Wild, J.R.; Raushel, F.M. Purification and Properties of the Phosphotriesterase from Pseudomonas Diminuta. J. Biol. Chem. 1989, 264, 19659–19665. [Google Scholar] [CrossRef]
- Dumas, D.P.; Durst, H.D.; Landis, W.G.; Raushel, F.M.; Wild, J.R. Inactivation of Organophosphorus Nerve Agents by the Phosphotriesterase from Pseudomonas Diminuta. Arch. Biochem. Biophys. 1990, 277, 155–159. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, D. Transient Expression of Organophosphorus Hydrolase to Enhance the Degrading Activity of Tomato Fruit on Coumaphos. J. Zhejiang Univ. Sci. B 2009, 10, 142–146. [Google Scholar] [CrossRef]
- Caldwell, S.R.; Newcomb, J.R.; Schlecht, K.A.; Raushel, F.M. Limits of Diffusion in the Hydrolysis of Substrates by the Phosphotriesterase from Pseudomonas Diminuta. Biochemistry 1991, 30, 7438–7444. [Google Scholar] [CrossRef]
- Lyagin, I.V.; Andrianova, M.S.; Efremenko, E.N. Extensive Hydrolysis of Phosphonates as Unexpected Behaviour of the Known His6-Organophosphorus Hydrolase. Appl. Microbiol. Biotechnol. 2016, 100, 5829–5838. [Google Scholar] [CrossRef]
- Nowlan, C.; Li, Y.; Hermann, J.C.; Evans, T.; Carpenter, J.; Ghanem, E.; Shoichet, B.K.; Raushel, F.M. Resolution of Chiral Phosphate, Phosphonate, and Phosphinate Esters by an Enantioselective Enzyme Library. J. Am. Chem. Soc. 2006, 128, 15892–15902. [Google Scholar] [CrossRef]
- Lewis, V.E.; Donarski, W.J.; Wild, J.R.; Raushel, F.M. Mechanism and Stereochemical Course at Phosphorus of the Reaction Catalyzed by a Bacterial Phosphotriesterase. Biochemistry 1988, 27, 1591–1597. [Google Scholar] [CrossRef]
- Samples, C.R.; Howard, T.; Raushel, F.M.; DeRose, V.J. Protonation of the Binuclear Metal Center within the Active Site of Phosphotriesterase. Biochemistry 2005, 44, 11005–11013. [Google Scholar] [CrossRef] [PubMed]
- Benning, M.M.; Hong, S.-B.; Raushel, F.M.; Holden, H.M. The Binding of Substrate Analogs to Phosphotriesterase. J. Biol. Chem. 2000, 275, 30556–30560. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Tsai, P.-C.; Chen, S.-L.; Himo, F.; Almo, S.C.; Raushel, F.M. Structure of Diethyl Phosphate Bound to the Binuclear Metal Center of Phosphotriesterase. Biochemistry 2008, 47, 9497–9504. [Google Scholar] [CrossRef] [PubMed]
- Horne, I.; Sutherland, T.D.; Harcourt, R.L.; Russell, R.J.; Oakeshott, J.G. Identification of an Opd (Organophosphate Degradation) Gene in an Agrobacterium Isolate. Appl. Environ. Microbiol. 2002, 68, 3371–3376. [Google Scholar] [CrossRef]
- Horne, I.; Qiu, X.; Russell, R.J.; Oakeshott, J.G. The Phosphotriesterase Gene opdA in Agrobacterium Radiobacter P230 Is Transposable. FEMS Microbiol. Lett. 2003, 222, 1–8. [Google Scholar] [CrossRef]
- Bigley, A.N.; Raushel, F.M. The Evolution of Phosphotriesterase for Decontamination and Detoxification of Organophosphorus Chemical Warfare Agents. Chem.-Biol. Interact. 2019, 308, 80–88. [Google Scholar] [CrossRef]
- Bigley, A.N.; Xu, C.; Henderson, T.J.; Harvey, S.P.; Raushel, F.M. Enzymatic Neutralization of the Chemical Warfare Agent VX: Evolution of Phosphotriesterase for Phosphorothiolate Hydrolysis. J. Am. Chem. Soc. 2013, 135, 10426–10432. [Google Scholar] [CrossRef]
- Bigley, A.N.; Mabanglo, M.F.; Harvey, S.P.; Raushel, F.M. Variants of Phosphotriesterase for the Enhanced Detoxification of the Chemical Warfare Agent VR. Biochemistry 2015, 54, 5502–5512. [Google Scholar] [CrossRef]
- Cherny, I.; Greisen, P.; Ashani, Y.; Khare, S.D.; Oberdorfer, G.; Leader, H.; Baker, D.; Tawfik, D.S. Engineering V-Type Nerve Agents Detoxifying Enzymes Using Computationally Focused Libraries. ACS Chem. Biol. 2013, 8, 2394–2403. [Google Scholar] [CrossRef]
- Jackson, C.J.; Weir, K.; Herlt, A.; Khurana, J.; Sutherland, T.D.; Horne, I.; Easton, C.; Russell, R.J.; Scott, C.; Oakeshott, J.G. Structure-Based Rational Design of a Phosphotriesterase. Appl. Environ. Microbiol. 2009, 75, 5153–5156. [Google Scholar] [CrossRef]
- Naqvi, T.; Warden, A.C.; French, N.; Sugrue, E.; Carr, P.D.; Jackson, C.J.; Scott, C. A 5000-Fold Increase in the Specificity of a Bacterial Phosphotriesterase for Malathion through Combinatorial Active Site Mutagenesis. PLoS ONE 2014, 9, e94177. [Google Scholar] [CrossRef] [PubMed]
- Merone, L.; Mandrich, L.; Rossi, M.; Manco, G. A Thermostable Phosphotriesterase from the Archaeon Sulfolobus Solfataricus: Cloning, Overexpression and Properties. Extremophiles 2005, 9, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Porzio, E.; Merone, L.; Mandrich, L.; Rossi, M.; Manco, G. A New Phosphotriesterase from Sulfolobus Acidocaldarius and Its Comparison with the Homologue from Sulfolobus Solfataricus. Biochimie 2007, 89, 625–636. [Google Scholar] [CrossRef]
- Porzio, E.; Di Gennaro, S.; Palma, A.; Manco, G. Mn2+ Modulates the Kinetic Properties of an Archaeal Member of the PLL Family. Chem. Biol. Interact. 2013, 203, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Suzumoto, Y.; Dym, O.; Roviello, G.N.; Worek, F.; Sussman, J.L.; Manco, G. Structural and Functional Characterization of New SsoPox Variant Points to the Dimer Interface as a Driver for the Increase in Promiscuous Paraoxonase Activity. Int. J. Mol. Sci. 2020, 21, 1683. [Google Scholar] [CrossRef]
- Porzio, E.; Del Giudice, I.; Manco, G. Engineering of Extremophilic Phosphotriesterase-Like Lactonases for Biotechnological Applications. In Biotechnology of Extremophiles; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Hiblot, J.; Gotthard, G.; Chabriere, E.; Elias, M. Characterisation of the Organophosphate Hydrolase Catalytic Activity of SsoPox. Sci. Rep. 2012, 2, 779. [Google Scholar] [CrossRef]
- Elias, M.; Dupuy, J.; Merone, L.; Mandrich, L.; Porzio, E.; Moniot, S.; Rochu, D.; Lecomte, C.; Rossi, M.; Masson, P.; et al. Structural Basis for Natural Lactonase and Promiscuous Phosphotriesterase Activities. J. Mol. Biol. 2008, 379, 1017–1028. [Google Scholar] [CrossRef]
- Manco, G.; Porzio, E.; Suzumoto, Y. Enzymatic Detoxification: A Sustainable Means of Degrading Toxic Organophosphate Pesticides and Chemical Warfare Nerve Agents. J. Chem. Technol. Biotechnol. 2018, 93, 2064–2082. [Google Scholar] [CrossRef]
- Zhang, Y.; An, J.; Yang, G.-Y.; Bai, A.; Zheng, B.; Lou, Z.; Wu, G.; Ye, W.; Chen, H.-F.; Feng, Y.; et al. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus Kaustophilus HTA426. PLoS ONE 2015, 10, e0115130. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Liu, X.; Zhou, W.; Rao, Z. The Crystal Structure of the Phosphotriesterase from M. tuberculosis, Another Member of Phosphotriesterase-like Lactonase Family. Biochem. Biophys. Res. Commun. 2019, 510, 224–229. [Google Scholar] [CrossRef]
- Hawwa, R.; Aikens, J.; Turner, R.J.; Santarsiero, B.D.; Mesecar, A.D. Structural Basis for Thermostability Revealed through the Identification and Characterization of a Highly Thermostable Phosphotriesterase-like Lactonase from Geobacillus Stearothermophilus. Arch. Biochem. Biophys. 2009, 488, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.Y.; Xue, B.; Lee, K.H.; Tung, A.; Wu, L.; Robinson, R.C.; Yew, W.S. Directed Evolution of a Thermostable Quorum-Quenching Lactonase from the Amidohydrolase Superfamily. J. Biol. Chem. 2010, 285, 40911–40920. [Google Scholar] [CrossRef] [PubMed]
- Hiblot, J.; Gotthard, G.; Chabriere, E.; Elias, M. Structural and Enzymatic Characterization of the Lactonase SisLac from Sulfolobus Islandicus. PLoS ONE 2012, 7, e47028. [Google Scholar] [CrossRef]
- Kallnik, V.; Bunescu, A.; Sayer, C.; Bräsen, C.; Wohlgemuth, R.; Littlechild, J.; Siebers, B. Characterization of a Phosphotriesterase-like Lactonase from the Hyperthermoacidophilic Crenarchaeon Vulcanisaeta Moutnovskia. J. Biotechnol. 2014, 190, 11–17. [Google Scholar] [CrossRef]
- Hawwa, R.; Larsen, S.D.; Ratia, K.; Mesecar, A.D. Structure-Based and Random Mutagenesis Approaches Increase the Organophosphate-Degrading Activity of a Phosphotriesterase Homologue from Deinococcus Radiodurans. J. Mol. Biol. 2009, 393, 36–57. [Google Scholar] [CrossRef]
- Mandrich, L.; Di Gennaro, S.; Palma, A.; Manco, G. A Further Biochemical Characterization of DrPLL the Thermophilic Lactonase from Deinococcus Radiodurans. Protein Pept. Lett. 2013, 20, 36–44. [Google Scholar] [CrossRef]
- Chow, J.Y.; Wu, L.; Yew, W.S. Directed Evolution of a Quorum-Quenching Lactonase from Mycobacterium Avium Subsp. Paratuberculosis K-10 in the Amidohydrolase Superfamily. Biochemistry 2009, 48, 4344–4353. [Google Scholar] [CrossRef]
- Rochu, D.; Viguié, N.; Renault, F.; Crouzier, D.; Froment, M.-T.; Masson, P. Contribution of the Active-Site Metal Cation to the Catalytic Activity and to the Conformational Stability of Phosphotriesterase: Temperature- and pH-Dependence. Biochem. J. 2004, 380, 627–633. [Google Scholar] [CrossRef]
- Hiblot, J.; Bzdrenga, J.; Champion, C.; Chabriere, E.; Elias, M. Crystal Structure of VmoLac, a Tentative Quorum Quenching Lactonase from the Extremophilic Crenarchaeon Vulcanisaeta Moutnovskia. Sci. Rep. 2015, 5, 8372. [Google Scholar] [CrossRef]
- Marone, M.; Porzio, E.; Lampitella, E.A.; Manco, G. A Mesophilic Phosphotriesterase-like Lactonase Shows High Stability and Proficiency as Quorum Quenching Enzyme. Chem. Biol. Interact. 2023, 383, 110657. [Google Scholar] [CrossRef]
- Roodveldt, C.; Tawfik, D.S. Shared Promiscuous Activities and Evolutionary Features in Various Members of the Amidohydrolase Superfamily. Biochemistry 2005, 44, 12728–12736. [Google Scholar] [CrossRef] [PubMed]
- Farber, G.K.; Petsko, G.A. The Evolution of α/β Barrel Enzymes. Trends Biochem. Sci. 1990, 15, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Mandrich, L.; Merone, L.; Manco, G. Hyperthermophilic Phosphotriesterases/Lactonases for the Environment and Human Health. Environ. Technol. 2010, 31, 1115–1127. [Google Scholar] [CrossRef]
- Del Vecchio, P.; Elias, M.; Merone, L.; Graziano, G.; Dupuy, J.; Mandrich, L.; Carullo, P.; Fournier, B.; Rochu, D.; Rossi, M.; et al. Structural Determinants of the High Thermal Stability of SsoPox from the Hyperthermophilic Archaeon Sulfolobus Solfataricus. Extremophiles 2009, 13, 461–470. [Google Scholar] [CrossRef]
- McClean, K.H.; Winson, M.K.; Fish, L.; Taylor, A.; Chhabra, S.R.; Camara, M.; Daykin, M.; Lamb, J.H.; Swift, S.; Bycroft, B.W.; et al. Quorum Sensing and Chromobacterium Violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-Acylhomoserine Lactones. Microbiology 1997, 143 Pt 12, 3703–3711. [Google Scholar] [CrossRef]
- Reimmann, C.; Ginet, N.; Michel, L.; Keel, C.; Michaux, P.; Krishnapillai, V.; Zala, M.; Heurlier, K.; Triandafillu, K.; Harms, H.; et al. Genetically Programmed Autoinducer Destruction Reduces Virulence Gene Expression and Swarming Motility in Pseudomonas Aeruginosa PAO1 The GenBank Accession Number for the aiiA Nucleotide Sequence Is AF397400. The GenBank Accession Numbers for the Nucleotide Sequences of the 16S rRNA Genes of Strains A23 and A24 Are AF397398 and AF397399. Microbiology 2002, 148, 923–932. [Google Scholar] [CrossRef]
- Wagner, V.E.; Bushnell, D.; Passador, L.; Brooks, A.I.; Iglewski, B.H. Microarray Analysis of Pseudomonas Aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment. J. Bacteriol. 2003, 185, 2080–2095. [Google Scholar] [CrossRef]
- Barbey, C.; Crépin, A.; Bergeau, D.; Ouchiha, A.; Mijouin, L.; Taupin, L.; Orange, N.; Feuilloley, M.; Dufour, A.; Burini, J.-F.; et al. In Planta Biocontrol of Pectobacterium Atrosepticum by Rhodococcus Erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway. PLoS ONE 2013, 8, e66642. [Google Scholar] [CrossRef]
- Crépin, A.; Beury-Cirou, A.; Barbey, C.; Farmer, C.; Hélias, V.; Burini, J.-F.; Faure, D.; Latour, X. N-Acyl Homoserine Lactones in Diverse Pectobacterium and Dickeya Plant Pathogens: Diversity, Abundance, and Involvement in Virulence. Sensors 2012, 12, 3484–3497. [Google Scholar] [CrossRef]
- Singh, B.K. Organophosphorus-Degrading Bacteria: Ecology and Industrial Applications. Nat. Rev. Microbiol. 2009, 7, 156–164. [Google Scholar] [CrossRef]
- Uroz, S.; Oger, P.M.; Chapelle, E.; Adeline, M.-T.; Faure, D.; Dessaux, Y. A Rhodococcus qsdA-Encoded Enzyme Defines a Novel Class of Large-Spectrum Quorum-Quenching Lactonases. Appl. Environ. Microbiol. 2008, 74, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Han, X.; Jia, H.; Cai, J.; Zhou, Y.; Zheng, Z. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide. Sci. Rep. 2017, 7, 40103. [Google Scholar] [CrossRef] [PubMed]
- Mondloch, J.E.; Katz, M.J.; Isley Iii, W.C.; Ghosh, P.; Liao, P.; Bury, W.; Wagner, G.W.; Hall, M.G.; DeCoste, J.B.; Peterson, G.W.; et al. Destruction of Chemical Warfare Agents Using Metal–Organic Frameworks. Nat. Mater. 2015, 14, 512–516. [Google Scholar] [CrossRef]
- Mishra, R.K.; Dominguez, R.B.; Bhand, S.; Muñoz, R.; Marty, J.-L. A Novel Automated Flow-Based Biosensor for the Determination of Organophosphate Pesticides in Milk. Biosens. Bioelectron. 2012, 32, 56–61. [Google Scholar] [CrossRef]
- Schofield, D.A.; Westwater, C.; Barth, J.L.; DiNovo, A.A. Development of a Yeast Biosensor–Biocatalyst for the Detection and Biodegradation of the Organophosphate Paraoxon. Appl. Microbiol. Biotechnol. 2007, 76, 1383–1394. [Google Scholar] [CrossRef]
- Liu, R.; Yang, C.; Xu, Y.; Xu, P.; Jiang, H.; Qiao, C. Development of a Whole-Cell Biocatalyst/Biosensor by Display of Multiple Heterologous Proteins on the Escherichia Coli Cell Surface for the Detoxification and Detection of Organophosphates. J. Agric. Food Chem. 2013, 61, 7810–7816. [Google Scholar] [CrossRef]
- Istamboulie, G.; Durbiano, R.; Fournier, D.; Marty, J.-L.; Noguer, T. Biosensor-Controlled Degradation of Chlorpyrifos and Chlorfenvinfos Using a Phosphotriesterase-Based Detoxification Column. Chemosphere 2010, 78, 1–6. [Google Scholar] [CrossRef]
- Pashirova, T.; Salah-Tazdaït, R.; Tazdaït, D.; Masson, P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int. J. Mol. Sci. 2024, 25, 7822. [Google Scholar] [CrossRef]
- Kim, E.R.; Joe, C.; Mitchell, R.J.; Gu, M.B. Biosensors for Healthcare: Current and Future Perspectives. Trends Biotechnol. 2023, 41, 374–395. [Google Scholar] [CrossRef]
- Safarkhani, M.; Kim, H.; Han, S.; Taghavimandi, F.; Park, Y.; Umapathi, R.; Jeong, Y.-S.; Shin, K.; Huh, Y.S. Advances in Sprayable Sensors for Nerve Agent Detection. Coord. Chem. Rev. 2024, 509, 215804. [Google Scholar] [CrossRef]
Enzyme | OP | Signal | Limit of Detection (LOD) | Ref. |
---|---|---|---|---|
Inhibition-based biosensors | ||||
AChE | Paraoxon | Fluorescence | 1 × 10−10 M | [98] |
BuChE | Parathion-methyl | Fluorescence | 0.05 mg mL−1 | [99] |
Tyrosinase | Paraoxon | Fluorescence | 0.018 ng mL−1 | [100] |
EST2 | Paraoxon | Electrochemical | 0.4 nM | [96] |
Catalysis-based biosensors | ||||
OPH | Paraoxon | Fluorescence | 5 × 10−11 M | [101] |
Organism | Enzyme | Substrate | Temperature (°C) [Ref.] | Kcat (s−1) | KM (mM) | KM/Kcat (M−1 s−1) |
---|---|---|---|---|---|---|
Saccharolobus solfataricus | SsoPox | Paraoxon | 70 °C [157] 25 °C [158] | 0.24 12.59 | 0.060 24.250 | 4.00 × 103 5.19 × 102 |
m-paraoxon | 70 °C [157] 25 °C [158] | 1.30 2.71 | 0.20 2.14 | 6.34 × 103 1.27 × 103 | ||
m-parathion | 25 °C [158] | 1.1 × 10−3 | 0.121 | 9.09 | ||
malathion | 25 °C [158] | 8.9 × 10−4 | 0.16 | 5.56 | ||
SsoPox 4Mut | Paraoxon | 70 °C [160] 25 °C [160] | 122.0 33 | 0.747 0.645 | 1.6 × 105 5.1 × 104 | |
m-paraoxon | 70 °C [160] | 30.1 | 0.871 | 3.5 × 104 | ||
Saccharolobus acidocaldarius | SacPox | Paraoxon | 70 °C [159] | 8.52 | 0.320 | 2.66 × 104 |
m-paraoxon | 70 °C [159] | 14.05 | 0.138 | 1.02 × 105 | ||
Rhodococcus erythropolis | AhlA | Paraoxon | 25 °C [14] | N.D. | N.D. | 0.5 |
Sulfolobus islandicus | SisLac | Paraoxon | 70 °C [169] 25 °C [169] | 0.79 1.42 | 1.311 5.439 | 6.98 × 102 2.60 × 102 |
m-paraoxon | 25 °C [169] | 7.4 | 1.739 | 4.26 × 103 | ||
m-parathion | 25 °C [169] | 9.7 × 10−3 | 0.272 | 3.57 × 101 | ||
malathion | 25 °C [169] | 6.2 × 10−4 | 0.33 | 1.88 | ||
Vulcanisaeta moutnovskia | VmoLac/ Vmut PLL | Paraoxon | 25 °C [175] | 1.08 × 10−3 | 0.581 | 1.86 |
m-paraoxon | 70 °C [169] 25 °C [175] | 1.25 N.D. | 2.79 N.D. | 4.43 × 102 2.32 | ||
Deinococcus radiodurans | Dr0930/ DrPLL/ DrOPH | Paraoxon | 35 °C [171] 85 °C [172] | 4.17 × 10−3 0.45 | 3.0 2.0 | 1.39 2.1 × 102 |
m-paraoxon | 35 °C [171] 85 °C [172] | 7.67 × 10−4 4.5 | 1.3 2.5 | 0.583 1.8 × 103 | ||
Geobacillus stearothermophilus | Gsp | Paraoxon | 35 °C [167] | 0.115 | 2.1 | 54.67 |
m-paraoxon | 35 °C [167] | 7.83 × 10−3 | 0.27 | 29.0 | ||
Demeton-S | 35 °C [167] | 6.0 × 10−4 | 6.1 | 0.0983 | ||
Geobacillus kaustophilus | GKL/GkaP | Paraoxon | 35 °C [168] 75 °C [165] | 3.1 × 10−3 N.D. | 0.69 N.D. | 4.5 1.1 × 102 |
m-paraoxon | 75 °C [165] | N.D. | N.D. | 38.0 |
Nerve Agents | kcat/KM (M−1s−1) | kcat (min−1) | ||
---|---|---|---|---|
SsoPox 3Mut | SsoPox 4Mut | SsoPox wt | SacPox wt | |
Tabun | 6.87 × 10 | 3.2 × 102 | n.a | n.a |
Sarin | 2.77 × 102 | 4.2 × 102 | n.a | n.a |
Soman | 4.32 × 10 | 4.2 × 102 | n.a | n.a |
Cyclosarin | 7.63 × 10 | n.a | n.a | n.a |
(+) Cyclosarin | n.a | n.a | 0.1042 | 0.0292 |
(−) Cyclosarin | n.a | n.a | 0.0309 | 0.0218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manco, G.; Lampitella, E.A.; Achanta, N.S.K.; Catara, G.; Marone, M.; Porzio, E. Sensing and Degradation of Organophosphorus Compounds by Exploitation of Heat-Loving Enzymes. Chemosensors 2025, 13, 12. https://doi.org/10.3390/chemosensors13010012
Manco G, Lampitella EA, Achanta NSK, Catara G, Marone M, Porzio E. Sensing and Degradation of Organophosphorus Compounds by Exploitation of Heat-Loving Enzymes. Chemosensors. 2025; 13(1):12. https://doi.org/10.3390/chemosensors13010012
Chicago/Turabian StyleManco, Giuseppe, Eros A. Lampitella, Nagendra S. K. Achanta, Giuliana Catara, Maria Marone, and Elena Porzio. 2025. "Sensing and Degradation of Organophosphorus Compounds by Exploitation of Heat-Loving Enzymes" Chemosensors 13, no. 1: 12. https://doi.org/10.3390/chemosensors13010012
APA StyleManco, G., Lampitella, E. A., Achanta, N. S. K., Catara, G., Marone, M., & Porzio, E. (2025). Sensing and Degradation of Organophosphorus Compounds by Exploitation of Heat-Loving Enzymes. Chemosensors, 13(1), 12. https://doi.org/10.3390/chemosensors13010012