Fiber Optic-Based Portable Sensor for Rapid Evaluation and In Situ Real-Time Sensing of Scale Formation in Geothermal Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Materials
2.2. Portable Sensor
2.3. Method for Determining the Amount of Scale
2.4. Observations of Scale Deposition on Different Surfaces and Calculation of Scale Coverage
Determination of the Scale Mass
2.5. Monitoring the Scale Formation under High-Temperature and High-Pressure Conditions
2.6. Field Tests
3. Results and Discussion
3.1. Performance of the Portable Scale Sensor and Comparison of Its Sensitivity with That of a Nonportable Sensor
3.2. Effect of Turbidity on Scale-Formation Measurements
3.3. Observations of Scale on Different Surfaces Using a Shape Analysis Laser Microscope
3.4. Monitoring the Formation of Scale under High-Temperature, High-Pressure Conditions
3.5. Field Investigation
3.5.1. Rishiri Fureai Hot Spring
3.5.2. Onuma Geothermal Power Plant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- “Key World Energy Statistics 2019”. Available online: https://www.oecd.org/en/publications/key-world-energy-statistics-2019_71b3ce84-en.html (accessed on 22 August 2024).
- Strezov, V.; Cho, H.H. Environmental impact assessment from direct emissions of australian thermal power generation technologies. J. Clean. Prod. 2020, 270, 122515. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Jain, S.; Jain, A.K.; Dahiya, S. Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using the life cycle approach. Int. J. Environ. Sci. Technol. 2014, 11, 1157–1164. [Google Scholar] [CrossRef]
- Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, economical and environmental impacts of renewable energy systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef]
- Pátzay, G.; Stáhl, G.; Kármán, F.H.; Kálmán, E. Modeling of scale formation and corrosion from geothermal water. Electrochim. Acta 1998, 43, 137–147. [Google Scholar] [CrossRef]
- Alabi, A.; Chiesa, M.; Garlisi, C.; Palmisano, G. Advances in anti-scale magnetic water treatment. Environ. Sci. Water Res. Technol. 2015, 1, 408–425. [Google Scholar] [CrossRef]
- MacAdam, J.; Parsons, S.A. Calcium carbonate scale formation and control. Rev. Environ. Sci. Biotechnol. 2004, 3, 159–169. [Google Scholar] [CrossRef]
- Dalas, E. The effect of ultrasonic field on calcium carbonate scale formation. J. Colloid. Interface Sci. 1993, 155, 512–514. [Google Scholar] [CrossRef]
- Ueda, A.; Kato, H.; Miyauchi, T.; Kato, K. Investigation of pH Control Method to Avoid Silica Scaling in the Sumikawa Geothermal Field. J. Geotherm. 2003, 25, 163–177. [Google Scholar]
- Ikeda, R.; Ueda, A. Experimental field investigations of inhibitors for controlling silica scale in geothermal brine at the Sumikawa geothermal plant, Akita Prefecture, Japan. Geothermics 2017, 70, 305–313. [Google Scholar] [CrossRef]
- Hanajima, E.; Ueda, A. Recovery of oversaturated silica from Takigami and Sumikawa geothermal brines with cationic polymer flocculants to prevent silica scale deposition. Geothermics 2017, 70, 271–280. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Yao, Q.; Wang, T.; Zhang, A.; Chen, Y.; Wu, W.; Sun, W. Preparation and Evaluation of a Polyether-Based Polycarboxylate as a Kind of Inhibitor for Water Systems. Ind. Eng. Chem. Res. 2017, 56, 2624–2633. [Google Scholar] [CrossRef]
- Li, X.; Gao, B.; Yue, Q.; Ma, D.; Rong, H.; Zhao, P.; Teng, P. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures. J. Environ. Sci. 2015, 29, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Ueda, A.; Kato, K.; Mogi, K.; Mroczek, E.; Thain, I.A. Silica removal from Mokai, New Zealand, geothermal brine by treatment with lime and a cationic precipitant. Geothermics 2003, 32, 47–61. [Google Scholar] [CrossRef]
- Hirowatari, K. Scale prevention method by brine acidification with biochemical reactors. Geothermics 1996, 25, 259–270. [Google Scholar] [CrossRef]
- Gallup, D.L. Investigations of organic inhibitors for silica scale control in geothermal brines. Geothermics 2002, 31, 415–430. [Google Scholar] [CrossRef]
- Fidanboylu, K.; Efendioglu, H.S. Fiber Optic Sensors and Their Applications; MDPI: Basel, Switzerland, 2020. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2015–2019). Anal. Chem. 2020, 92, 397–430. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Qian, Y.; Yin, X.; Wang, L.; Zhang, S.; Wang, Y. Research on Fiber Optic Surface Plasmon Resonance Biosensors: A Review. Photonic. Sens. 2024, 14, 240201. [Google Scholar] [CrossRef]
- Fu, R.; Chen, X.; Yan, X.; Li, H.; Hu, T.; Wei, L.; Qu, Y.; Cheng, T. Optical fiber sensors for heavy metal ion sensing. J. Mater. Sci. Technol. 2024, 189, 110–131. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Wei, H.; Wang, C.; Liu, B. A review of wearable optical fiber sensors for rehabilitation monitoring. Sensors 2024, 24, 3602. [Google Scholar] [CrossRef]
- Lu, M.; Wang, C.; Fan, R.; Lin, M.; Guang, J.; Peng, W. Review of fiber-optic localized surface plasmon resonance sensors: Geometries, fabrication technologies, and bio-applications. Photonic Sens. 2024, 14, 240202. [Google Scholar] [CrossRef]
- Wang, W.; Xia, L.; Xiao, X.; Li, G. Recent progress on microfluidics integrated with fiber-optic sensors for on-site detection. Sensors 2024, 24, 2067. [Google Scholar] [CrossRef]
- Kourti, D.; Angelopoulou, M.; Petrou, P.; Kakabakos, S. Optical immunosensors for bacteria detection in food matrices. Chemosensors 2023, 11, 430. [Google Scholar] [CrossRef]
- Leitão, C.; Pereira, S.O.; Marques, C.; Cennamo, N.; Zeni, L.; Shaimerdenova, M.; Ayupova, T.; Tosi, D. Cost-effective fiber optic solutions for biosensing. Biosensors 2022, 12, 575. [Google Scholar] [CrossRef]
- Janik, M.; Koba, M.; Śmietana, M. Optical fiber chemo and biosensors operating in the electrochemical domain–A review. TrAC Trends Anal. Chem. 2024, 178, 117829. [Google Scholar] [CrossRef]
- Fakhri, M.A.; Salim, E.T.; Tariq, S.M.; Ibrahim, R.K.; Alsultany, F.H.; Alwahib, A.A.; Alhasan, S.F.H.; Gopinath, S.C.; Salim, Z.T.; Hashim, U.; et al. A gold nanoparticles coated unclad single mode fiber-optic sensor based on localized surface plasmon resonance. Sci. Rep. 2023, 13, 5680. [Google Scholar] [CrossRef]
- Antohe, I.; Iordache, I.; Antohe, V.A.; Socol, G. A polyaniline/platinum coated fiber optic surface plasmon resonance sensor for picomolar detection of 4-nitrophenol. Sci. Rep. 2021, 11, 10086. [Google Scholar] [CrossRef] [PubMed]
- Usha, S.P.; Shrivastav, A.M.; Gupta, B.D. Silver nanoparticle noduled ZnO nanowedge fetched novel FO-LMR based H2O2 biosensor: A twin regime sensor for in-vivo applications and H2O2 generation analysis from polyphenolic daily devouring beverages. Sens. Actuators B Chem. 2017, 241, 129–145. [Google Scholar] [CrossRef]
- Fan, S.-M.; Chiang, C.-Y.; Tseng, Y.-T.; Wu, T.-Y.; Chen, Y.-L.; Huang, C.-J.; Chau, L.-K. Detection of Hg(II) at part-per-quadrillion levels by fiber optic plasmonic absorption using DNA hairpin and DNA-gold nanoparticle conjugates. ACS Appl. Nano Mater. 2021, 4, 10128–10135. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, B.D. Surface plasmon resonance based fiber optic potassium ion disposable sensing probe for soil testing. Opt. Fiber Technol. 2021, 64, 102573. [Google Scholar] [CrossRef]
- Orii, T.; Okazaki, T.; Hata, N.; Sugawara, K.; Rahman, F.A.; Kuramitz, H. Development of an attenuated total reflection -based fiber-optic sensor for real-time sensing of biofilm formation. Anal. Sci. 2017, 33, 883–887. [Google Scholar] [CrossRef]
- Imai, K.; Okazaki, T.; Hata, N.; Taguchi, S.; Sugawara, K.; Kuramitz, H. Simultaneous multiselective spectroelectrochemical fiber-optic sensor: Demonstration of the concept using methylene blue and ferrocyanide. Anal. Chem. 2015, 87, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Shiokawa, E.; Orii, T.; Yamamoto, T.; Hata, N.; Taguchi, A.; Sugawara, K.; Kuramitz, H. Simultaneous Multiselective Spectroelectrochemical Fiber-Optic Sensor: Sensing with an Optically Transparent Electrode. Anal. Chem. 2018, 90, 2440–2445. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Kuramitz, H.; Watanabe, T.; Ueda, A. Scale sensor: Rapid monitoring of scale deposition and inhibition using fiber optics in a geothermal system and comparison with other monitoring devices. Geothermics 2021, 93, 102069. [Google Scholar] [CrossRef]
- Okazaki, T.; Yamamoto, T.; Taguchi, A.; Ueda, A.; Kuramitz, H. Fiber Optic Sensor with an Optically Transparent Electrode for Monitoring CaCO3 Scale Formation in Geothermal Water. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Okazaki, T.; Orii, T.; Ueda, A.; Kuramitz, H. A Reusable Fiber Optic Sensor for the Real-Time Sensing of CaCO3 Scale Formation in Geothermal Water. IEEE Sens. J. 2017, 17, 1207–1208. [Google Scholar] [CrossRef]
- Okazaki, T.; Orii, T.; Ueda, A.; Ozawa, A.; Kuramitz, H. Fiber Optic Sensor for Real-Time Sensing of Silica Scale Formation in Geothermal Water. Sci. Rep. 2017, 7, 3387. [Google Scholar] [CrossRef]
- Okazaki, T.; Umeki, S.; Orii, T.; Ikeya, R.; Sakaguchi, A.; Yamamoto, T.; Watanabe, T.; Ueda, A.; Kuramitz, H. Investigation of the effects of electromagnetic field treatment of hot spring water for scale inhibition using a fibre optic sensor. Sci. Rep. 2019, 9, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Imai, K.; Tan, S.Y.; Yong, Y.T.; Rahman, F.A.; Hata, N.; Taguchi, S.; Ueda, A.; Kuramitz, H. Fundamental study on the development of fiber optic sensor for real-time sensing of CaCO3 scale formation in geothermal water. Anal. Sci. 2015, 31, 177–183. [Google Scholar] [CrossRef]
- Zotzmann, J.; Hastreiter, N.; Mayanna, S.; Reinsch, T.; Regenspurg, S. A fibre-optical method for monitoring barite precipitation at high pressure/high temperature conditions. Appl. Geochem. 2021, 127, 104906. [Google Scholar] [CrossRef]
- Hashimoto, R.; Morita, M.; Umezawa, O.; Motoda, S. Effect of Ions Eluted from Metal Surface on Transformation and Growth of Calcium Carbonate Polymorphisms. J. Jpn. Inst. Met. Mater. 2017, 81, 89–96. [Google Scholar] [CrossRef]
Locality | Rishiri Fureai Hot Spring | Onuma Geothermal Power Plant |
---|---|---|
Temperature (°C) | 33.4 | 97 |
EC (mS/m) | 1486 | 201 |
pH | 6.7 | 8.2 |
Chemical Composition | ||
Na (mg/L) | 2610 | 406 |
K (mg/L) | 147 | 41.2 |
Ca (mg/L) | 323 | 15.5 |
Mg (mg/L) | 413 | <0.01 |
Cl (mg/L) | 3440 | 431 |
SO4 (mg/L) | 350 | 225 |
HCO3 (mg/L) | 4020 | 86 |
SiO2 (mg/L) | 350 | 446 |
Fe (mg/L) | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuura, T.; Okazaki, T.; Sazawa, K.; Hosoki, A.; Ueda, A.; Kuramitz, H. Fiber Optic-Based Portable Sensor for Rapid Evaluation and In Situ Real-Time Sensing of Scale Formation in Geothermal Water. Chemosensors 2024, 12, 171. https://doi.org/10.3390/chemosensors12090171
Matsuura T, Okazaki T, Sazawa K, Hosoki A, Ueda A, Kuramitz H. Fiber Optic-Based Portable Sensor for Rapid Evaluation and In Situ Real-Time Sensing of Scale Formation in Geothermal Water. Chemosensors. 2024; 12(9):171. https://doi.org/10.3390/chemosensors12090171
Chicago/Turabian StyleMatsuura, Takuma, Takuya Okazaki, Kazuto Sazawa, Ai Hosoki, Akira Ueda, and Hideki Kuramitz. 2024. "Fiber Optic-Based Portable Sensor for Rapid Evaluation and In Situ Real-Time Sensing of Scale Formation in Geothermal Water" Chemosensors 12, no. 9: 171. https://doi.org/10.3390/chemosensors12090171
APA StyleMatsuura, T., Okazaki, T., Sazawa, K., Hosoki, A., Ueda, A., & Kuramitz, H. (2024). Fiber Optic-Based Portable Sensor for Rapid Evaluation and In Situ Real-Time Sensing of Scale Formation in Geothermal Water. Chemosensors, 12(9), 171. https://doi.org/10.3390/chemosensors12090171