Lithium Niobate Perovskite as the Support for Silver Nanoparticles for Non-Enzymatic Electrochemical Detection of Glucose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods and Characterization
2.2.1. Silver Nanoparticle Synthesis
2.2.2. Lithium Niobate Perovskite Synthesis
2.2.3. Pencil Electrode Preparation and Modification
2.2.4. Characterization Techniques
3. Results and Discussion
3.1. Silver Nanoparticle Characterization
3.2. Perovskite Characterization
Structural and Morphological Characterization
3.3. LNB/AgNp Composite Characterization
3.3.1. Exploratory Analysis for Glucose Detection
3.3.2. Morphological Characterization and Electrochemical Performance of LNB4:1AgNP Composites
3.3.3. Interference Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern Designs of Electrochemical Sensor Platforms for Environmental Analyses: Principles, Nanofabrication Opportunities, and Challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Mahmudiono, T.; Olegovich Bokov, D.; Abdalkareem Jasim, S.; Abdelbasset, W.K.; Dinora, M.K. State-of-the-Art of Convenient and Low-Cost Electrochemical Sensor for Food Contamination Detection: Technical and Analytical Overview. Microchem. J. 2022, 179, 107460. [Google Scholar] [CrossRef]
- Reddy, K.K.; Bandal, H.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Jayaramudu, T.; Amalraj, J.; Kim, H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv. Sci. 2020, 7, 1902980. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.; Tang, Y.; Varshney, P.K. Amperometric Enzyme-Free Glucose Sensor Based on Electrodeposition of Au Particles on Polyaniline Film Modified Pt Electrode. Acta Chim. Slov. 2018, 65, 687–697. [Google Scholar] [CrossRef]
- Hayden, B.E. Particle Size and Support Effects in Electrocatalysis. Acc Chem. Res. 2013, 46, 1858–1866. [Google Scholar] [CrossRef]
- Beaver, K.; Dantanarayana, A.; Minteer, S.D. Materials Approaches for Improving Electrochemical Sensor Performance. J. Phys. Chem. B 2021, 125, 11820–11834. [Google Scholar] [CrossRef]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Conejo-Dávila, A.S.; Estrada-Monje, A.; Maldonado-Orozco, M.C.; Reyes-López, S.Y.; Zaragoza-Contreras, E.A. Electrochemical Perovskite-Based Sensors for the Detection of Relevant Biomarkers for Human Kidney Health. Chemosensors 2023, 11, 507. [Google Scholar] [CrossRef]
- Chakraborty, T.D.; Munmun, Y.L.; Chan, M.L.; Ray, H.K.; Chyuan. Highly Sensitive and Selective Detection of Diabetic Nephropathy Markers by a Perovskite LaNiO3−x Based Potentiometric Sensor. J. Electrochem. Soc. 2022, 169, 037507. [Google Scholar] [CrossRef]
- He, J.; Sunarso, J.; Zhu, Y.; Zhong, Y.; Miao, J.; Zhou, W.; Shao, Z. High-Performance Non-Enzymatic Perovskite Sensor for Hydrogen Peroxide and Glucose Electrochemical Detection. Sens. Actuators B Chem. 2017, 244, 482–491. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; El-Ads, E.H. Effect of B-Site Doping on Sr2PdO3 Perovskite Catalyst Activity for Non-Enzymatic Determination of Glucose in Biological Fluids. J. Electroanal. Chem. 2019, 852, 113523. [Google Scholar] [CrossRef]
- Sato, N.; Haruta, M.; Sasagawa, K.; Ohta, J.; Jongprateep, O. Fe and Co-Doped (Ba, Ca)TiO3 Perovskite as Potential Electrocatalysts for Glutamate Sensing. Eng. J. 2019, 23, 265–278. [Google Scholar] [CrossRef]
- Mahmoudi-Moghaddam, H.; Amiri, M.; Javar, H.A.; Yousif, Q.A.; Salavati-Niasari, M. A Facile Green Synthesis of a Perovskite-Type Nanocomposite Using Crataegus and Walnut Leaf for Electrochemical Determination of Morphine. Anal. Chim. Acta 2022, 1203, 339691. [Google Scholar] [CrossRef] [PubMed]
- Atta, N.F.; Ali, S.M.; El-Ads, E.H.; Galal, A. Nano-Perovskite Carbon Paste Composite Electrode for the Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid. Electrochim. Acta 2014, 128, 16–24. [Google Scholar] [CrossRef]
- Chakraborty, T.; Das, M.; Lin, C.Y.; Lei, K.F.; Kao, C.H. Highly Sensitive and Selective Electrochemical Detection of Lipocalin 2 by NiO Nanoparticles/Perovskite CeCuOx Based Immunosensor to Diagnose Renal Failure. Anal. Chim. Acta 2022, 1205, 339754. [Google Scholar] [CrossRef]
- Govindasamy, M.; Wang, S.F.; Pan, W.C.; Subramanian, B.; Ramalingam, R.J.; Al-lohedan, H. Facile Sonochemical Synthesis of Perovskite-Type SrTiO3 Nanocubes with Reduced Graphene Oxide Nanocatalyst for an Enhanced Electrochemical Detection of α-Amino Acid (Tryptophan). Ultrason. Sonochem 2019, 56, 193–199. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; El-Gohary, A.R.M. Gold-Doped Nano-Perovskite-Decorated Carbon Nanotubes for Electrochemical Sensing of Hazardous Hydrazine with Application in Wastewater Sample. Sens. Actuators B Chem. 2021, 327, 128879. [Google Scholar] [CrossRef]
- Chen, T.W.; Ramachandran, R.; Chen, S.M.; Anushya, G.; Rani, S.D.; Mariyappan, V.; Elumalai, P.; Vasimalai, N. High-performance-based Perovskite-supported Nanocomposite for the Development of Green Energy Device Applications: An Overview. Nanomaterials 2021, 11, 1006. [Google Scholar] [CrossRef]
- Mazzotta, E.; Di Giulio, T.; Malitesta, C. Electrochemical Sensing of Macromolecules Based on Molecularly Imprinted Polymers: Challenges, Successful Strategies, and Opportunities. Anal. Bioanal. Chem. 2022, 414, 5165–5200. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Ahmadi, N.; Rezaei, B. Nickel Nanoparticles Supported on Porous Silicon Flour, Application as a Non-Enzymatic Electrochemical Glucose Sensor. Sens. Actuators B Chem. 2017, 239, 807–815. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, Y.; Liu, Z.; Xue, D. State of the Art in Crystallization of Linbo3 and Their Applications. Molecules 2021, 26, 7044. [Google Scholar] [CrossRef]
- Gao, S.; Wang, N.; Li, S.; Li, D.; Cui, Z.; Yue, G.; Liu, J.; Zhao, X.; Jiang, L.; Zhao, Y. A Multi-Wall Sn/SnO2@Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries. Angew. Chem.-Int. Ed. 2020, 59, 2465–2472. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid. Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef]
- Chen, X.; Schluesener, H.J. Nanosilver: A Nanoproduct in Medical Application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Saha, T.; Del Caño, R.; Mahato, K.; De la Paz, E.; Chen, C.; Ding, S.; Yin, L.; Wang, J. Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review. Chem. Rev. 2023, 123, 7854–7889. [Google Scholar] [CrossRef]
- Chen, T.W.; Ramachandran, R.; Chen, S.M.; Anushya, G.; Ramachandran, K. Graphene and Perovskite-Based Nanocomposite for Both Electrochemical and Gas Sensor Applications: An Overview. Sensors 2020, 20, 6755. [Google Scholar] [CrossRef]
- Aparicio-Martínez, E.P.; Vega-Rios, A.; Osuna, V.; Dominguez, R.B. Salivary Glucose Detection with Laser Induced Graphene/AgNPs Non-Enzymatic Sensor. Biosensors 2023, 13, 207. [Google Scholar] [CrossRef]
- Quan, H.; Park, S.U.; Park, J. Electrochemical Oxidation of Glucose on Silver Nanoparticle-Modified Composite Electrodes. Electrochim. Acta 2010, 55, 2232–2237. [Google Scholar] [CrossRef]
- Ivanišević, I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. Sensors 2023, 23, 3692. [Google Scholar] [CrossRef]
- Noman, M.; Khan, Z.; Jan, S.T. A Comprehensive Review on the Advancements and Challenges in Perovskite Solar Cell Technology. RSC Adv. 2024, 14, 5085–5131. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Zhang, G.; Wang, Y.; Pang, H. Recent Advances in the Development of Perovskite@metal-Organic Frameworks Composites. Natl. Sci. Open 2023, 2, 20220065. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices. Sustainability 2023, 15, 10891. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Mokhtar, N.A.I.M.; Zawawi, R.M.; Khairul, W.M.; Yusof, N.A. Electrochemical and Optical Sensors Made of Composites of Metal–Organic Frameworks and Carbon-Based Materials. A Review. Environ. Chem. Lett. 2022, 20, 3099–3131. [Google Scholar] [CrossRef]
- George, J.; Halali, V.V.; Sanjayan, C.G.; Suvina, V.; Sakar, M.; Balakrishna, R.G. Perovskite Nanomaterials as Optical and Electrochemical Sensors. Inorg. Chem. Front. 2020, 7, 2702–2725. [Google Scholar] [CrossRef]
- Olejnik, A.; Karczewski, J.; Dołęga, A.; Siuzdak, K.; Grochowska, K. Novel Approach to Interference Analysis of Glucose Sensing Materials Coated with Nafion. Bioelectrochemistry 2020, 135, 107575. [Google Scholar] [CrossRef]
- Xia, Y.; Huang, W.; Zheng, J.; Niu, Z.; Li, Z. Nonenzymatic Amperometric Response of Glucose on a Nanoporous Gold Film Electrode Fabricated by a Rapid and Simple Electrochemical Method. Biosens. Bioelectron. 2011, 26, 3555–3561. [Google Scholar] [CrossRef]
- Mei, H.; Wu, W.; Yu, B.; Li, Y.; Wu, H.; Wang, S.; Xia, Q. Non-Enzymatic Sensing of Glucose at Neutral PH Values Using a Glassy Carbon Electrode Modified with Carbon Supported Co@Pt Core-Shell Nanoparticles. Microchim. Acta 2015, 182, 1869–1875. [Google Scholar] [CrossRef]
- Huang, W.; Diallo, A.K.; Dailey, J.L.; Besar, K.; Katz, H.E. Electrochemical Processes and Mechanistic Aspects of Field-Effect Sensors for Biomolecules. J. Mater. Chem. C Mater. 2015, 3, 6445–6470. [Google Scholar] [CrossRef]
- Hay, R.W. Reaction Mechanisms of Metal Complexes, 1st, ed.; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 1-898563-41-1. [Google Scholar]
- Atta, N.F.; El-Ads, E.H.; Galal, A.; Galal, A.E. Electrochemical Sensing Platform Based on Nano-Perovskite/Glycine/Carbon Composite for Amlodipine and Ascorbic Acid Drugs. Electroanalysis 2019, 31, 448–460. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Mathur, P.; Mobin, S.M. Preparation of SrTiO3 Perovskite Decorated RGO and Electrochemical Detection of Nitroaromatics. Electrochim. Acta 2016, 215, 435–446. [Google Scholar] [CrossRef]
- Jia, F.F.; Zhong, H.; Zhang, W.G.; Li, X.R.; Wang, G.Y.; Song, J.; Cheng, Z.P.; Yin, J.Z.; Guo, L.P. A Novel Nonenzymatic ECL Glucose Sensor Based on Perovskite LaTiO3-Ag0.1 Nanomaterials. Sens. Actuators B Chem. 2015, 212, 174–182. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhong, H.; Li, X.M.; Jia, F.F.; Shi, Y.X.; Zhang, W.G.; Cheng, Z.P.; Zhang, L.L.; Wang, J.K. Perovskite LaTiO3-Ag0.2 Nanomaterials for Nonenzymatic Glucose Sensor with High Performance. Biosens. Bioelectron. 2013, 48, 56–60. [Google Scholar] [CrossRef] [PubMed]
- El-Ads, E.H.; Galal, A.; Atta, N.F. Electrochemistry of Glucose at Gold Nanoparticles Modified Graphite/SrPdO3 Electrode-Towards a Novel Non-Enzymatic Glucose Sensor. J. Electroanal. Chem. 2015, 749, 42–52. [Google Scholar] [CrossRef]
LNB:AgNP | Perovskite Volume (µL) | AgNP Volume (µL) |
---|---|---|
4:1 | 480 | 120 |
2:1 | 400 | 200 |
1:1 | 300 | 300 |
1:2 | 200 | 400 |
1:4 | 120 | 480 |
Perovskite-Based Material | LOD (μM) | LR (μM) | Sensitivity (µA/mMcm2) | Analyte | Evaluated Interferents | Reference |
---|---|---|---|---|---|---|
LaSrCoO/GO | 0.05 0.063 | 0.2–3350 2–3350 | 500 330 | H2O2 Glucose | DA, UA, AA | [39] |
NdFeO3/glycine/CNTs | 113.2 | 0.003–200 | 113.2 | AML AA | UA, DA, EP, APAP | [40] |
SrTiO3/rGO | 0.11–0.15 | 0.3–0.8 | 13.16–193.43 | NA | Ph, Tol, Chloph, Cat, ChBz, etc. | [41] |
LaTiO3-Ag0.1 | 0.0025 | 0.01–0.10 | 780 | Glucose | Gly, Alni, Fru, Mal, UA, AA, etc. | [42] |
LaTiO3-Ag0.2 | 0.21 | 2.5–4000 | 784.14 | Glucose | DA, UA, AA | [43] |
AuNPs/SrPdO3 | 10.1 | 100–6000 | ------- | Glucose | DA, UA, AA, APAP, Chlor | [44] |
LNB/AgNP | 0.5 | 100–16,000 | 526 | Glucose | UA, AA, KCl, NaCl, Fru | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñón-Balderrama, C.I.; Manríquez-Tristán, A.; Maldonado-Orozco, M.C.; Hernández-Escobar, C.A.; Reyes-López, S.Y.; Espinosa-Cristobal, L.F.; Zaragoza-Contreras, E.A. Lithium Niobate Perovskite as the Support for Silver Nanoparticles for Non-Enzymatic Electrochemical Detection of Glucose. Chemosensors 2024, 12, 210. https://doi.org/10.3390/chemosensors12100210
Piñón-Balderrama CI, Manríquez-Tristán A, Maldonado-Orozco MC, Hernández-Escobar CA, Reyes-López SY, Espinosa-Cristobal LF, Zaragoza-Contreras EA. Lithium Niobate Perovskite as the Support for Silver Nanoparticles for Non-Enzymatic Electrochemical Detection of Glucose. Chemosensors. 2024; 12(10):210. https://doi.org/10.3390/chemosensors12100210
Chicago/Turabian StylePiñón-Balderrama, Claudia Ivone, Atenea Manríquez-Tristán, María Cristina Maldonado-Orozco, Claudia Alejandra Hernández-Escobar, Simón Yobanny Reyes-López, León Francisco Espinosa-Cristobal, and Erasto Armando Zaragoza-Contreras. 2024. "Lithium Niobate Perovskite as the Support for Silver Nanoparticles for Non-Enzymatic Electrochemical Detection of Glucose" Chemosensors 12, no. 10: 210. https://doi.org/10.3390/chemosensors12100210
APA StylePiñón-Balderrama, C. I., Manríquez-Tristán, A., Maldonado-Orozco, M. C., Hernández-Escobar, C. A., Reyes-López, S. Y., Espinosa-Cristobal, L. F., & Zaragoza-Contreras, E. A. (2024). Lithium Niobate Perovskite as the Support for Silver Nanoparticles for Non-Enzymatic Electrochemical Detection of Glucose. Chemosensors, 12(10), 210. https://doi.org/10.3390/chemosensors12100210