Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Specifications
2.2. Fabrication of the EG Sensing Units
2.3. Characterization of the Fabricated EG-ISFET Sensor Platform
3. Results and Discussion
3.1. Evaluation of Electrospun ITO Nanofiber Sensing Membrane
3.2. pH Sensing Operation of EG-ISFET with Electrospun ITO Nanofiber Sensing Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, X.; Clifton, D.; Ji, N.; Lovell, N.H.; Bonato, P.; Chen, W.; Yu, X.; Xue, Z.; Xiang, T.; Long, X. Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic. IEEE Rev. Biomed. Eng. 2020, 14, 48–70. [Google Scholar] [CrossRef]
- Jeong, H.; Rogers, J.A.; Xu, S. Continuous On-Body Sensing for the COVID-19 Pandemic: Gaps and Opportunities. Sci. Adv. 2020, 6, eabd4794. [Google Scholar] [CrossRef]
- Dobson, A.P.; Pimm, S.L.; Hannah, L.; Kaufman, L.; Ahumada, J.A.; Ando, A.W.; Bernstein, A.; Busch, J.; Daszak, P.; Engelmann, J. Ecology and Economics for Pandemic Prevention. Science 2020, 369, 379–381. [Google Scholar] [CrossRef]
- Awotunde, J.B.; Jimoh, R.G.; AbdulRaheem, M.; Oladipo, I.D.; Folorunso, S.O.; Ajamu, G.J. IoT-Based Wearable Body Sensor Network for COVID-19 Pandemic. In Advances in Data Science and Intelligent Data Communication Technologies for COVID-19; Springer International Publishing: Cham, Germany, 2022; pp. 253–275. [Google Scholar]
- Bergveld, P. Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology. IEEE Trans. Biomed. Eng. 1972, BME-19, 342–351. [Google Scholar] [CrossRef]
- Matsumoto, A.; Miyahara, Y. Current and Emerging Challenges of Field Effect Transistor Based Bio-Sensing. Nanoscale 2013, 5, 10702–10718. [Google Scholar] [CrossRef]
- Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A.C.; Mitragotri, S.; Banerjee, K. MoS2 Field-Effect Transistor for next-Generation Label-Free Biosensors. ACS Nano 2014, 8, 3992–4003. [Google Scholar] [CrossRef]
- Cao, S.; Sun, P.; Xiao, G.; Tang, Q.; Sun, X.; Zhao, H.; Zhao, S.; Lu, H.; Yue, Z. ISFET-based Sensors for (Bio) Chemical Applications: A Review. Electrochem. Sci. Adv. 2022, e2100207. [Google Scholar] [CrossRef]
- Huang, X.; Yu, H.; Liu, X.; Jiang, Y.; Yan, M.; Wu, D. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput PH Sensing in Biomedical Diagnosis. IEEE Trans. Biomed. Eng. 2015, 62, 2224–2233. [Google Scholar] [CrossRef]
- Pijanowska, D.G.; Torbicz, W. PH-ISFET Based Urea Biosensor. Sens. Actuators B Chem. 1997, 44, 370–376. [Google Scholar] [CrossRef]
- Chodavarapu, V.P.; Titus, A.H.; Cartwright, A.N. CMOS ISFET Microsystem for Biomedical Applications. In Proceedings of the SENSORS, 2005 IEEE, Irvine, CA, USA, 30 October–3 November 2005; IEEE: Piscataway, NJ, USA, 2005; p. 4. [Google Scholar]
- Yin, L.-T.; Chou, J.-C.; Chung, W.-Y.; Sun, T.-P.; Hsiung, S.-K. Study of Indium Tin Oxide Thin Film for Separative Extended Gate ISFET. Mater. Chem. Phys. 2001, 70, 12–16. [Google Scholar] [CrossRef]
- Yin, L.-T.; Chou, J.-C.; Chung, W.-Y.; Sun, T.-P.; Hsiung, S.-K. Separate Structure Extended Gate H+-Ion Sensitive Field Effect Transistor on a Glass Substrate. Sens. Actuators B Chem. 2000, 71, 106–111. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, T. Ion-Sensitive Field-Effect Transistor Based PH Sensors Using Nano Self-Assembled Polyelectrolyte/Nanoparticle Multilayer Films. Sens. Actuators B Chem. 2007, 123, 148–152. [Google Scholar] [CrossRef]
- Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.; Shahsafi, A.; Mohajerzadeh, S. Nano-Textured High Sensitivity Ion Sensitive Field Effect Transistors. J. Appl. Phys. 2016, 119, 054303. [Google Scholar] [CrossRef]
- Andrady, A.L. Nanofiber-Based Chemical Sensors. In Applications of Polymer Nanofibers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 100–134. [Google Scholar]
- Kim, K.; Rim, T.; Park, C.; Kim, D.; Meyyappan, M.; Lee, J.-S. Suspended Honeycomb Nanowire ISFETs for Improved Stiction-Free Performance. Nanotechnology 2014, 25, 345501. [Google Scholar] [CrossRef]
- Hong, E.-K.; Cho, W.-J. High Sensitivity In-Ga-Zn-O Nanofiber-Based Double Gate Field Effect Transistors for Chemical Sensing. Sens. Actuators B Chem. 2021, 326, 128827. [Google Scholar] [CrossRef]
- Ding, B.; Wang, M.; Yu, J.; Sun, G. Gas Sensors Based on Electrospun Nanofibers. Sensors 2009, 9, 1609–1624. [Google Scholar] [CrossRef][Green Version]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal Oxides Based Electrochemical PH Sensors: Current Progress and Future Perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, B.; Jiang, Y.; Cai, Y.; Du, J.; Yuan, H.; Xiao, D. Improvement of Sensitive CuO NFs–ITO Nonenzymatic Glucose Sensor Based on in Situ Electrospun Fiber. Talanta 2012, 101, 24–31. [Google Scholar] [CrossRef]
- Keereeta, Y.; Thongtem, T.; Thongtem, S. Characterization of ZnMoO4 Nanofibers Synthesized by Electrospinning–Calcination Combinations. Mater Lett. 2012, 68, 265–268. [Google Scholar] [CrossRef]
- Pascariu, P.; Homocianu, M.; Cojocaru, C.; Samoila, P.; Airinei, A.; Suchea, M. Preparation of La Doped ZnO Ceramic Nanostructures by Electrospinning–Calcination Method: Effect of La3+ Doping on Optical and Photocatalytic Properties. Appl. Surf. Sci. 2019, 476, 16–27. [Google Scholar] [CrossRef]
- Munir, M.M.; Iskandar, F.; Yun, K.M.; Okuyama, K.; Abdullah, M. Optical and Electrical Properties of Indium Tin Oxide Nanofibers Prepared by Electrospinning. Nanotechnology 2008, 19, 145603. [Google Scholar] [CrossRef]
- Coppa, B.J.; Fulton, C.C.; Hartlieb, P.J.; Davis, R.F.; Rodriguez, B.J.; Shields, B.J.; Nemanich, R.J. In Situ Cleaning and Characterization of Oxygen-and Zinc-Terminated, n-Type, ZnO {0001} Surfaces. J. Appl. Phys. 2004, 95, 5856–5864. [Google Scholar] [CrossRef][Green Version]
- Cho, S.-K.; Cho, W.-J. Performance Improvement in Electrospun InGaZnO Nanofibres Field-Effect-Transistors Using Low Thermal Budget Microwave Calcination and Ar/O2 Mixed-Plasma Surface Treatment. Sci. Rep. 2020, 10, 3645. [Google Scholar] [CrossRef][Green Version]
- Cho, S.-K.; Cho, W.-J. Microwave-Assisted Calcination of Electrospun Indium–Gallium–Zinc Oxide Nanofibers for High-Performance Field-Effect Transistors. RSC Adv. 2020, 10, 38351–38356. [Google Scholar] [CrossRef]
- Hong, E.-K.; Cho, W.-J. Microwave Calcination of Electrospun ITO Nanofibers and Improvement of Transparent Electrode Characteristics through Vacuum Rapid Thermal Annealing. Mater. Res. Express 2020, 7, 075013. [Google Scholar] [CrossRef]
- Kim, S.-H.; Cho, W.-J. Enhancement of Electrical Properties of Sol–Gel Indium–Tin–Oxide Films by Microwave Irradiation and Plasma Treatment. Micromachines 2021, 12, 1167. [Google Scholar] [CrossRef]
- Hajji, B.; Temple-Boyer, P.; Launay, J.; do Conto, T.; Martinez, A. PH, PK and PNa Detection Properties of SiO2/Si3N4 ISFET Chemical Sensors. Microelectron. Reliab. 2000, 40, 783–786. [Google Scholar] [CrossRef]
- Poghossian, A.S. The Super-Nernstian PH Sensitivity of Ta2O5-Gate ISFETs. Sens. Actuators B Chem. 1992, 7, 367–370. [Google Scholar] [CrossRef]
- Chin, Y.-L.; Chou, J.-C.; Sun, T.-P.; Liao, H.-K.; Chung, W.-Y.; Hsiung, S.-K. A Novel SnO2/Al Discrete Gate ISFET PH Sensor with CMOS Standard Process. Sens. Actuators B Chem. 2001, 75, 36–42. [Google Scholar] [CrossRef]
- Ahmed Ali, A.M.; Ahmed, N.M.; Mohammad, S.M.; Sabah, F.A.; Kabaa, E.; Alsadig, A.; Sulieman, A. Effect of Gamma Irradiation Dose on the Structure and PH Sensitivity of ITO Thin Films in Extended Gate Field Effect Transistor. Results Phys. 2019, 12, 615–622. [Google Scholar] [CrossRef]
- Yao, P.C.; Lee, M.C.; Chiang, J.L. Annealing Effect of Sol-Gel TiO2 Thin Film on PH-EGFET Sensor. In Proceedings of the Proceedings—2014 International Symposium on Computer, Consumer and Control, IS3C 2014, Washington, DC, USA, 10–12 June 2014; pp. 577–580. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, R.; Sharma, R.; Mukhiya, R.; Awasthi, K.; Kumar, M. Bismuth Oxide Extended-Gate Field-Effect Transistor as PH Sensor. J. Electron. Mater. 2022, 51, 2673–2681. [Google Scholar] [CrossRef]
- Zeng, Z.; Wei, W.; Li, B.; Gao, M.; Chim, W.K.; Zhu, C. Low Drift Reference-Less ISFET Comprising Two Graphene Films with Different Engineered Sensitivities. ACS Appl. Electron. Mater. 2022, 4, 416–423. [Google Scholar] [CrossRef]
- Alsaee, S.K.; Ahmed, N.M.; Mzwd, E.; Omar, A.F.; Aljameel, A.I.; Afzal, N.; Razak, I.A.; Arshad, S. PH Sensor Based on AuNPs/ ITO Membrane as Extended Gate Field-Effect Transistor. Appl. Phys. B 2022, 128, 1–7. [Google Scholar] [CrossRef]
- Choi, S.J.; Savagatrup, S.; Kim, Y.; Lang, J.H.; Swager, T.M. Precision PH Sensor Based on WO3 Nanofiber-Polymer Composites and Differential Amplification. ACS Sens. 2019, 4, 2593–2598. [Google Scholar] [CrossRef]
- Liston, E.M. Plasma Treatment for Improved Bonding: A Review. J. Adhes. 1989, 30, 199–218. [Google Scholar] [CrossRef]
- Huang, X.D.; Song, J.Q.; Lai, P.T. Improved Performance of Scaled-Down α-InGaZnO Thin-Film Transistor by Ar Plasma Treatment. IEEE Electron Device Lett. 2016, 37, 1574–1577. [Google Scholar] [CrossRef]
- Banerjee, R.; Ray, S.; Basu, N.; Batabyal, A.K.; Barua, A.K. Degradation of Tin-doped Indium-oxide Film in Hydrogen and Argon Plasma. J. Appl. Phys. 1987, 62, 912–916. [Google Scholar] [CrossRef]
- Lai, F.; Lin, L.; Gai, R.; Lin, Y.; Huang, Z. Determination of Optical Constants and Thicknesses of In2O3: Sn Films from Transmittance Data. Thin Solid Film. 2007, 515, 7387–7392. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Thomas Joseph Prakash, J. Structure, Optical and Electrical Properties of Indium Tin Oxide Ultra Thin Films Prepared by Jet Nebulizer Spray Pyrolysis Technique. J. Asian Ceram. Soc. 2016, 4, 124–132. [Google Scholar] [CrossRef][Green Version]
- Kim, B.C.; Kim, J.Y.; Lee, D.D.; Lim, J.O.; Huh, J.S. Effects of Crystal Structures on Gas Sensing Properties of Nanocrystalline ITO Thick Films. Sens. Actuators B Chem. 2003, 89, 180–186. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 02, 154–160. [Google Scholar] [CrossRef][Green Version]
- Bermudez, V.M.; Berry, A.D.; Kim, H.; Piqué, A. Functionalization of Indium Tin Oxide. Langmuir 2006, 22, 11113–11125. [Google Scholar] [CrossRef]
- Shekargoftar, M.; Krumpolec, R.; Homola, T. Enhancement of Electrical Properties of Flexible ITO/PET by Atmospheric Pressure Roll-to-Roll Plasma. Mater. Sci. Semicond. Process. 2018, 75, 95–102. [Google Scholar] [CrossRef]
- Voros, J.; Tang, C.S.; Antoni, M.; Schönbächler, I.; Keller, B.; Textor, M. Electrically-Assisted Formation and Desorption of Dodecyl Phosphate Self-Assembled Monolayers on Indium Tin Oxide Surfaces. ECS Trans. 2006, 1, 29. [Google Scholar] [CrossRef][Green Version]
- Görlich, E.; Haber, J.; Stoch, A.; Stoch, J. XPS Study of α-Quartz Surface. J. Solid. State Chem. 1980, 33, 121–124. [Google Scholar] [CrossRef]
- Ma, H.-P.; Yang, J.-H.; Yang, J.-G.; Zhu, L.-Y.; Huang, W.; Yuan, G.-J.; Feng, J.-J.; Jen, T.-C.; Lu, H.-L. Systematic Study of the SiOx Film with Different Stoichiometry by Plasma-Enhanced Atomic Layer Deposition and Its Application in SiOx/SiO2 Super-Lattice. Nanomaterials 2019, 9, 55. [Google Scholar] [CrossRef][Green Version]
- Biesinger, M.C. Accessing the Robustness of Adventitious Carbon for Charge Referencing (Correction) Purposes in XPS Analysis: Insights from a Multi-User Facility Data Review. Appl. Surf. Sci. 2022, 597, 153681. [Google Scholar] [CrossRef]
- Kenny, N.; Kannewurf, C.R.; Whitmore, D.H. Optical Absorption Coefficients of Vanadium Pentoxide Single Crystals. J. Phys. Chem. Solids 1966, 27, 1237–1246. [Google Scholar] [CrossRef]
- Tarey, R.D.; Raju, T.A. A Method for the Deposition of Transparent Conducting Thin Films of Tin Oxide. Thin Solid Film. 1985, 128, 181–189. [Google Scholar] [CrossRef]
- Nigo, S.; Kubota, M.; Harada, Y.; Hirayama, T.; Kato, S.; Kitazawa, H.; Kido, G. Conduction Band Caused by Oxygen Vacancies in Aluminum Oxide for Resistance Random Access Memory. J. Appl. Phys. 2012, 112, 033711. [Google Scholar] [CrossRef]
- Kevane, C.J. Oxygen Vacancies and Electrical Conduction in Metal Oxides. Phys. Rev. 1964, 133, A1431. [Google Scholar] [CrossRef]
- Liu, L.; Mei, Z.; Tang, A.; Azarov, A.; Kuznetsov, A.; Xue, Q.-K.; Du, X. Oxygen Vacancies: The Origin of n-Type Conductivity in ZnO. Phys. Rev. B 2016, 93, 235305. [Google Scholar] [CrossRef][Green Version]
- Yoon, S.; Kim, H.; Shin, E.-S.; Huh, J.N.; Noh, Y.-Y.; Park, B.; Hwang, I. Toward High Conductivity of Electrospun Indium Tin Oxide Nanofibers with Fiber Morphology Dependent Surface Coverage: Postannealing and Polymer Ratio Effects. ACS Appl. Mater. Interfaces 2017, 9, 34305–34313. [Google Scholar] [CrossRef]
- Wu, H.; Hu, L.; Carney, T.; Ruan, Z.; Kong, D.; Yu, Z.; Yao, Y.; Cha, J.J.; Zhu, J.; Fan, S. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes. J. Am. Chem. Soc. 2011, 133, 27–29. [Google Scholar] [CrossRef]
- Arlindo, E.P.S.; Lucindo, J.A.; Bastos, C.M.O.; Emmel, P.D.; Orlandi, M.O. Electrical and Optical Properties of Conductive and Transparent ITO@ PMMA Nanocomposites. J. Phys. Chem. C 2012, 116, 12946–12952. [Google Scholar] [CrossRef]
- Chou, J.C.; Wang, Y.F. Preparation and Study on the Drift and Hysteresis Properties of the Tin Oxide Gate ISFET by the Sol-Gel Method. Sens Actuators B Chem 2002, 86, 58–62. [Google Scholar] [CrossRef]
- Tsai, C.N.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Study on the Sensing Characteristics and Hysteresis Effect of the Tin Oxide PH Electrode. Sens. Actuators B Chem. 2005, 108, 877–882. [Google Scholar] [CrossRef]
- Al-Ahdal, A.; Toumazou, C. ISFET-Based Chemical Switch. IEEE Sens. J. 2012, 12, 1140–1146. [Google Scholar] [CrossRef]
References | Sensing Layer | Sensitivity | Processing Method |
---|---|---|---|
[33] | ITO thin-film | 38.3 mV/pH | RF sputtering |
[34] | TiO2 thin-film | 50.5 mV/pH | Sol-gel |
[35] | Bi2O3 thin-film | 51.32 mV/pH | E-beam evaporation |
[36] | Graphene | 40 mV/pH | CVD |
[37] | Au NPs/ITO thin-film | 43.6 mV/pH | PLAL/RF sputtering |
[38] | WO3 nanofiber | 25.6 mV/pH | Electrospinning |
Present study | ITO nanofiber | 55.44 mV/pH | Electrospinning |
Sensing Membrane | Process Condition | Average Grain Size (nm) | Optical Transmittance (%) | Optical Band Gap (eV) | Conductivity (S/cm) |
---|---|---|---|---|---|
Thin−film ITO | MWA | 7.8 | 77.79 | 4.51 | 27.9 |
TA+MWA | 9.8 | 83.24 | 4.58 | 254 | |
MWA/Ar plasma | 9.3 | 89.79 | 4.55 | 81.4 | |
TA+MWA/Ar plasma | 11.5 | 88.91 | 4.60 | 1286.1 | |
Nanofiber ITO | MWA | 15.6 | 83.15 | 4.56 | 0.8 |
TA+MWA | 25 | 85.51 | 4.59 | 27 | |
MWA/Ar plasma | 19.1 | 87.61 | 4.60 | 18.6 | |
TA+MWA/Ar plasma | 27.5 | 91.21 | 4.66 | 264.3 |
Sensing Membrane | Process Condition | Sensitivity (mV/pH) | Hysteresis Voltage (mV) | Drift Rate (mV/h) |
---|---|---|---|---|
Thin−film ITO | MWA | 35.61 | 22.69 | 8.82 |
TA+MWA | 36.25 | 31.61 | 9.56 | |
MWA/Ar plasma | 45.42 | 21.01 | 5.59 | |
TA+MWA/Ar plasma | 47.21 | 22.71 | 6.05 | |
Nanofiber ITO | MWA | 40.09 | 27.69 | 5.14 |
TA+MWA | 43.71 | 17.97 | 4.06 | |
MWA/Ar plasma | 51.49 | 13.11 | 3.42 | |
TA+MWA/Ar plasma | 55.44 | 15.63 | 3.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-U.; Cho, W.-J. Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers. Chemosensors 2023, 11, 319. https://doi.org/10.3390/chemosensors11060319
Kim Y-U, Cho W-J. Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers. Chemosensors. 2023; 11(6):319. https://doi.org/10.3390/chemosensors11060319
Chicago/Turabian StyleKim, Yeong-Ung, and Won-Ju Cho. 2023. "Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers" Chemosensors 11, no. 6: 319. https://doi.org/10.3390/chemosensors11060319
APA StyleKim, Y.-U., & Cho, W.-J. (2023). Transparent and High-Performance Extended Gate Ion-Sensitive Field-Effect Transistors Using Electrospun Indium Tin Oxide Nanofibers. Chemosensors, 11(6), 319. https://doi.org/10.3390/chemosensors11060319