Facile Fabrication of a Selective Poly(caffeic acid)@MWCNT-Ni(OH)2 Hybrid Nanomaterial and Its Application as a Non-Enzymatic Glucose Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Apparatus
2.3. Fabrication of GC/PCA@MWCNT-Ni(OH)2 Nanoplatform
2.4. Real Sample Analysis
3. Results and Discussion
3.1. Electrochemical Formation of GC/PCA@MWCNT-Ni(OH)2
3.2. Surface Characterization
3.3. Electrochemical Characterization
3.4. Glucose Electrocatalysis at GC/PCA@MWCNT-Ni(OH)2
3.5. Optimization of PCA@MWCNT-Ni(OH)2 Synthesis for Glucose Oxidation
3.6. Glucose Detection at GC/PCA@MWCNT-Ni(OH)2
3.7. Interference Study
3.8. Stability, Reproducibility, and Repeatability
3.9. Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in miniaturized biosensors for point-of-care testing. Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Jędrzak, A.; Kuznowicz, M.; Rębiś, T.; Jesionowski, T. Portable glucose biosensor based on polynorepinephrine@magnetite nanomaterial integrated with a smartphone analyzer for point-of-care application. Bioelectrochemistry 2022, 145, 108071. [Google Scholar] [CrossRef]
- Panda, P.; Pal, K.; Chakroborty, S. Smart advancements of key challenges in graphene-assembly glucose sensor technologies: A mini review. Mater. Lett. 2021, 303, 130508. [Google Scholar] [CrossRef]
- Huang, C.; Hao, Z.; Qi, T.; Pan, Y.; Zhao, X. An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose. J. Mater. 2020, 6, 308–314. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, Q.; Qin, Q.; Liu, L.; Wu, Z.; Shen, B.; Hu, W. Self-Assembly of Graphene-Encapsulated Cu Composites for Nonenzymatic Glucose Sensing. ACS Omega 2018, 3, 3420–3428. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Liu, J.; Chen, H.; Gao, Y.; Li, H. Copper/nickel nanoparticle decorated carbon nanotubes for nonenzymatic glucose biosensor. J. Solid. State Electrochem. 2015, 19, 1511–1521. [Google Scholar] [CrossRef]
- Nie, H.; Yao, Z.; Zhou, X.; Yang, Z.; Huang, S. Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens. Bioelectron. 2011, 30, 28–34. [Google Scholar] [CrossRef]
- Kuznowicz, M.; Rębiś, T.; Jędrzak, A.; Nowaczyk, G.; Szybowicz, M.; Jesionowski, T. Glucose determination using amperometric non-enzymatic sensor based on electroactive poly(caffeic acid)@MWCNT decorated with CuO nanoparticles. Microchim. Acta 2022, 189, 159. [Google Scholar] [CrossRef]
- Ahmad, R.; Tripathy, N.; Ahn, M.S.; Bhat, K.S.; Mahmoudi, T.; Wang, Y.; Yoo, J.Y.; Kwon, D.W.; Yang, H.Y.; Hahn, Y.B. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Sci. Rep. 2017, 7, 5715. [Google Scholar] [CrossRef]
- Pal, N.; Banerjee, S.; Bhaumik, A. A facile route for the syntheses of Ni(OH)2 and NiO nanostructures as potential candidates for non-enzymatic glucose sensor. J. Colloid. Interface Sci. 2018, 516, 121–127. [Google Scholar] [CrossRef]
- Zhan, B.; Liu, C.; Chen, H.; Shi, H.; Wang, L.; Chen, P.; Huang, W.; Dong, X. Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 2014, 6, 7424–7429. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L. Influence of nanosized Ni(OH)2 addition on the electrochemical performance of nickel hydroxide electrode. J. Power Sources 2004, 128, 326–330. [Google Scholar] [CrossRef]
- Monahan, J.; Wilker, J.J. Specificity of metal ion cross-linking in marine mussel adhesives. Chem. Commun. 2003, 14, 1672–1673. [Google Scholar] [CrossRef]
- Rębiś, T.; Kuznowicz, M.; Jędrzak, A.; Milczarek, G.; Jesionowski, T. Design and fabrication of low potential NADH-sensor based on poly(caffeic acid)@multi-walled carbon nanotubes. Electrochim. Acta. 2021, 386, 138384. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Yan, X. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci. Rep. 2015, 5, 11095. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Lin, J.; Malgras, V.; Dou, S.X.; Kim, J.H.; Yamauchi, Y. Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 2015, 11, 211–218. [Google Scholar] [CrossRef]
- Subramanian, A.S.; Tey, J.N.; Zhang, L.; Ng, B.H.; Roy, S.; Wei, J.; Hu, X.M. Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids. Polymer 2016, 82, 285–294. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, K.; Liu, Z.; Wang, H.; Ma, S.; Zhang, A.; Li, M.; Yu, L.; Li, Y. Sulfurized hematite for photo-Fenton catalysis. Prog. Nat. Sci. 2018, 27, 443–451. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Wang, S.; Zhang, J.; Kang, Z. From MOF membrane to 3D electrode: A new approach toward an electrochemical non-enzymatic glucose biosensor. J. Mater. Sci. 2017, 52, 12089–12097. [Google Scholar] [CrossRef]
- Duc Chinh, V.; Speranza, G.; Migliaresi, C.; Van Chuc, N.; Minh Tan, V.; Phuong, N.T. Synthesis of Gold Nanoparticles Decorated with Multiwalled Carbon Nanotubes (Au-MWCNTs) via Cysteaminium Chloride Functionalization. Sci. Rep. 2019, 9, 5667. [Google Scholar] [CrossRef] [PubMed]
- Dubal, D.P.; Gund, G.S.; Lokhande, C.D.; Holze, R. Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 2446–2454. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, X.; Liu, S.; Xing, Y.; Peng, J.; Peng, Y.; Ni, G.; Jin, X. One-step synthesis of Ni(OH)2/MWCNT nanocomposites for constructing a nonenzymatic hydroquinone/O2 fuel cell. RSC Adv. 2020, 10, 39447–39454. [Google Scholar] [CrossRef]
- Martínez-Sánchez, C.; Regmi, C.; Lee, S.W.; Rodríguez-González, V. Effects of Ce Doping on the Photocatalytic and Electrochemical Performance of Nickel Hydroxide Nanostructures. Top. Catal. 2021, 64, 73–83. [Google Scholar] [CrossRef]
- Yu, S.; Peng, X.; Cao, G.; Zhou, M.; Qiao, L.; Yao, J.; He, H. Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim. Acta. 2012, 76, 512–517. [Google Scholar] [CrossRef]
- Holze, R. Book Review: Electrochemical Methods. Fundamentals and Applications, 2nd ed.; Angewandte Chemie-International, Ed.; Wiley: Hoboken, NJ, USA, 2022; Volume 41, pp. 655–657. [Google Scholar]
- Bilal, S.; Ullah, W.; Ali Shah, A. Polyaniline@CuNi nanocomposite: A highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta. 2018, 284, 382–391. [Google Scholar] [CrossRef]
- Baig, N.; Kawde, A.N.; Ibrahim, M. Efficient ionic medium supported reduced graphene oxide-based sensor for selective sensing of dopamine. Mater. Adv. 2022, 4, 783–793. [Google Scholar] [CrossRef]
- Ahmed, J.; Mao, Y. Delafossite CuAlO2 nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions. ACS Symp. Ser. 2015, 1213, 57–72. [Google Scholar]
- Baron, R.; Campbell, F.W.; Streeter, I.; Xiao, L.; Compton, R.G. Facile method for the construction of random nanoparticle arrays on a carbon support for the development of well-defined catalytic surfaces. Int. J. Electrochem. Sci. 2008, 3, 556–565. [Google Scholar] [CrossRef]
- Kiani, M.A.; Tehrani, M.A.; Sayahi, H. Reusable and robust high sensitive non-enzymatic glucose sensor based on Ni(OH)2 nanoparticles. Anal. Chim. Acta 2014, 839, 26–33. [Google Scholar] [CrossRef]
- Jędrzak, A.; Rębiś, T.; Kuznowicz, M.; Jesionowski, T. Bio-inspired magnetite/lignin/polydopamine-glucose oxidase biosensing nanoplatform. From synthesis, via sensing assays to comparison with others glucose testing techniques. Int. J. Biol. Macromol. 2019, 127, 677–682. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Liao, Q.; Liu, S.; Kang, Z.; Zhang, Y. Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite. Sensors 2016, 16, 1791. [Google Scholar] [CrossRef]
- Zhong, X.; He, Z.; Chen, H.; Chen, Y. Enhancing the non-enzymatic glucose detection performance of Ni(OH)2 nanosheets via defect engineering. Surf. Interfaces 2021, 25, 101234. [Google Scholar] [CrossRef]
- Radwan, A.B.; Paramparambath, S.; Cabibihan, J.J.; Al-Ali, A.K.; Kasak, P.; Shakoor, R.A.; Malik, R.A.; Mansour, S.A.; Sadasivuni, K.K. Superior non-invasive glucose sensor using bimetallic CuNi nanospecies coated mesoporous carbon. Biosensors 2021, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Bhat, B.R. Multi-wall carbon nanotube-NiO nanoparticle composite as enzyme-free electrochemical glucose sensor. Sens. Actuators B Chem. 2015, 220, 81–90. [Google Scholar] [CrossRef]
- Shamsipur, M.; Najafi, M.; Hosseini, M.R.M. Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 2010, 77, 120–124. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Gao, R. Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J. Phys. Chem. C 2010, 114, 4408–4413. [Google Scholar] [CrossRef]
- Gao, W.; Tjiu, W.W.; Wei, J.; Liu, T. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide-Multiwalled carbon nanotube film modified glass carbon electrode. Talanta 2014, 120, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhang, C.; Yang, M.; Zhou, Y.; Bi, C.; Lv, Q.; Ma, N. A facile and sensitive electrochemical sensor for non-enzymatic glucose detection based on three-dimensional flexible polyurethane sponge decorated with nickel hydroxide. Anal. Chim. Acta 2020, 1109, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gao, G.; Teng, F.; Liu, W.; Chen, S.; Ge, Z. Nickel Hydroxide Nanoflowers for a Nonenzymatic Electrochemical Glucose Sensor. J. Electrochem. Soc. 2014, 161, B216–B219. [Google Scholar] [CrossRef]
- Luo, L.; Li, F.; Zhu, L.; Ding, Y.; Zhang, Z.; Deng, D.; Lu, B. Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloids Surf. B Biointerfaces 2013, 102, 307–311. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, J.; Liu, J.; Ding, R.; Li, Y.; Ding, H.; Feng, Y.; Wei, G.; Huang, X. CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Adv. 2011, 1, 1020–1025. [Google Scholar] [CrossRef]
- Nien, P.C.; Tung, T.S.; Ho, K.C. Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanalysis 2006, 18, 1408–1415. [Google Scholar] [CrossRef]
- Wu, B.; Xu, H.; Shi, Y.; Yao, Z.; Yu, J.; Zhou, H.; Li, Y.; Chen, Q.; Long, Y. Microelectrode glucose biosensor based on nanoporous platinum/graphene oxide nanostructure for rapid glucose detection of tomato and cucumber fruits. Food Qual. 2022, 6, fyab030. [Google Scholar] [CrossRef]
- Palanisamy, S.; Cheemalapati, S.; Chen, S.M. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Mater. Sci. Eng. C 2014, 34, 207–213. [Google Scholar] [CrossRef]
- Gong, Z.; Hu, N.; Ye, W.; Zheng, K.; Li, C.; Ma, L.; Wei, Q.; Yu, Z.; Zhou, K.; Huang, N.; et al. High-performance non-enzymatic glucose sensor based on Ni/Cu/boron-doped diamond electrode. J. Electroanal. Chem. 2019, 841, 135–141. [Google Scholar] [CrossRef]
- Jamal, M.; Chakrabarty, S.; Shao, H.; McNulty, D.; Yousuf, M.; Furukawa, H.; Khosla, A.; Razeeb, K. A non enzymatic glutamate sensor based on nickel oxide nanoparticle. Microsyst. Technol. 2018, 24, 217–4223. [Google Scholar] [CrossRef]
- Baghayeri, M.; Sedrpoushan, A.; AMohammadi, M. Heidari, A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 2017, 23, 1553–1562. [Google Scholar] [CrossRef]
- Zeng, G.; Li, W.; Ci, S.; Jia, J.; Wen, Z. Highly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell. Sci. Rep. 2016, 6, 36454. [Google Scholar] [CrossRef]
- Yan, X.; Guangwei, G.; Zhu, G.; Gao, J.; Ge, Z.; Yang, H. A Nonenzymatic Electrochemical Glucose Sensor Based on Ni(OH)2-CNT-PVDF Composite and Its Application in Measuring Serum Glucose. J. Electrochem. Soc. 2014, 161, B106–B110. [Google Scholar]
- Karikalan, N.; Velmurugan, M.; Chen, S.-M.; Karuppiah, C. Modern Approach to the Synthesis of Ni(OH)2 Decorated Sulfur Doped Carbon Nanoparticles for the Nonenzymatic Glucose Sensor. ACS Appl. Mater. Interfaces 2016, 8, 22545–22553. [Google Scholar] [CrossRef]
Electrode | Sensitivity /μA mM−1 cm−2 | LOD /μM | Linear Range /mM | Ref. |
---|---|---|---|---|
NiNP/SMWNTs | 1438.0 | 0.50 | 0.001–0.1 | [7] |
NiO–MWCNTs/CPE | 122.1 | 31.0 | 0.0–9.0 | [35] |
NiO-MWCNTs | 436.0 | 160.0 | 0.2–1.2 | [36] |
Ti/TiO2 NTA/Ni | 200.0 | 4.0 | 0.1–1.7 | [37] |
Ni(OH)2/ERGO–MWNT/GCE | 2042.0 | 2.70 | 0.01–1.5 | [38] |
Ni(OH)2/PU | 2845.4 | 0.32 | 0.01–2.06 | [39] |
Ni(OH)2-CNT-Nafion/GCE | 238.5 | 0.50 | 0.1–1.1 | [40] |
NiO-OMC/GCE | 834.8 | 0.65 | 0.002–1.0 | [41] |
CNT/Ni NAs | 1381.0 | 1.0 | 0.5–10.0 | [42] |
PCA@MWCNT-Ni(OH)2 | 232.7 | 0.29 | 0.05–10.0 | This work |
Glucose Sensor | Retained Activity (%) | Storage Time (Days) | References |
---|---|---|---|
Ni/Cu/BDD | 93.3 | 30 | [46] |
MWCNT-Ni-S | 88.0 | 18 | [49] |
Ni-NPs/TiO2 nanotubes | 80.3 | 20 | [24] |
NiO-APTS@SBA/CNT | 95.0 | 24 | [48] |
Ni/Cu/MWCNT | 90.0 | 30 | [6] |
MWCNT@PCA-Ni(OH)2 | 74.4 | 150 | This work |
Sample | Glucose Concentration/mM | GC/MWCNT@PCA-Ni(OH)2 | |
---|---|---|---|
Find/mM | Recovery/% | ||
Human Serum | 2.4 | 2.31 ± 0.05 | 96.3 ± 2.1 |
6.6 | 6.44 ± 0.08 | 97.6 ± 1.2 | |
8.5 | 8.35 ± 0.12 | 98.2 ± 1.4 | |
Human Blood | 3.2 | 3.08 ± 0.06 | 96.4 ± 1.9 |
6.3 | 5.88 ± 0.07 | 93.3 ± 1.1 | |
14.7 | 14.35 ± 0.15 | 97.6 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznowicz, M.; Rębiś, T.; Jędrzak, A.; Nowaczyk, G.; Jesionowski, T. Facile Fabrication of a Selective Poly(caffeic acid)@MWCNT-Ni(OH)2 Hybrid Nanomaterial and Its Application as a Non-Enzymatic Glucose Sensor. Chemosensors 2023, 11, 452. https://doi.org/10.3390/chemosensors11080452
Kuznowicz M, Rębiś T, Jędrzak A, Nowaczyk G, Jesionowski T. Facile Fabrication of a Selective Poly(caffeic acid)@MWCNT-Ni(OH)2 Hybrid Nanomaterial and Its Application as a Non-Enzymatic Glucose Sensor. Chemosensors. 2023; 11(8):452. https://doi.org/10.3390/chemosensors11080452
Chicago/Turabian StyleKuznowicz, Maria, Tomasz Rębiś, Artur Jędrzak, Grzegorz Nowaczyk, and Teofil Jesionowski. 2023. "Facile Fabrication of a Selective Poly(caffeic acid)@MWCNT-Ni(OH)2 Hybrid Nanomaterial and Its Application as a Non-Enzymatic Glucose Sensor" Chemosensors 11, no. 8: 452. https://doi.org/10.3390/chemosensors11080452
APA StyleKuznowicz, M., Rębiś, T., Jędrzak, A., Nowaczyk, G., & Jesionowski, T. (2023). Facile Fabrication of a Selective Poly(caffeic acid)@MWCNT-Ni(OH)2 Hybrid Nanomaterial and Its Application as a Non-Enzymatic Glucose Sensor. Chemosensors, 11(8), 452. https://doi.org/10.3390/chemosensors11080452