Layer-by-Layer Film Based on Sn3O4 Nanobelts as Sensing Units to Detect Heavy Metals Using a Capacitive Field-Effect Sensor Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Sn3O4 Nanobelts
2.2. Fabrication of the EIS Chips
2.3. Fabrication and Characterization of the LbL Films
2.4. Electrochemical Characterization for Pb2+ and Ni2+ Ion Detection
3. Results and Discussion
3.1. Surface Characterization of the LbL Film
3.2. Electrochemical Characterization of the LbL Film
3.3. Detection of Pb2+ and Ni2+ Ions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, S.; Dissanayake, K.; Asokan, S.; Sun, T.; Rahman, B.M.A.; Grattan, K.T.V. Lead (Pb2+) Ion Sensor Development Using Optical Fiber Gratings and Nanocomposite Materials. Sens. Actuators B Chem. 2022, 364, 131818. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A Review on Detection of Heavy Metal Ions in Water—An Electrochemical Approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical Sensing of Heavy Metal Ions with Inorganic, Organic and Bio-Materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef]
- Sang, S.; Zhang, H.; Sun, Y.; Jian, A.; Zhang, W. Facile Synthesis of Carbon-Encapsulated Fe3O4 Core/Shell Nanospheres for Application in Pb(II) Electrochemical Determination. Int. J. Electrochem. Sci. 2017, 12, 1306–1317. [Google Scholar] [CrossRef]
- EPA Basic Information about Lead in Drinking Water. Available online: https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water#regs (accessed on 9 November 2022).
- World Health Organization. Biological Monitoring of Metals; World Health Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.-S. Agricultural Waste of Sugarcane Bagasse as Efficient Adsorbent for Lead and Nickel Removal from Untreated Wastewater: Biosorption, Equilibrium Isotherms, Kinetics and Desorption Studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef]
- Padilla, V.; Serrano, N.; Díaz-Cruz, J.M. Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors 2021, 9, 94. [Google Scholar] [CrossRef]
- EPA National Primary Drinking Water Regulations: Nickel. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/9100PO2K.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery= (accessed on 9 November 2022).
- World Health Organization. Nickel in Drinking-Water; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Poghossian, A.; Schöning, M.J. Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report. Sensors 2020, 20, 5639. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Gasparotto, L.H.S.; Siqueira, J.R., Jr. Processing of Nanomaterials in Layer-by-Layer Films: Potential Applications in (Bio)Sensing and Energy Storage. An. Acad. Bras. Ciências 2019, 91, 1–17. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.J. Recent Progress in Silicon-Based Biologically Sensitive Field-Effect Devices. Curr. Opin. Electrochem. 2021, 29, 100811. [Google Scholar] [CrossRef]
- Oliveira, O.N.; Iost, R.M.; Siqueira, J.R., Jr.; Crespilho, F.N.; Caseli, L. Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular Recognition. ACS Appl. Mater. Interfaces 2014, 6, 14745–14766. [Google Scholar] [CrossRef]
- Morais, P.V.; Gomes, V.F.; Silva, A.C.A.; Dantas, N.O.; Schöning, M.J.; Siqueira, J.R., Jr. Nanofilm of ZnO Nanocrystals/Carbon Nanotubes as Biocompatible Layer for Enzymatic Biosensors in Capacitive Field-Effect Devices. J. Mater. Sci. 2017, 52, 12314–12325. [Google Scholar] [CrossRef]
- Morais, P.V.; Orlandi, M.O.; Schöning, M.J.; Siqueira, J.R., Jr. Layer-by-Layer Films with CoFe2O4 Nanocrystals and Graphene Oxide as a Sensitive Interface in Capacitive Field-Effect Devices. ACS Appl. Nano Mater. 2022, 5, 5258–5267. [Google Scholar] [CrossRef]
- Morais, P.V.; Silva, A.C.A.; Dantas, N.O.; Schöning, M.J.; Siqueira, J.R., Jr. Hybrid Layer-by-Layer Film of Polyelectrolytes-Embedded Catalytic CoFe2O4 Nanocrystals as Sensing Units in Capacitive Electrolyte-Insulator-Semiconductor Devices. Phys. Status Solidi 2019, 216, 1900044. [Google Scholar] [CrossRef]
- Suman, P.H.; Felix, A.A.; Tuller, H.L.; Varela, J.A.; Orlandi, M.O. Comparative Gas Sensor Response of SnO2, SnO and Sn3O4 Nanobelts to NO2 and Potential Interferents. Sens. Actuators B Chem. 2015, 208, 122–127. [Google Scholar] [CrossRef]
- Li, L.; Zhang, C.; Chen, W. Fabrication of SnO2–SnO Nanocomposites with p–n Heterojunctions for the Low-Temperature Sensing of NO2 Gas. Nanoscale 2015, 7, 12133–12142. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Guo, Z.; Su, Y.; Jin, X.-B.; Tang, X.-H.; Huang, J.-R.; Huang, X.-J.; Li, M.-Q.; Liu, J.-H. Hierarchical Morphology-Dependent Gas-Sensing Performances of Three-Dimensional SnO2 Nanostructures. ACS Sens. 2017, 2, 102–110. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Feng, W. Cadmium-Ion Detection: A Comparative Study for a SnO2, MoS2, SnO2/MoS2, SnO2-MoS2 Sensing Membrane Combination with a Fiber-Optic Mach–Zehnder Interferometer. Appl. Opt. 2021, 60, 799–804. [Google Scholar] [CrossRef]
- Gu, R.; Zhao, Y.; Fu, H.; Yang, J.; Hu, Z.; Li, L.; Li, H.-Y.; Huang, Q.; Chen, B.; Liu, H. Nanocrystalline SnO2-Modified Electrode for Ultra-Sensitive Mercury Ion Detection. IEEE Sens. J. 2022, 22, 7590–7598. [Google Scholar] [CrossRef]
- Kaur, H.; Bhatti, H.S.; Singh, K. Pr Doped SnO2 Nanostructures: Morphology Evolution, Efficient Photocatalysts and Fluorescent Sensors for the Detection of Cd2+ Ions in Water. J. Photochem. Photobiol. A Chem. 2020, 388, 112144. [Google Scholar] [CrossRef]
- Suman, P.H.; Longo, E.; Varela, J.A.; Orlandi, M.O. Controlled Synthesis of Layered Sn3O4 Nanobelts by Carbothermal Reduction Method and Their Gas Sensor Properties. J. Nanosci. Nanotechnol. 2014, 14, 6662–6668. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yu, W.; Wei, L.; Ni, J.; Li, H.; Chen, Y.; Tian, Y.; Yan, S.; Mei, L.; Jiao, J. High Sensitive Room Temperature NO2 Gas Sensor Based on the Avalanche Breakdown Induced by Schottky Junction in TiO2-Sn3O4 Nanoheterojunctions. J. Alloys Compd. 2022, 912, 165079. [Google Scholar] [CrossRef]
- He, Y.; Li, D.; Chen, J.; Shao, Y.; Xian, J.; Zheng, X.; Wang, P. Sn3O4: A Novel Heterovalent-Tin Photocatalyst with Hierarchical 3D Nanostructures under Visible Light. RSC Adv. 2014, 4, 1266–1269. [Google Scholar] [CrossRef]
- Yang, R.; Song, G.; Wang, L.; Yang, Z.; Zhang, J.; Zhang, X.; Wang, S.; Ding, L.; Ren, N.; Wang, A.; et al. Full Solar-Spectrum-Driven Antibacterial Therapy over Hierarchical Sn3O4/PDINH with Enhanced Photocatalytic Activity. Small 2021, 17, 2102744. [Google Scholar] [CrossRef]
- Jose Damaschio, C.; Berengue, O.M.; Stroppa, D.G.; Simon, R.A.; Ramirez, A.J.; Herwig Schreiner, W.; Chiquito, A.J.; Leite, E.R. Sn3O4 Single Crystal Nanobelts Grown by Carbothermal Reduction Process. J. Cryst. Growth 2010, 312, 2881–2886. [Google Scholar] [CrossRef]
- Orlandi, M.O.; Suman, P.H.; Silva, R.A.; Arlindo, E.P.S. Carbothermal Reduction Synthesis: An Alternative Approach to Obtain Single-Crystalline Metal Oxide Nanostructures BT. In Recent Advances in Complex Functional Materials: From Design to Application; Longo, E., La Porta, F.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 43–67. ISBN 978-3-319-53898-3. [Google Scholar]
- Schöning, M.J.; Brinkmann, D.; Rolka, D.; Demuth, C.; Poghossian, A. CIP (Cleaning-in-Place) Suitable “Non-Glass” PH Sensor Based on a Ta2O5-Gate EIS Structure. Sens. Actuators B Chem. 2005, 111–112, 423–429. [Google Scholar] [CrossRef]
- Schöning, M.J.; Poghossian, A. Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions. Electroanalysis 2006, 18, 1893–1900. [Google Scholar] [CrossRef]
- Schöning, M.J. “Playing around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs. Sensors 2005, 5, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.A.M.; Siqueira, J.R., Jr.; Vercik, A.; Schöning, M.J.; Oliveira, O.N. Determining the Optimized Layer-by-Layer Film Architecture with Dendrimer/Carbon Nanotubes for Field-Effect Sensors. IEEE Sens. J. 2017, 17, 1735–1740. [Google Scholar] [CrossRef]
- Siqueira, J.R., Jr.; Molinnus, D.; Beging, S.; Schöning, M.J. Incorporating a Hybrid Urease-Carbon Nanotubes Sensitive Nanofilm on Capacitive Field-Effect Sensors for Urea Detection. Anal. Chem. 2014, 86, 5370–5375. [Google Scholar] [CrossRef]
- Rehman, M.; Rehman, W.; Waseem, M.; Hussain, S.; Haq, S.; Rehman, M.A. Adsorption Mechanism of Pb2+ Ions by Fe3O4, SnO2, and TiO2 Nanoparticles. Environ. Sci. Pollut. Res. 2019, 26, 19968–19981. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.; Najafi Moghadam, P.; Hasanzadeh, R.; Sillanpää, M. Chelating Magnetic Nanocomposite for the Rapid Removal of Pb(Ii) Ions from Aqueous Solutions: Characterization, Kinetic, Isotherm and Thermodynamic Studies. RSC Adv. 2017, 7, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Fialova, D.; Kremplova, M.; Melichar, L.; Kopel, P.; Hynek, D.; Adam, V.; Kizek, R. Interaction of Heavy Metal Ions with Carbon and Iron Based Particles. Materials 2014, 7, 2242–2256. [Google Scholar] [CrossRef]
- Li, D.; Wang, C.; Zhang, H.; Sun, Y.; Duan, Q.; Ji, J.; Zhang, W.; Sang, S. A Highly Effective Copper Nanoparticle Coupled with RGO for Electrochemical Detection of Heavy Metal Ions. Int. J. Electrochem. Sci. 2017, 12, 10933–10945. [Google Scholar] [CrossRef]
- Fan, H.-L.; Zhou, S.-F.; Gao, J.; Liu, Y.-Z. Continuous Preparation of Fe3O4 Nanoparticles through Impinging Stream-Rotating Packed Bed Reactor and Their Electrochemistry Detection toward Heavy Metal Ions. J. Alloys Compd. 2016, 671, 354–359. [Google Scholar] [CrossRef]
- Han, X.-J.; Zhou, S.-F.; Fan, H.-L.; Zhang, Q.-X.; Liu, Y.-Q. Mesoporous MnFe2O4 Nanocrystal Clusters for Electrochemistry Detection of Lead by Stripping Voltammetry. J. Electroanal. Chem. 2015, 755, 203–209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, P.V.; Suman, P.H.; Schöning, M.J.; Siqueira, J.R., Jr.; Orlandi, M.O. Layer-by-Layer Film Based on Sn3O4 Nanobelts as Sensing Units to Detect Heavy Metals Using a Capacitive Field-Effect Sensor Platform. Chemosensors 2023, 11, 436. https://doi.org/10.3390/chemosensors11080436
Morais PV, Suman PH, Schöning MJ, Siqueira JR Jr., Orlandi MO. Layer-by-Layer Film Based on Sn3O4 Nanobelts as Sensing Units to Detect Heavy Metals Using a Capacitive Field-Effect Sensor Platform. Chemosensors. 2023; 11(8):436. https://doi.org/10.3390/chemosensors11080436
Chicago/Turabian StyleMorais, Paulo V., Pedro H. Suman, Michael J. Schöning, José R. Siqueira, Jr., and Marcelo O. Orlandi. 2023. "Layer-by-Layer Film Based on Sn3O4 Nanobelts as Sensing Units to Detect Heavy Metals Using a Capacitive Field-Effect Sensor Platform" Chemosensors 11, no. 8: 436. https://doi.org/10.3390/chemosensors11080436