Electrochemical Detection of Acetaminophen in Pharmaceuticals Using Rod-Shaped α-Bi2O3 Prepared via Reverse Co-Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Preparation Procedures
2.2.1. Synthesis of Bi2O3 Particles
2.2.2. Preparation of Working Electrodes
2.2.3. Preparation of Real Samples
2.3. Methods
2.3.1. Structural Characterization of Material
2.3.2. Electrochemical Measurements
3. Results and Discussion
3.1. Structural and Morphological Characterization of Bi2O3 Material
3.2. Electrochemical Characterization of Working Electrodes
3.2.1. Effect of pH
3.2.2. Effect of Scan Rate
3.3. Voltametric Detection of the APAP at the GCP@Bi2O3 Sensor
3.4. Selectivity of the Developed GCP@Bi2O3 Sensor
3.5. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical Sensors Based on Carbon Nanomaterials for Acetaminophen Detection: A Review. Anal. Chim. Acta 2015, 886, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Aminoshariae, A.; Khan, A. Acetaminophen: Old Drug, New Issues. J. Endod. 2015, 41, 588–593. [Google Scholar] [CrossRef]
- Gupta, A.; Jakobsson, J. Acetaminophen, Nonsteroidal Anti-Inflammatory Drugs, and Cyclooxygenase-2 Selective Inhibitors: An Update. Plast. Reconstr. Surg. 2014, 134, 24S–31S. [Google Scholar] [CrossRef]
- Jaeschke, H. Role of Inflammation in the Mechanism of Acetaminophen-Induced Hepatotoxicity. Expert Opin. Drug Metab. Toxicol. 2005, 1, 389–397. [Google Scholar] [CrossRef]
- James, L.P.; Mayeux, P.R.; Hinson, J.A. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 2003, 31, 1499. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-Induced Hepatotoxicity: A Comprehensive Update. J. Clin. Transl. Hepatol. 2016, 4, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Montaseri, H.; Forbes, P.B.C. Analytical Techniques for the Determination of Acetaminophen: A Review. TrAC Trends Anal. Chem. 2018, 108, 122–134. [Google Scholar] [CrossRef]
- Campanero, M.A.; Calahorra, B.; García-Quétglas, E.; López-Ocáriz, A.; Honorato, J. Rapid Liquid Chromatographic Assay for the Determination of Acetaminophen in Plasma after Propacetamol Administration: Application to Pharmacokinetic Studies. J. Pharm. Biomed. Anal. 1999, 20, 327–334. [Google Scholar] [CrossRef]
- Gioia, M.G.; Andreatta, P.; Boschetti, S.; Gatti, R. Development and Validation of a Liquid Chromatographic Method for the Determination of Ascorbic Acid, Dehydroascorbic Acid and Acetaminophen in Pharmaceuticals. J. Pharm. Biomed. Anal. 2008, 48, 331–339. [Google Scholar] [CrossRef]
- Mrochek, J.E.; Katz, S.; Christie, W.H.; Dinsmore, S.R. Acetaminophen Metabolism in Man, as Determined by High-Resolution Liquid Chromatography. Clin. Chem. 1974, 20, 1086–1096. [Google Scholar] [CrossRef]
- Kamberi, M.; Riley, C.M.; Ma (Sharon), X.; Huang, C.-W.C. A Validated, Sensitive HPLC Method for the Determination of Trace Impurities in Acetaminophen Drug Substance. J. Pharm. Biomed. Anal. 2004, 34, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Săndulescu, R.; Mirel, S.; Oprean, R. The Development of Spectrophotometric and Electroanalytical Methods for Ascorbic Acid and Acetaminophen and Their Applications in the Analysis of Effervescent Dosage Forms. J. Pharm. Biomed. Anal. 2000, 23, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Afshari, J.T.; Liu, T.-Z. Rapid Spectrophotometric Method for the Quantitation of Acetaminophen in Serum. Anal. Chim. Acta 2001, 443, 165–169. [Google Scholar] [CrossRef]
- Souri, E.; Nasab, S.A.M.; Amanlou, M.; Tehrani, M.B. Development and Validation of a Rapid Derivative Spectrophotometric Method for Simultaneous Determination of Acetaminophen, Ibuprofen and Caffeine. J. Anal. Chem. 2015, 70, 333–338. [Google Scholar] [CrossRef]
- Mokhtari, A.; Jafari Delouei, N.; Keyvanfard, M.; Abdolhosseini, M. Multiway Analysis Applied to Time-Resolved Chemiluminescence for Simultaneous Determination of Paracetamol and Codeine in Pharmaceuticals. Luminescence 2016, 31, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Ruengsitagoon, W.; Liawruangrath, S.; Townshend, A. Flow Injection Chemiluminescence Determination of Paracetamol. Talanta 2006, 69, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, H.; Yu, S.; Yu, F.; Li, Y.; Zhang, H.; Qu, L.; Harrington, P.d.B. Study on the Reaction Mechanism and the Static Injection Chemiluminescence Method for Detection of Acetaminophen. Luminescence 2013, 28, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Burgot, G.; Auffret, F.; Burgot, J.-L. Determination of Acetaminophen by Thermometric Titrimetry. Anal. Chim. Acta 1997, 343, 125–128. [Google Scholar] [CrossRef]
- Relli-Dempsey, V.M.T. A Thermometric Titration Study of Acetaminophen and Sodium Hypochlorite. Ohio Dominican University, Columbus, OH, USA. 2018. Available online: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=oduhonors152621864170557 (accessed on 26 June 2024).
- Chu, Q.; Jiang, L.; Tian, X.; Ye, J. Rapid Determination of Acetaminophen and P-Aminophenol in Pharmaceutical Formulations Using Miniaturized Capillary Electrophoresis with Amperometric Detection. Anal. Chim. Acta 2008, 606, 246–251. [Google Scholar] [CrossRef]
- He, F.Y.; Liu, A.L.; Xia, X.H. Poly(Dimethylsiloxane) Microchip Capillary Electrophoresis with Electrochemical Detection for Rapid Measurement of Acetaminophen and Its Hydrolysate. Anal. Bioanal. Chem. 2004, 379, 1062–1067. [Google Scholar] [CrossRef]
- Lecoeur, M.; Rabenirina, G.; Schifano, N.; Odou, P.; Ethgen, S.; Lebuffe, G.; Foulon, C. Determination of Acetaminophen and Its Main Metabolites in Urine by Capillary Electrophoresis Hyphenated to Mass Spectrometry. Talanta 2019, 205, 120108. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wadood, H.M.; Mohamed, N.A.; Mohamed, F.A. Spectrofluorimetric Determination of Acetaminophen with N-Bromosuccinimide. J. AOAC Int. 2005, 88, 1626–1630. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.J. A Highly Selective and Sensitive Spectrofluorimetric Method for the Determination of N-Acetyl-4-Aminophenol at Nano-Trace Levels in Pharmaceuticals and Biological Fluids Using Cerium (IV). Pak. J. Anal. Environ. Chem. 2019, 20, 17–31. [Google Scholar] [CrossRef]
- de los, A.; Oliva, M.; Olsina, R.A.; Masi, A.N. Selective Spectrofluorimetric Method for Paracetamol Determination through Coumarinic Compound Formation. Talanta 2005, 66, 229–235. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.H.; Tran, V.-K.; Ko, E.; Park, C.H.; Chung, W.S.; Seong, G.H. Determination of Acetaminophen Using Functional Paper-Based Electrochemical Devices. Sens. Actuators B Chem. 2016, 232, 514–522. [Google Scholar] [CrossRef]
- Beitollahi, H.; Raoof, J.-B.; Hosseinzadeh, R. Fabrication of a Nanostructure-Based Electrochemical Sensor for Simultaneous Determination of N-Acetylcysteine and Acetaminophen. Talanta 2011, 85, 2128–2134. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.-R.; Govindhan, M.; Chen, A. Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor. Electrochim. Acta 2015, 162, 198–204. [Google Scholar] [CrossRef]
- Kumari, L.; Lin, J.-H.; Ma, Y.-R. One-Dimensional Bi2O3 Nanohooks: Synthesis, Characterization and Optical Properties. J. Phys. Condens. Matter 2007, 19, 406204. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Xu, H.; Sun, S.; Shang, M. Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and Their Application in Photocatalysis. Chem.—A Eur. J. 2009, 15, 1776–1782. [Google Scholar] [CrossRef]
- Shinde, P.V.; Shinde, N.M.; Shaikh, S.F.; Lee, D.; Yun, J.M.; Woo, L.J.; Al-Enizi, A.M.; Mane, R.S.; Kim, K.H. Room-Temperature Synthesis and CO2-Gas Sensitivity of Bismuth Oxide Nanosensors. RSC Adv. 2020, 10, 17217–17227. [Google Scholar] [CrossRef]
- Hao, C.; Shen, Y.; Shen, J.; Xu, K.; Wang, X.; Zhao, Y.; Ge, C. A Glassy Carbon Electrode Modified with Bismuth Oxide Nanoparticles and Chitosan as a Sensor for Pb(II) and Cd(II). Microchim. Acta 2016, 183, 1823–1830. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Vishnuraj, R.; Wang, T.-J.; Kumar, E.A.; Pullithadathil, B. Heterostructured Bismuth Oxide/Hexagonal-Boron Nitride Nanocomposite: A Disposable Electrochemical Sensor for Detection of Flutamide. Ecotoxicol. Environ. Saf. 2021, 207, 111276. [Google Scholar] [CrossRef] [PubMed]
- Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J.R. Bi2O3 as a Selective Sensing Material for NO Detection. Sens. Actuators B Chem. 2004, 99, 74–89. [Google Scholar] [CrossRef]
- Bhande, S.S.; Mane, R.S.; Ghule, A.V.; Han, S.-H. A Bismuth Oxide Nanoplate-Based Carbon Dioxide Gas Sensor. Scr. Mater. 2011, 65, 1081–1084. [Google Scholar] [CrossRef]
- Leontie, L.; Caraman, M.; Visinoiu, A.; Rusu, G.I. On the Optical Properties of Bismuth Oxide Thin Films Prepared by Pulsed Laser Deposition. Thin Solid Film. 2005, 473, 230–235. [Google Scholar] [CrossRef]
- Leontie, L.; Caraman, M.; Delibaş, M.; Rusu, G.I. Optical Properties of Bismuth Trioxide Thin Films. Mater. Res. Bull. 2001, 36, 1629–1637. [Google Scholar] [CrossRef]
- Mahmoud, W.E.; Al-Ghamdi, A.A. Synthesis and Properties of Bismuth Oxide Nanoshell Coated Polyaniline Nanoparticles for Promising Photovoltaic Properties. Polym. Adv. Technol. 2011, 22, 877–881. [Google Scholar] [CrossRef]
- Park, J.-Y.; Wachsman, E.D. Stable and High Conductivity Ceria/Bismuth Oxide Bilayer Electrolytes for Lower Temperature Solid Oxide Fuel Cells. Ionics 2006, 12, 15–20. [Google Scholar] [CrossRef]
- Sarat, S.; Sammes, N.; Smirnova, A. Bismuth Oxide Doped Scandia-Stabilized Zirconia Electrolyte for the Intermediate Temperature Solid Oxide Fuel Cells. J. Power Sources 2006, 160, 892–896. [Google Scholar] [CrossRef]
- Azad, A.M.; Larose, S.; Akbar, S.A. Bismuth Oxide-Based Solid Electrolytes for Fuel Cells. J. Mater. Sci. 1994, 29, 4135–4151. [Google Scholar] [CrossRef]
- Mohd Suib, N.R.; Nur-Akasyah, J.; Muhammad Aizat, K.; Abd-Shukor, R. Electrical Properties of Nano Bi2O3 Added (Bi,Pb)Sr-Ca-Cu-O Superconductor. J. Phys. Conf. Ser. 2018, 1083, 12045. [Google Scholar] [CrossRef]
- Koza, J.A.; Bohannan, E.W.; Switzer, J.A. Superconducting Filaments Formed During Nonvolatile Resistance Switching in Electrodeposited δ-Bi2O3. ACS Nano 2013, 7, 9940–9946. [Google Scholar] [CrossRef]
- Majewski, P. Materials Aspects of the High-Temperature Superconductors in the System Bi2O3–SrO–CaO–CuO. J. Mater. Res. 2000, 15, 854–870. [Google Scholar] [CrossRef]
- Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z.; Amal, R.; Tricoli, A. Nanostructured β-Bi2O3 Fractals on Carbon Fibers for Highly Selective CO2 Electroreduction to Formate. Adv. Funct. Mater. 2020, 30, 1906478. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Bi, X.; Tan, X.; Zhao, Y.; Wang, W.; Zou, Y.; Wang, H.; Ning, H.; Wu, M. Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows. Energy Environ. Mater. 2022, 7, e12508. [Google Scholar] [CrossRef]
- Yasuda, K.; Nobu, M.; Masui, T.; Imanaka, N. Complete Oxidation of Acetaldehyde on Pt/CeO2–ZrO2– Bi2O3 Catalysts. Mater. Res. Bull. 2010, 45, 1278–1282. [Google Scholar] [CrossRef]
- Jiang, H.-Y.; Liu, J.; Cheng, K.; Sun, W.; Lin, J. Enhanced Visible Light Photocatalysis of Bi2O3 upon Fluorination. J. Phys. Chem. C 2013, 117, 20029–20036. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; Li, L.; Cheng, J.; Peng, Y.; Xie, Q. Photoanode Synthesis of Ammonia Based on a Light Reflex Strategy and NiCe-Layered Double Hydroxide and Oxygen-Vacancy Bi2O3 Catalysts. Chem. Eng. J. 2023, 464, 142447. [Google Scholar] [CrossRef]
- Pugazhenthiran, N.; Sathishkumar, P.; Murugesan, S.; Anandan, S. Effective Degradation of Acid Orange 10 by Catalytic Ozonation in the Presence of Au- Bi2O3 Nanoparticles. Chem. Eng. J. 2011, 168, 1227–1233. [Google Scholar] [CrossRef]
- Irmawati, R.; Noorfarizan Nasriah, M.N.; Taufiq-Yap, Y.H.; Abdul Hamid, S.B. Characterization of Bismuth Oxide Catalysts Prepared from Bismuth Trinitrate Pentahydrate: Influence of Bismuth Concentration. Catal. Today 2004, 93–95, 701–709. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Mohamed, W.S. α-Bi2O3 Nanorods: Synthesis, Characterization and UV-Photocatalytic Activity. Mater. Res. Express 2017, 4, 35039. [Google Scholar] [CrossRef]
- Li, L.; Tao, R.; Liu, Y.; Zhou, K.; Fan, X.; Han, Y.; Tang, L. Co3O4 Nanoparticles/Bi2O3 Nanosheets: One Step Synthesis, High-Efficiency Thermal Catalytic Performance, and Catalytic Mechanism Research. Mol. Catal. 2022, 528, 112483. [Google Scholar] [CrossRef]
- Liang, Z.; Cao, Y.; Li, Y.; Xie, J.; Guo, N.; Jia, D. Solid-State Chemical Synthesis of Rod-like Fluorine-Doped β-Bi2O3 and Their Enhanced Photocatalytic Property under Visible Light. Appl. Surf. Sci. 2016, 390, 78–85. [Google Scholar] [CrossRef]
- Wang, C.; Shao, C.; Wang, L.; Zhang, L.; Li, X.; Liu, Y. Electrospinning Preparation, Characterization and Photocatalytic Properties of Bi2O3 Nanofibers. J. Colloid Interface Sci. 2009, 333, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Shen, L.; Huang, Q.; Zhang, Y.-C. Hydrothermal Synthesis and Characterization of Bi2O3 Nanowires. Mater. Lett. 2011, 65, 1134–1136. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X.; Wu, Y.; Shi, W.; Guan, W. Rapid Microwave-Assisted Synthesis of Bi2O3 Tubes and Photocatalytic Properties for Antibiotics. Micro Nano Lett. 2013, 8, 177–180. [Google Scholar] [CrossRef]
- Venegas-Castro, A.; Reyes-Contreras, A.; Camacho-López, M.; Olea-Mejía, O.; Camacho-López, S.; Esparza-García, A. Study of the Integrated Fluence Threshold Condition for the Formation of β-Bi2O3 on Bi Thin Films by Using Ns Laser Pulses. Opt. Laser Technol. 2016, 81, 50–54. [Google Scholar] [CrossRef]
- Janardhana, D.; Jayaramu, S.N.; Roos, W.D.; Purcell, W.; Swart, H.C. Influences of Substrate Temperatures and Oxygen Partial Pressures on the Crystal Structure, Morphology and Luminescence Properties of Pulsed Laser Deposited Bi2O3:Ho3+ Thin Films. Coatings 2020, 10, 1168. [Google Scholar] [CrossRef]
- Zhu, B.L.; Zhao, X.Z. Study on Structure and Optical Properties of Bi2O3 Thin Films Prepared by Reactive Pulsed Laser Deposition. Opt. Mater. 2006, 29, 192–198. [Google Scholar] [CrossRef]
- Divya, J.; Shivaramu, N.J.; Swart, H.C. Heliyon Thin Films Deposited by Pulsed Laser Deposition for Improved Green and Near-Infrared Emissions and Photocatalytic Activity. Heliyon 2024, 10, e23200. [Google Scholar] [CrossRef]
- Zhou, L.; Xie, M.; Su, H.; Chen, R.; Pang, Y.; Lou, H.; Yang, D.; Qiu, X. In Situ Oxidation of Ethylene Glycol Coupled with Bi2O3 Epitaxial Growth to Prepare Bi2O3/BiOCOOH Heterojunctions with Oxygen Vacancies for Efficient Photocatalytic Lignin Degradation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131134. [Google Scholar] [CrossRef]
- Proffit, D.L.; Bai, G.-R.; Fong, D.D.; Fister, T.T.; Hruszkewycz, S.O.; Highland, M.J.; Baldo, P.M.; Fuoss, P.H.; Mason, T.O.; Eastman, J.A. Phase Stabilization of δ-Bi2O3 Nanostructures by Epitaxial Growth onto Single Crystal SrTiO3 or DyScO3 Substrates. Appl. Phys. Lett. 2010, 96, 21905. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J. Facet-Selective Epitaxial Growth of δ-Bi2O3 on ZnO Nanowires. Chem. Mater. 2016, 28, 8141–8148. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Z.-L.; Zhang, Z.-K. Bi Nanoparticles and Bi2O3 Nanorods Formed by Thermal Plasma and Heat Treatment. Surf. Coat. Technol. 2007, 201, 5330–5332. [Google Scholar] [CrossRef]
- Iljinas, A.; Marcinauskas, L. Formation of Bismuth Oxide Nanostructures by Reactive Plasma Assisted Thermal Evaporation. Thin Solid Film. 2015, 594, 192–196. [Google Scholar] [CrossRef]
- Tien, L.-C.; Liou, Y.-H. Synthesis of Bi2O3 Nanocones over Large Areas by Magnetron Sputtering. Surface and Coatings Technology 2015, 265, 1–6. [Google Scholar] [CrossRef]
- Lunca Popa, P.; Sønderby, S.; Kerdsongpanya, S.; Lu, J.; Bonanos, N.; Eklund, P. Highly Oriented δ-Bi2O3 Thin Films Stable at Room Temperature Synthesized by Reactive Magnetron Sputtering. J. Appl. Phys. 2013, 113, 46101. [Google Scholar] [CrossRef]
- Tien, L.-C.; Lai, Y.-C. Nucleation Control and Growth Mechanism of Pure α-Bi2O3 Nanowires. Appl. Surf. Sci. 2014, 290, 131–136. [Google Scholar] [CrossRef]
- Ho, C.-H.; Chan, C.-H.; Huang, Y.-S.; Tien, L.-C.; Chao, L.-C. The Study of Optical Band Edge Property of Bismuth Oxide Nanowires α-Bi2O3. Opt. Express 2013, 21, 11965–11972. [Google Scholar] [CrossRef]
- Ma, H.; Yang, X.; Tang, X.; Cao, X.; Dai, R. Self-Assembled Co-Doped β-Bi2O3 Flower-like Structure for Enhanced Photocatalytic Antibacterial Effect under Visible Light. Appl. Surf. Sci. 2022, 572, 151348. [Google Scholar] [CrossRef]
- Lee, K.T.; Lidie, A.A.; Jeon, S.Y.; Hitz, G.T.; Song, S.J.; Wachsman, E.D. Highly Functional Nano-Scale Stabilized Bismuth Oxides via Reverse Strike Co-Precipitation for Solid Oxide Fuel Cells. J. Mater. Chem. A 2013, 1, 6199–6207. [Google Scholar] [CrossRef]
- Labib, S. Preparation, Characterization and Photocatalytic Properties of Doped and Undoped Bi2O3. J. Saudi Chem. Soc. 2017, 21, 664–672. [Google Scholar] [CrossRef]
- Cao, S.; Chen, C.; Xie, X.; Zeng, B.; Ning, X.; Liu, T.; Chen, X.; Meng, X.; Xiao, Y. Hypothermia-Controlled Co-Precipitation Route to Deposit Well-Dispersed β-Bi2O3 Nanospheres on Polymorphic Graphene Flakes. Vacuum 2014, 102, 1–4. [Google Scholar] [CrossRef]
- Qiao, J.; Chen, K.; Li, S.; Liu, Y.; Cao, H.; Wei, G.; Kong, L.; Zhang, X.; Liu, H. Plasma Spray–Chemical Vapor Deposition of Nanotextured Film with α/β Bi2O3 Heterostructure and Photocatalytic Degradation Performance. Vacuum 2021, 188, 110206. [Google Scholar] [CrossRef]
- Kim, H.W.; Myung, J.H.; Shim, S.H. One-Dimensional Structures of Bi2O3 Synthesized via Metalorganic Chemical Vapor Deposition Process. Solid State Commun. 2006, 137, 196–198. [Google Scholar] [CrossRef]
- Shen, X.-P.; Wu, S.-K.; Zhao, H.; Liu, Q. Synthesis of Single-Crystalline Bi2O3 Nanowires by Atmospheric Pressure Chemical Vapor Deposition Approach. Phys. E Low-Dimens. Syst. Nanostructures 2007, 39, 133–136. [Google Scholar] [CrossRef]
- Azizian-Kalandaragh, Y.; Sedaghatdoust-Bodagh, F.; Habibi-Yangjeh, A. Ultrasound-Assisted Preparation and Characterization of β-Bi2O3 Nanostructures: Exploring the Photocatalytic Activity against Rhodamine B. Superlattices Microstruct. 2015, 81, 151–160. [Google Scholar] [CrossRef]
- Manjula, N.; Chen, T.-W.; Chen, S.-M.; Lou, B.-S. Sonochemical Synthesis and Characterization of Rod-Shaped Bi2O3/ZnO Anchored with f-MWCNT Nanocomposite for the Electrochemical Determination of Ofloxacin. J. Electrochem. Soc. 2021, 168, 87506. [Google Scholar] [CrossRef]
- Kusuma, K.B.; Manju, M.; Ravikumar, C.R.; Dileepkumar, V.G.; Kumar, A.N.; Santosh, M.S.; Murthy, H.C.A.; Gurushantha, K. Probe Sonicated Synthesis of Bismuth Oxide (Bi2O3): Photocatalytic Application and Electrochemical Sensing of Ascorbic Acid and Lead. J. Nanomater. 2022, 2022, 3256611. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Yang, J.; Chen, Z.; Zhang, W.; Zhou, L.; Liu, S. Sonochemical Synthesis of Nanocrystallite Bi2O3 as a Visible-Light-Driven Photocatalyst. Appl. Catal. A Gen. 2006, 308, 105–110. [Google Scholar] [CrossRef]
- Huang, Y.; Qin, J.; Hu, C.; Liu, X.; Wei, D.; Seo, H.J. Cs-Doped α-Bi2O3 Microplates: Hydrothermal Synthesis and Improved Photochemical Activities. Appl. Surf. Sci. 2019, 473, 401–408. [Google Scholar] [CrossRef]
- Malligavathy, M.; Pathinettam Padiyan, D. Role of pH in the Hydrothermal Synthesis of Phase Pure Alpha Bi2O3 Nanoparticles and Its Structural Characterization. Adv. Mater. Proc. 2017, 2, 51–55. [Google Scholar] [CrossRef]
- Huang, Y.; Qin, J.; Liu, X.; Wei, D.; Seo, H.J. Hydrothermal Synthesis of Flower-like Na-Doped α-Bi2O3 and Improved Photocatalytic Activity via the Induced Oxygen Vacancies. J. Taiwan Inst. Chem. Eng. 2019, 96, 353–360. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhong, J.; Li, J.; Huang, S.; Zeng, J.; Li, M.; Yong, G. Enhanced Photocatalytic Activity of Y and Pd-Co-Doped Bi2O3 Prepared by Parallel Flow Co-Precipitation Method. J. Adv. Oxid. Technol. 2014, 17, 139–144. [Google Scholar] [CrossRef]
- Sun, W.; Wang, M.; Chen, Y.; Zhang, H. Structure and Electric Conductivity of Ce-Doped Bi2O3 Electrolyte Synthesized by Reverse Titration Chemical Coprecipitation. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2018, 33, 1056–1061. [Google Scholar] [CrossRef]
- Đurđić, S.; Vlahović, F.; Ognjanović, M.; Gemeiner, P.; Sarakhman, O.; Stanković, V.; Mutić, J.; Stanković, D.; Švorc, Ľ. Nano-Size Cobalt-Doped Cerium Oxide Particles Embedded into Graphitic Carbon Nitride for Enhanced Electrochemical Sensing of Insecticide Fenitrothion in Environmental Samples: An Experimental Study with the Theoretical Elucidation of Redox Events. Sci. Total Environ. 2024, 909, 168483. [Google Scholar] [CrossRef]
- Porada, R.; Wenninger, N.; Bernhart, C.; Fendrych, K.; Kochana, J.; Baś, B.; Kalcher, K.; Ortner, A. Targeted Modification of the Carbon Paste Electrode by Natural Zeolite and Graphene Oxide for the Enhanced Analysis of Paracetamol. Microchem. J. 2023, 187, 108455. [Google Scholar] [CrossRef]
- Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Facile Simultaneous Electrochemical Determination of Codeine and Acetaminophen in Pharmaceutical Samples and Biological Fluids by Graphene–CoFe2O4 Nancomposite Modified Carbon Paste Electrode. Sens. Actuators B Chem. 2014, 203, 909–918. [Google Scholar] [CrossRef]
- Chen, M.-S.; Chen, S.-H.; Lai, F.-C.; Chen, C.-Y.; Hsieh, M.-Y.; Chang, W.-J.; Yang, J.-C.; Lin, C.-K. Sintering Temperature-Dependence on Radiopacity of Bi(2−x)ZrxO(3+x/2) Powders Prepared by Sol-Gel Process. Materials 2018, 11, 1685. [Google Scholar] [CrossRef]
- Shan, D.; Zhang, J.; Xue, H.-G.; Zhang, Y.-C.; Cosnier, S.; Ding, S.-N. Polycrystalline Bismuth Oxide Films for Development of Amperometric Biosensor for Phenolic Compounds. Biosens. Bioelectron. 2009, 24, 3671–3676. [Google Scholar] [CrossRef]
- Kohan, E.; Shiralizadeh Dezfuli, A. Environmentally Friendly Decolorization of Textile Dye C.I. Yellow 28 in Water by Bi2−x(Lu, Er)xO3 Nanoparticles. J. Mater. Sci. Mater. Electron. 2019, 30, 17170–17180. [Google Scholar] [CrossRef]
- Yang, J.; Xie, T.; Liu, C.; Xu, L. Facile Fabrication of Dumbbell-Like β-Bi2O3/Graphene Nanocomposites and Their Highly Efficient Photocatalytic Activity. Materials 2018, 11, 1359. [Google Scholar] [CrossRef] [PubMed]
- Szaller, Z.; Kovács, L.; Pöppl, L. Comparative Study of Bismuth Tellurites by Infrared Absorption Spectroscopy. J. Solid State Chem. 2000, 152, 392–396. [Google Scholar] [CrossRef]
- Yada, M.; Yamanoi, T.; Watari, T. Simple Template-Free Synthesis of Bi2O3 Microflowers Composed of Nanorods. Adv. Mater. Phys. Chem. 2020, 10, 319–327. [Google Scholar] [CrossRef]
- Đurđić, S.; Ognjanović, M.; Ristivojević, M.K.; Antić, B.; Veličković, T.Ć.; Mutić, J.; Kónya, Z.; Stanković, D. Voltammetric Immunoassay Based on MWCNTs@Nd(OH)3-BSA-Antibody Platform for Sensitive BSA Detection. Microchim. Acta 2022, 189, 422. [Google Scholar] [CrossRef]
- Hasan, I.M.A.; Abd-Elsabour, M.; Assaf, F.H.; Abd-Elsabur, K.M. Green Synthesized SiO2/Bi2O3 Nanocomposite Sensor for Catechol and Hydroquinone Detection in Water. Sens. Actuators A Phys. 2024, 372, 115310. [Google Scholar] [CrossRef]
- Švancara, I.; Sýs, M.; Metelka, R.; Mikysek, T. Carbon Paste Electrodes in Laboratory Exercises for Students. J. Solid State Electrochem. 2024, 28, 1341–1360. [Google Scholar] [CrossRef]
- Sinha, G.N.; Subramanyam, P.; Sivaramakrishna, V.; Subrahmanyam, C. Electrodeposited Copper Bismuth Oxide as a Low-Cost, Non-Enzymatic Electrochemical Sensor for Sensitive Detection of Uric Acid and Hydrogen Peroxide. Inorg. Chem. Commun. 2021, 129, 108627. [Google Scholar] [CrossRef]
- Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Jain, R. Bi2O3/ZnO Nanocomposite: Synthesis, Characterizations and Its Application in Electrochemical Detection of Balofloxacin as an Anti-Biotic Drug. J. Pharm. Anal. 2021, 11, 57–67. [Google Scholar] [CrossRef]
- Hernández-Ramírez, D.; Mendoza-Huizar, L.H.; Galán-Vidal, C.A.; Aguilar-Lira, G.Y.; Rebolledo-Perales, L.E.; Álvarez-Romero, G.A. An Optimized Electrochemical Methodology by Box-Behnken Design for Non-Enzymatic Determination of Uric Acid in Urine Samples Using a Bi2O3 Nanoparticles-Carbon Paste Electrode. J. Anal. Chem. 2023, 78, 1557–1565. [Google Scholar] [CrossRef]
- Jevtić, S.; Vukojević, V.; Djurdjić, S.; Pergal, M.V.; Manojlović, D.D.; Petković, B.B.; Stanković, D.M. First Electrochemistry of Herbicide Pethoxamid and Its Quantification Using Electroanalytical Approach from Mixed Commercial Product. Electrochim. Acta 2018, 277, 136–142. [Google Scholar] [CrossRef]
- Amiri, M.; Rezapour, F.; Bezaatpour, A. Hydrophilic Carbon Nanoparticulates at the Surface of Carbon Paste Electrode Improve Determination of Paracetamol, Phenylephrine and Dextromethorphan. J. Electroanal. Chem. 2014, 735, 10–18. [Google Scholar] [CrossRef]
- Atta, N.F.; El-Ads, E.H.; Hassan, S.H.; Galal, A. Surface Modification of Carbon Paste Electrode with Nano-Structured Modifiers: Application for Sub-Nano-Sensing of Paracetamol. J. Electrochem. Soc. 2017, 164, B519. [Google Scholar] [CrossRef]
- Chetankumar, K.; Kumara Swamy, B.E.; Sharma, S.C. Safranin Amplified Carbon Paste Electrode Sensor for Analysis of Paracetamol and Epinephrine in Presence of Folic Acid and Ascorbic Acid. Microchem. J. 2021, 160, 105729. [Google Scholar] [CrossRef]
- Tanuja, S.B.; Kumara Swamy, B.E.; Pai, K.V. Electrochemical Determination of Paracetamol in Presence of Folic Acid at Nevirapine Modified Carbon Paste Electrode: A Cyclic Voltammetric Study. J. Electroanal. Chem. 2017, 798, 17–23. [Google Scholar] [CrossRef]
- Venu Gopal, T.; Reddy, T.M.; Venkataprasad, G.; Shaikshavalli, P.; Gopal, P. Rapid and Sensitive Electrochemical Monitoring of Paracetamol and Its Simultaneous Resolution in Presence of Epinephrine and Tyrosine at GO/Poly(Val) Composite Modified Carbon Paste Electrode. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 117–126. [Google Scholar] [CrossRef]
- Achache, M.; Elouilali Idrissi, G.; Ben Seddik, N.; El Boumlasy, S.; Kouda, I.; Raissouni, I.; Chaouket, F.; Draoui, K.; Bouchta, D.; Choukairi, M. Innovative Use of Shrimp Shell Powder in Carbon Paste Electrode for the Electrochemical Detection of Dopamine and Paracetamol: Valorization, Characterization and Application. Microchem. J. 2024, 202, 110754. [Google Scholar] [CrossRef]
- Farag, A.S. Voltammetric Determination of Acetaminophen in Pharmaceutical Preparations and Human Urine Using Glassy Carbon Paste Electrode Modified with Reduced Graphene Oxide. Anal. Sci. 2022, 38, 1213–1220. [Google Scholar] [CrossRef]
- Nagles, E.; Ceroni, M.; Villanueva Huerta, C.; Hurtado, J.J. Simultaneous Electrochemical Determination of Paracetamol and Allura Red in Pharmaceutical Doses and Food Using a Mo(VI) Oxide-Carbon Paste Microcomposite. Electroanalysis 2021, 33, 2335–2344. [Google Scholar] [CrossRef]
- Nagles, E.; Ceroni, M.; Hurtado-Murillo, J.J.; Hurtado, J.J. Electrochemical Determination of Paracetamol in a Pharmaceutical Dose by Adsorptive Voltammetry with a Carbon Paste/La2O3 Microcomposite. Anal. Methods 2020, 12, 2608–2613. [Google Scholar] [CrossRef]
- Mangaiyarkarasi, R.; Premlatha, S.; Khan, R.; Pratibha, R.; Umadevi, S. Electrochemical Performance of a New Imidazolium Ionic Liquid Crystal and Carbon Paste Composite Electrode for the Sensitive Detection of Paracetamol. J. Mol. Liq. 2020, 319, 114255. [Google Scholar] [CrossRef]
- Achache, M.; Elouilali Idrissi, G.; Chraka, A.; Ben Seddik, N.; Draoui, K.; Bouchta, D.; Mohamed, C. Detection of Paracetamol by a Montmorillonite-Modified Carbon Paste Sensor: A Study Combining MC Simulation, DFT Computation and Electrochemical Investigations. Talanta 2024, 274, 126027. [Google Scholar] [CrossRef] [PubMed]
Electrode | Technique | Linear Concentration Range (μM) | LOQ (nM) | LOD (nM) | Literature |
---|---|---|---|---|---|
CPE/NiZ/GO | DPV | 0.026–0.795 | 26 | 7.8 | [88] |
CPE/safranin | CV | 10–100 | 1580 | 470 | [105] |
CPE/GR-CoFe2O4 | SWV | 0.03–12.00 | 83 | 25 | [89] |
CPE/carbon | DPV | 0.1–1000.0 | n.g. | 15 | [103] |
CPE/nevirapine | DPV | 2–12 | n.g. | 770 | [106] |
CPE/GO/poly(Val) | DPV | 5–60 | 960 | 290 | [107] |
CPE/SSW | SWV | 80–1000 | n.g. | 5.54 | [108] |
CPE/RGO | SWV | 1.2–220.0 | 930 | 310 | [109] |
CPE/MoO3 | SWV | 1–15 | n.g. | 140 | [110] |
CPE/La2O3 | SWAdV | 0.99–19.00 | n.g. | 20 | [111] |
GCP/ILC | DPV | 0–120 | n.g. | 2800 | [112] |
GCP/MMTK10 | DPV | 1–15 | n.g. | 460 | [113] |
GCP@Bi2O3 | DPV | 0.05–12.00 | 36 | 10 | This work |
Pharmaceutical Formulation | Declared APAP Content (mg) 1 | Found APAP Content (mg) 2 ± SD 3 | Recovery (%) 4 |
---|---|---|---|
Tablet 1 | 250 | 262 ± 2 | 105 |
Tablet 2 | 250 | 257 ± 2 | 103 |
Tablet 3 | 250 | 260 ± 2 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andjelković, L.; Đurđić, S.; Stanković, D.; Kremenović, A.; Pavlović, V.B.; Jeremić, D.A.; Šuljagić, M. Electrochemical Detection of Acetaminophen in Pharmaceuticals Using Rod-Shaped α-Bi2O3 Prepared via Reverse Co-Precipitation. Chemosensors 2024, 12, 122. https://doi.org/10.3390/chemosensors12070122
Andjelković L, Đurđić S, Stanković D, Kremenović A, Pavlović VB, Jeremić DA, Šuljagić M. Electrochemical Detection of Acetaminophen in Pharmaceuticals Using Rod-Shaped α-Bi2O3 Prepared via Reverse Co-Precipitation. Chemosensors. 2024; 12(7):122. https://doi.org/10.3390/chemosensors12070122
Chicago/Turabian StyleAndjelković, Ljubica, Slađana Đurđić, Dalibor Stanković, Aleksandar Kremenović, Vladimir B. Pavlović, Dejan A. Jeremić, and Marija Šuljagić. 2024. "Electrochemical Detection of Acetaminophen in Pharmaceuticals Using Rod-Shaped α-Bi2O3 Prepared via Reverse Co-Precipitation" Chemosensors 12, no. 7: 122. https://doi.org/10.3390/chemosensors12070122
APA StyleAndjelković, L., Đurđić, S., Stanković, D., Kremenović, A., Pavlović, V. B., Jeremić, D. A., & Šuljagić, M. (2024). Electrochemical Detection of Acetaminophen in Pharmaceuticals Using Rod-Shaped α-Bi2O3 Prepared via Reverse Co-Precipitation. Chemosensors, 12(7), 122. https://doi.org/10.3390/chemosensors12070122