Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Specifications
2.2. Fabrication of the EG Sensing Units
2.3. Characterization of the Fabricated EG-ISFET Sensor Platform
3. Results and Discussion
3.1. Evaluation of Electrospun ITO Nanofiber Sensing Membrane
3.2. pH Sensing Operation of EG-ISFET with Electrospun ITO Nanofiber Sensing Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, X.; Clifton, D.; Ji, N.; Lovell, N.H.; Bonato, P.; Chen, W.; Yu, X.; Xue, Z.; Xiang, T.; Long, X. Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic. IEEE Rev. Biomed. Eng. 2020, 14, 48–70. [Google Scholar] [CrossRef]
- Jeong, H.; Rogers, J.A.; Xu, S. Continuous On-Body Sensing for the COVID-19 Pandemic: Gaps and Opportunities. Sci. Adv. 2020, 6, eabd4794. [Google Scholar] [CrossRef]
- Dobson, A.P.; Pimm, S.L.; Hannah, L.; Kaufman, L.; Ahumada, J.A.; Ando, A.W.; Bernstein, A.; Busch, J.; Daszak, P.; Engelmann, J. Ecology and Economics for Pandemic Prevention. Science 2020, 369, 379–381. [Google Scholar] [CrossRef]
- Awotunde, J.B.; Jimoh, R.G.; AbdulRaheem, M.; Oladipo, I.D.; Folorunso, S.O.; Ajamu, G.J. IoT-Based Wearable Body Sensor Network for COVID-19 Pandemic. In Advances in Data Science and Intelligent Data Communication Technologies for COVID-19; Springer International Publishing: Cham, Germany, 2022; pp. 253–275. [Google Scholar]
- Bergveld, P. Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology. IEEE Trans. Biomed. Eng. 1972, BME-19, 342–351. [Google Scholar] [CrossRef]
- Matsumoto, A.; Miyahara, Y. Current and Emerging Challenges of Field Effect Transistor Based Bio-Sensing. Nanoscale 2013, 5, 10702–10718. [Google Scholar] [CrossRef]
- Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A.C.; Mitragotri, S.; Banerjee, K. MoS2 Field-Effect Transistor for next-Generation Label-Free Biosensors. ACS Nano 2014, 8, 3992–4003. [Google Scholar] [CrossRef]
- Cao, S.; Sun, P.; Xiao, G.; Tang, Q.; Sun, X.; Zhao, H.; Zhao, S.; Lu, H.; Yue, Z. ISFET-based Sensors for (Bio) Chemical Applications: A Review. Electrochem. Sci. Adv. 2022, e2100207. [Google Scholar] [CrossRef]
- Huang, X.; Yu, H.; Liu, X.; Jiang, Y.; Yan, M.; Wu, D. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput PH Sensing in Biomedical Diagnosis. IEEE Trans. Biomed. Eng. 2015, 62, 2224–2233. [Google Scholar] [CrossRef]
- Pijanowska, D.G.; Torbicz, W. PH-ISFET Based Urea Biosensor. Sens. Actuators B Chem. 1997, 44, 370–376. [Google Scholar] [CrossRef]
- Chodavarapu, V.P.; Titus, A.H.; Cartwright, A.N. CMOS ISFET Microsystem for Biomedical Applications. In Proceedings of the SENSORS, 2005 IEEE, Irvine, CA, USA, 30 October–3 November 2005; IEEE: Piscataway, NJ, USA, 2005; p. 4. [Google Scholar]
- Yin, L.-T.; Chou, J.-C.; Chung, W.-Y.; Sun, T.-P.; Hsiung, S.-K. Study of Indium Tin Oxide Thin Film for Separative Extended Gate ISFET. Mater. Chem. Phys. 2001, 70, 12–16. [Google Scholar] [CrossRef]
- Yin, L.-T.; Chou, J.-C.; Chung, W.-Y.; Sun, T.-P.; Hsiung, S.-K. Separate Structure Extended Gate H+-Ion Sensitive Field Effect Transistor on a Glass Substrate. Sens. Actuators B Chem. 2000, 71, 106–111. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, T. Ion-Sensitive Field-Effect Transistor Based PH Sensors Using Nano Self-Assembled Polyelectrolyte/Nanoparticle Multilayer Films. Sens. Actuators B Chem. 2007, 123, 148–152. [Google Scholar] [CrossRef]
- Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.; Shahsafi, A.; Mohajerzadeh, S. Nano-Textured High Sensitivity Ion Sensitive Field Effect Transistors. J. Appl. Phys. 2016, 119, 054303. [Google Scholar] [CrossRef]
- Andrady, A.L. Nanofiber-Based Chemical Sensors. In Applications of Polymer Nanofibers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 100–134. [Google Scholar]
- Kim, K.; Rim, T.; Park, C.; Kim, D.; Meyyappan, M.; Lee, J.-S. Suspended Honeycomb Nanowire ISFETs for Improved Stiction-Free Performance. Nanotechnology 2014, 25, 345501. [Google Scholar] [CrossRef]
- Hong, E.-K.; Cho, W.-J. High Sensitivity In-Ga-Zn-O Nanofiber-Based Double Gate Field Effect Transistors for Chemical Sensing. Sens. Actuators B Chem. 2021, 326, 128827. [Google Scholar] [CrossRef]
- Ding, B.; Wang, M.; Yu, J.; Sun, G. Gas Sensors Based on Electrospun Nanofibers. Sensors 2009, 9, 1609–1624. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal Oxides Based Electrochemical PH Sensors: Current Progress and Future Perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, B.; Jiang, Y.; Cai, Y.; Du, J.; Yuan, H.; Xiao, D. Improvement of Sensitive CuO NFs–ITO Nonenzymatic Glucose Sensor Based on in Situ Electrospun Fiber. Talanta 2012, 101, 24–31. [Google Scholar] [CrossRef]
- Keereeta, Y.; Thongtem, T.; Thongtem, S. Characterization of ZnMoO4 Nanofibers Synthesized by Electrospinning–Calcination Combinations. Mater Lett. 2012, 68, 265–268. [Google Scholar] [CrossRef]
- Pascariu, P.; Homocianu, M.; Cojocaru, C.; Samoila, P.; Airinei, A.; Suchea, M. Preparation of La Doped ZnO Ceramic Nanostructures by Electrospinning–Calcination Method: Effect of La3+ Doping on Optical and Photocatalytic Properties. Appl. Surf. Sci. 2019, 476, 16–27. [Google Scholar] [CrossRef]
- Munir, M.M.; Iskandar, F.; Yun, K.M.; Okuyama, K.; Abdullah, M. Optical and Electrical Properties of Indium Tin Oxide Nanofibers Prepared by Electrospinning. Nanotechnology 2008, 19, 145603. [Google Scholar] [CrossRef]
- Coppa, B.J.; Fulton, C.C.; Hartlieb, P.J.; Davis, R.F.; Rodriguez, B.J.; Shields, B.J.; Nemanich, R.J. In Situ Cleaning and Characterization of Oxygen-and Zinc-Terminated, n-Type, ZnO {0001} Surfaces. J. Appl. Phys. 2004, 95, 5856–5864. [Google Scholar] [CrossRef]
- Cho, S.-K.; Cho, W.-J. Performance Improvement in Electrospun InGaZnO Nanofibres Field-Effect-Transistors Using Low Thermal Budget Microwave Calcination and Ar/O2 Mixed-Plasma Surface Treatment. Sci. Rep. 2020, 10, 3645. [Google Scholar] [CrossRef]
- Cho, S.-K.; Cho, W.-J. Microwave-Assisted Calcination of Electrospun Indium–Gallium–Zinc Oxide Nanofibers for High-Performance Field-Effect Transistors. RSC Adv. 2020, 10, 38351–38356. [Google Scholar] [CrossRef]
- Hong, E.-K.; Cho, W.-J. Microwave Calcination of Electrospun ITO Nanofibers and Improvement of Transparent Electrode Characteristics through Vacuum Rapid Thermal Annealing. Mater. Res. Express 2020, 7, 075013. [Google Scholar] [CrossRef]
- Kim, S.-H.; Cho, W.-J. Enhancement of Electrical Properties of Sol–Gel Indium–Tin–Oxide Films by Microwave Irradiation and Plasma Treatment. Micromachines 2021, 12, 1167. [Google Scholar] [CrossRef]
- Hajji, B.; Temple-Boyer, P.; Launay, J.; do Conto, T.; Martinez, A. PH, PK and PNa Detection Properties of SiO2/Si3N4 ISFET Chemical Sensors. Microelectron. Reliab. 2000, 40, 783–786. [Google Scholar] [CrossRef]
- Poghossian, A.S. The Super-Nernstian PH Sensitivity of Ta2O5-Gate ISFETs. Sens. Actuators B Chem. 1992, 7, 367–370. [Google Scholar] [CrossRef]
- Chin, Y.-L.; Chou, J.-C.; Sun, T.-P.; Liao, H.-K.; Chung, W.-Y.; Hsiung, S.-K. A Novel SnO2/Al Discrete Gate ISFET PH Sensor with CMOS Standard Process. Sens. Actuators B Chem. 2001, 75, 36–42. [Google Scholar] [CrossRef]
- Ahmed Ali, A.M.; Ahmed, N.M.; Mohammad, S.M.; Sabah, F.A.; Kabaa, E.; Alsadig, A.; Sulieman, A. Effect of Gamma Irradiation Dose on the Structure and PH Sensitivity of ITO Thin Films in Extended Gate Field Effect Transistor. Results Phys. 2019, 12, 615–622. [Google Scholar] [CrossRef]
- Yao, P.C.; Lee, M.C.; Chiang, J.L. Annealing Effect of Sol-Gel TiO2 Thin Film on PH-EGFET Sensor. In Proceedings of the Proceedings—2014 International Symposium on Computer, Consumer and Control, IS3C 2014, Washington, DC, USA, 10–12 June 2014; pp. 577–580. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, R.; Sharma, R.; Mukhiya, R.; Awasthi, K.; Kumar, M. Bismuth Oxide Extended-Gate Field-Effect Transistor as PH Sensor. J. Electron. Mater. 2022, 51, 2673–2681. [Google Scholar] [CrossRef]
- Zeng, Z.; Wei, W.; Li, B.; Gao, M.; Chim, W.K.; Zhu, C. Low Drift Reference-Less ISFET Comprising Two Graphene Films with Different Engineered Sensitivities. ACS Appl. Electron. Mater. 2022, 4, 416–423. [Google Scholar] [CrossRef]
- Alsaee, S.K.; Ahmed, N.M.; Mzwd, E.; Omar, A.F.; Aljameel, A.I.; Afzal, N.; Razak, I.A.; Arshad, S. PH Sensor Based on AuNPs/ ITO Membrane as Extended Gate Field-Effect Transistor. Appl. Phys. B 2022, 128, 1–7. [Google Scholar] [CrossRef]
- Choi, S.J.; Savagatrup, S.; Kim, Y.; Lang, J.H.; Swager, T.M. Precision PH Sensor Based on WO3 Nanofiber-Polymer Composites and Differential Amplification. ACS Sens. 2019, 4, 2593–2598. [Google Scholar] [CrossRef]
- Liston, E.M. Plasma Treatment for Improved Bonding: A Review. J. Adhes. 1989, 30, 199–218. [Google Scholar] [CrossRef]
- Huang, X.D.; Song, J.Q.; Lai, P.T. Improved Performance of Scaled-Down α-InGaZnO Thin-Film Transistor by Ar Plasma Treatment. IEEE Electron Device Lett. 2016, 37, 1574–1577. [Google Scholar] [CrossRef]
- Banerjee, R.; Ray, S.; Basu, N.; Batabyal, A.K.; Barua, A.K. Degradation of Tin-doped Indium-oxide Film in Hydrogen and Argon Plasma. J. Appl. Phys. 1987, 62, 912–916. [Google Scholar] [CrossRef]
- Lai, F.; Lin, L.; Gai, R.; Lin, Y.; Huang, Z. Determination of Optical Constants and Thicknesses of In2O3: Sn Films from Transmittance Data. Thin Solid Film. 2007, 515, 7387–7392. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Thomas Joseph Prakash, J. Structure, Optical and Electrical Properties of Indium Tin Oxide Ultra Thin Films Prepared by Jet Nebulizer Spray Pyrolysis Technique. J. Asian Ceram. Soc. 2016, 4, 124–132. [Google Scholar] [CrossRef]
- Kim, B.C.; Kim, J.Y.; Lee, D.D.; Lim, J.O.; Huh, J.S. Effects of Crystal Structures on Gas Sensing Properties of Nanocrystalline ITO Thick Films. Sens. Actuators B Chem. 2003, 89, 180–186. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 02, 154–160. [Google Scholar] [CrossRef]
- Bermudez, V.M.; Berry, A.D.; Kim, H.; Piqué, A. Functionalization of Indium Tin Oxide. Langmuir 2006, 22, 11113–11125. [Google Scholar] [CrossRef]
- Shekargoftar, M.; Krumpolec, R.; Homola, T. Enhancement of Electrical Properties of Flexible ITO/PET by Atmospheric Pressure Roll-to-Roll Plasma. Mater. Sci. Semicond. Process. 2018, 75, 95–102. [Google Scholar] [CrossRef]
- Voros, J.; Tang, C.S.; Antoni, M.; Schönbächler, I.; Keller, B.; Textor, M. Electrically-Assisted Formation and Desorption of Dodecyl Phosphate Self-Assembled Monolayers on Indium Tin Oxide Surfaces. ECS Trans. 2006, 1, 29. [Google Scholar] [CrossRef]
- Görlich, E.; Haber, J.; Stoch, A.; Stoch, J. XPS Study of α-Quartz Surface. J. Solid. State Chem. 1980, 33, 121–124. [Google Scholar] [CrossRef]
- Ma, H.-P.; Yang, J.-H.; Yang, J.-G.; Zhu, L.-Y.; Huang, W.; Yuan, G.-J.; Feng, J.-J.; Jen, T.-C.; Lu, H.-L. Systematic Study of the SiOx Film with Different Stoichiometry by Plasma-Enhanced Atomic Layer Deposition and Its Application in SiOx/SiO2 Super-Lattice. Nanomaterials 2019, 9, 55. [Google Scholar] [CrossRef]
- Biesinger, M.C. Accessing the Robustness of Adventitious Carbon for Charge Referencing (Correction) Purposes in XPS Analysis: Insights from a Multi-User Facility Data Review. Appl. Surf. Sci. 2022, 597, 153681. [Google Scholar] [CrossRef]
- Kenny, N.; Kannewurf, C.R.; Whitmore, D.H. Optical Absorption Coefficients of Vanadium Pentoxide Single Crystals. J. Phys. Chem. Solids 1966, 27, 1237–1246. [Google Scholar] [CrossRef]
- Tarey, R.D.; Raju, T.A. A Method for the Deposition of Transparent Conducting Thin Films of Tin Oxide. Thin Solid Film. 1985, 128, 181–189. [Google Scholar] [CrossRef]
- Nigo, S.; Kubota, M.; Harada, Y.; Hirayama, T.; Kato, S.; Kitazawa, H.; Kido, G. Conduction Band Caused by Oxygen Vacancies in Aluminum Oxide for Resistance Random Access Memory. J. Appl. Phys. 2012, 112, 033711. [Google Scholar] [CrossRef]
- Kevane, C.J. Oxygen Vacancies and Electrical Conduction in Metal Oxides. Phys. Rev. 1964, 133, A1431. [Google Scholar] [CrossRef]
- Liu, L.; Mei, Z.; Tang, A.; Azarov, A.; Kuznetsov, A.; Xue, Q.-K.; Du, X. Oxygen Vacancies: The Origin of n-Type Conductivity in ZnO. Phys. Rev. B 2016, 93, 235305. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, H.; Shin, E.-S.; Huh, J.N.; Noh, Y.-Y.; Park, B.; Hwang, I. Toward High Conductivity of Electrospun Indium Tin Oxide Nanofibers with Fiber Morphology Dependent Surface Coverage: Postannealing and Polymer Ratio Effects. ACS Appl. Mater. Interfaces 2017, 9, 34305–34313. [Google Scholar] [CrossRef]
- Wu, H.; Hu, L.; Carney, T.; Ruan, Z.; Kong, D.; Yu, Z.; Yao, Y.; Cha, J.J.; Zhu, J.; Fan, S. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes. J. Am. Chem. Soc. 2011, 133, 27–29. [Google Scholar] [CrossRef]
- Arlindo, E.P.S.; Lucindo, J.A.; Bastos, C.M.O.; Emmel, P.D.; Orlandi, M.O. Electrical and Optical Properties of Conductive and Transparent ITO@ PMMA Nanocomposites. J. Phys. Chem. C 2012, 116, 12946–12952. [Google Scholar] [CrossRef]
- Chou, J.C.; Wang, Y.F. Preparation and Study on the Drift and Hysteresis Properties of the Tin Oxide Gate ISFET by the Sol-Gel Method. Sens Actuators B Chem 2002, 86, 58–62. [Google Scholar] [CrossRef]
- Tsai, C.N.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Study on the Sensing Characteristics and Hysteresis Effect of the Tin Oxide PH Electrode. Sens. Actuators B Chem. 2005, 108, 877–882. [Google Scholar] [CrossRef]
- Al-Ahdal, A.; Toumazou, C. ISFET-Based Chemical Switch. IEEE Sens. J. 2012, 12, 1140–1146. [Google Scholar] [CrossRef]
References | Sensing Layer | Sensitivity | Processing Method |
---|---|---|---|
[33] | ITO thin-film | 38.3 mV/pH | RF sputtering |
[34] | TiO2 thin-film | 50.5 mV/pH | Sol-gel |
[35] | Bi2O3 thin-film | 51.32 mV/pH | E-beam evaporation |
[36] | Graphene | 40 mV/pH | CVD |
[37] | Au NPs/ITO thin-film | 43.6 mV/pH | PLAL/RF sputtering |
[38] | WO3 nanofiber | 25.6 mV/pH | Electrospinning |
Present study | ITO nanofiber | 55.44 mV/pH | Electrospinning |
Sensing Membrane | Process Condition | Average Grain Size (nm) | Optical Transmittance (%) | Optical Band Gap (eV) | Conductivity (S/cm) |
---|---|---|---|---|---|
Thin−film ITO | MWA | 7.8 | 77.79 | 4.51 | 27.9 |
TA+MWA | 9.8 | 83.24 | 4.58 | 254 | |
MWA/Ar plasma | 9.3 | 89.79 | 4.55 | 81.4 | |
TA+MWA/Ar plasma | 11.5 | 88.91 | 4.60 | 1286.1 | |
Nanofiber ITO | MWA | 15.6 | 83.15 | 4.56 | 0.8 |
TA+MWA | 25 | 85.51 | 4.59 | 27 | |
MWA/Ar plasma | 19.1 | 87.61 | 4.60 | 18.6 | |
TA+MWA/Ar plasma | 27.5 | 91.21 | 4.66 | 264.3 |
Sensing Membrane | Process Condition | Sensitivity (mV/pH) | Hysteresis Voltage (mV) | Drift Rate (mV/h) |
---|---|---|---|---|
Thin−film ITO | MWA | 35.61 | 22.69 | 8.82 |
TA+MWA | 36.25 | 31.61 | 9.56 | |
MWA/Ar plasma | 45.42 | 21.01 | 5.59 | |
TA+MWA/Ar plasma | 47.21 | 22.71 | 6.05 | |
Nanofiber ITO | MWA | 40.09 | 27.69 | 5.14 |
TA+MWA | 43.71 | 17.97 | 4.06 | |
MWA/Ar plasma | 51.49 | 13.11 | 3.42 | |
TA+MWA/Ar plasma | 55.44 | 15.63 | 3.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-U.; Cho, W.-J. Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers. Chemosensors 2023, 11, 319. https://doi.org/10.3390/chemosensors11060319
Kim Y-U, Cho W-J. Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers. Chemosensors. 2023; 11(6):319. https://doi.org/10.3390/chemosensors11060319
Chicago/Turabian StyleKim, Yeong-Ung, and Won-Ju Cho. 2023. "Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers" Chemosensors 11, no. 6: 319. https://doi.org/10.3390/chemosensors11060319
APA StyleKim, Y.-U., & Cho, W.-J. (2023). Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers. Chemosensors, 11(6), 319. https://doi.org/10.3390/chemosensors11060319