A Novel Nanoplatform Based on Biofunctionalized MNPs@UCNPs for Sensitive and Rapid Detection of Shigella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis and Modification of Fe3O4
2.3. Synthesis and Modification of MNPs@UCNPs
2.4. Microbial Culture
2.5. Procedures for Shigella Fluorescent Detection
2.6. Specificity Analysis for Shigella
2.7. Detection of Shigella in Chicken Sample
3. Results
3.1. Characterization
3.2. Feasibility for Shigella Detection
3.3. Optimization of Experimental Condition
3.4. Analytical Performance of the Fluorescence Biosensor for Shigella Detection
3.5. Selectivity for Shigella Detection
3.6. Detection of Shigella in Spiked Chicken Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Ahmad, W.; Rong, Y.; Chen, Q.; Zuo, M.; Ouyang, Q.; Guo, Z. Designing an Aptamer Based Magnetic and Upconversion Nanoparticles Conjugated Fluorescence Sensor for Screening Escherichia Coli in Food. Food Control. 2020, 107, 106761. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- He, P.; Wang, H.; Yan, Y.; Zhu, G.; Chen, Z. Development and Application of a Multiplex Fluorescent PCR for Shigella Detection and Species Identification. J. Fluoresc. 2022, 32, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, M.; Fan, X.; Peng, J.; Pan, L.; Tu, K.; Chen, Y. Sandwich Fluorometric Method for Dual-Role Recognition of Listeria Monocytogenes Based on Antibiotic-Affinity Strategy and Fluorescence Quenching Effect. Anal. Chim. Acta 2022, 1221, 340085. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, P.; Elbourne, A.; Gangadoo, S.; Brown, R.; Cozzolino, D.; Chapman, J. A Review of Methods for the Detection of Pathogenic Microorganisms. Analyst 2019, 144, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef]
- Wu, Y.; Choi, N.; Chen, H.; Dang, H.; Chen, L.; Choo, J. Performance Evaluation of Surface-Enhanced Raman Scattering-Polymerase Chain Reaction Sensors for Future Use in Sensitive Genetic Assays. Anal. Chem. 2020, 92, 2628–2634. [Google Scholar] [CrossRef]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Advantages, Disadvantages and Modifications of Conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA); Springer: Singapore, 2018; pp. 67–115. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Lu, X.; Xu, H.; Yang, Q.; Tan, J.; Zhang, W. Reduced Graphene Oxide Nanocomposite Based Electrochemical Biosensors for Monitoring Foodborne Pathogenic Bacteria: A Review. Food Control. 2021, 127, 108117. [Google Scholar] [CrossRef]
- Li, C.-C.; Wang, Z.-Y.; Wang, L.-J.; Zhang, C.-Y. Biosensors for Epigenetic Biomarkers Detection: A Review. Biosens. Bioelectron. 2019, 144, 111695. [Google Scholar] [CrossRef]
- Park, S.-H.; Kwon, N.; Lee, J.-H.; Yoon, J.; Shin, I. Synthetic Ratiometric Fluorescent Probes for Detection of Ions. Chem. Soc. Rev. 2020, 49, 143–179. [Google Scholar] [CrossRef]
- Li, Q.; Chen, P.; Wang, J.; Zhang, S.; Yan, J. Detection of Salmonella, Shigella and Staphylococcus aureus based on quantum dots and immunomagnetic beads. Wei Sheng Yan Jiu 2013, 42, 660–663. [Google Scholar]
- Zhang, J.; Zhou, M.; Li, X.; Fan, Y.; Li, J.; Lu, K.; Wen, H.; Ren, J. Recent Advances of Fluorescent Sensors for Bacteria Detection-A Review. Talanta 2023, 254, 124133. [Google Scholar] [CrossRef]
- Yao, Y.; Xie, G.; Zhang, X.; Yuan, J.; Hou, Y.; Chen, H. Fast Detection of E. Coli with a Novel Fluorescent Biosensor Based on a FRET System between UCNPs and GO@Fe3O4 in Urine Specimens. Anal. Methods 2021, 13, 2209–2214. [Google Scholar] [CrossRef]
- Wang, P.; Wang, A.; Hassan, M.M.; Ouyang, Q.; Li, H.; Chen, Q. A Highly Sensitive Upconversion Nanoparticles-WS2 Nanosheet Sensing Platform for Escherichia Coli Detection. Sens. Actuators B Chem. 2020, 320, 128434. [Google Scholar] [CrossRef]
- Abdul Hakeem, D.; Su, S.; Mo, Z.; Wen, H. Upconversion Luminescent Nanomaterials: A Promising New Platform for Food Safety Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 8866–8907. [Google Scholar] [CrossRef] [PubMed]
- Selva Sharma, A.; Marimuthu, M.; Varghese, A.W.; Wu, J.; Xu, J.; Xiaofeng, L.; Devaraj, S.; Lan, Y.; Li, H.; Chen, Q. A Review of Biomolecules Conjugated Lanthanide Up-Conversion Nanoparticles-Based Fluorescence Probes in Food Safety and Quality Monitoring Applications. Crit. Rev. Food Sci. Nutr. 2023, 1–31. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Chen, Y.; Xiong, Q.; Wang, Y.; Duan, H.; Lai, W. Improving the Performance of Upconversion Nanoprobe-Based Lateral Flow Immunoassays by Supramolecular Self-Assembly Core/Shell Strategies. Sens. Actuators B Chem. 2020, 318, 128233. [Google Scholar] [CrossRef]
- Wen, Z.; Hu, X.; Yan, R.; Wang, W.; Meng, H.; Song, Y.; Wang, S.; Wang, X.; Tang, Y. A Reliable Upconversion Nanoparticle-Based Immunochromatographic Assay for the Highly Sensitive Determination of Olaquindox in Fish Muscle and Water Samples. Food Chem. 2023, 406, 135081. [Google Scholar] [CrossRef]
- Chen, M.; Yan, Z.; Han, L.; Zhou, D.; Wang, Y.; Pan, L.; Tu, K. Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella. Biosensors 2022, 12, 795. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y.; Li, H.; Hu, Y.; Chen, Q. A Highly Sensitive Detection of Carbendazim Pesticide in Food Based on the Upconversion-MnO2 Luminescent Resonance Energy Transfer Biosensor. Food Chem. 2021, 349, 129157. [Google Scholar] [CrossRef]
- Shao, H.; Ma, Q.; Yu, W.; Dong, X.; Hong, X. “Off-On” Typed Upconversion Fluorescence Resonance Energy Transfer Probe for the Determination of Cu2+ in Tap Water. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2022, 271, 120920. [Google Scholar] [CrossRef]
- Xu, J.; Liu, R.; Li, H.; Chen, Q. Multifunctional Upconversion Nanoparticles Based LRET Aptasensor for Specific Detection of As(III) in Aquatic Products. Sens. Actuators B Chem. 2022, 369, 132271. [Google Scholar] [CrossRef]
- Xiao, F.; Li, W.; Xu, H. Advances in Magnetic Nanoparticles for the Separation of Foodborne Pathogens: Recognition, Separation Strategy, and Application. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4478–4504. [Google Scholar] [CrossRef]
- Ouyang, Q.; Liu, Y.; Chen, Q.; Guo, Z.; Zhao, J.; Li, H.; Hu, W. Rapid and Specific Sensing of Tetracycline in Food Using a Novel Upconversion Aptasensor. Food Control 2017, 81, 156–163. [Google Scholar] [CrossRef]
- Elahi, N.; Kamali, M.; Baghersad, M.H.; Amini, B. A Fluorescence Nano-Biosensors Immobilization on Iron (MNPs) and Gold (AuNPs) Nanoparticles for Detection of Shigella spp. Mater. Sci. Eng. C 2019, 105, 110113. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Sun, H.; Li, H.; Wei, S.; Jin, J.; Zhao, C.; Wang, J.; Li, H. Preparation of IgY Oriented Conjugated Fe3O4 MNPs as Immunomagnetic Nanoprobe for Increasing Enrichment Efficiency of Staphylococcus Aureus Based on Adjusting the PH of the Solution System. Front. Public Health 2022, 10, 865828. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Shen, Q.; Wu, J.; Dai, Z.; Wang, Y. Naked-Eyes Detection of Shigella Flexneri in Food Samples Based on a Novel Gold Nanoparticle-Based Colorimetric Aptasensor. Food Control 2019, 98, 333–341. [Google Scholar] [CrossRef]
- Si, S.; Li, C.; Wang, X.; Yu, D.; Peng, Q.; Li, Y. Magnetic Monodisperse Fe3O4 Nanoparticles. Cryst. Growth Des. 2005, 5, 391–393. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, D.; Shi, F.; Zheng, K.; Qin, W. Superparamagnetic and Upconversion Luminescent Properties of Fe3O4/NaYF4:Yb, Er Hetero-Submicro-Rods. Mater. Lett. 2012, 85, 1–3. [Google Scholar] [CrossRef]
- Chen, M.; Pan, L.; Tu, K. A Fluorescence Biosensor for Salmonella Typhimurium Detection in Food Based on the Nano-Self-Assembly of Alendronic Acid Modified Upconversion and Gold Nanoparticles. Anal. Methods 2021, 13, 2415–2423. [Google Scholar] [CrossRef]
- Chen, M.; Hassan, M.; Li, H.; Chen, Q. Fluorometric Determination of Lead(II) by Using Aptamer-Functionalized Upconversion Nanoparticles and Magnetite-Modified Gold Nanoparticles. Microchim. Acta 2020, 187, 85. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Jung, Y.; Ahn, J.; Yang, S. Continuous, Rapid Concentration of Foodborne Bacteria (Staphylococcus Aureus, Salmonella Typhimurium, and Listeria Monocytogenes) Using Magnetophoresis-Based Microfluidic Device. Food Control 2020, 114, 107229. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, X.; Li, Y.; He, Y.; Liu, Y.; Ju, H. A Photo Zipper Locked DNA Nanomachine with an Internal Standard for Precise MiRNA Imaging in Living Cells. Chem. Sci. 2020, 11, 6289–6296. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Zhang, W.; Liu, Y.; Ma, P.; Wang, X.; Sun, Y.; Song, D. A Novel Sensing Platform for the Determination of Alkaline Phosphatase Based on SERS-Fluorescent Dual-Mode Signals. Anal. Chim. Acta 2021, 1183, 338989. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.R.; Bacchu, M.S.; Das, S.; Akter, S.; Rahman, M.M.; Saad Aly, M.A.; Khan, M.Z.H. Label Free Flexible Electrochemical DNA Biosensor for Selective Detection of Shigella Flexneri in Real Food Samples. Talanta 2023, 253, 123909. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, J.; Mathew, A.S.; Yau, S.-T. Ultrasensitive Detection of Shigella Species in Blood and Stool. Anal. Chem. 2016, 88, 2010–2014. [Google Scholar] [CrossRef]
- Wu, S.; Duan, N.; He, C.; Yu, Q.; Dai, S.; Wang, Z. Surface-Enhanced Raman Spectroscopic–Based Aptasensor for Shigella Sonnei Using a Dual-Functional Metal Complex-Ligated Gold Nanoparticles Dimer. Colloids Surf. B Biointerfaces 2020, 190, 110940. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Wu, C.; Li, H.; Jia, Z.; Deng, Q.; Wang, S.; Zhang, Y. Simultaneous Sensing of Seven Pathogenic Bacteria by Guanidine-Functionalized Upconversion Fluorescent Nanoparticles. ACS Omega 2019, 4, 8953–8959. [Google Scholar] [CrossRef]
- Song, M.-S.; Sekhon, S.S.; Shin, W.-R.; Kim, H.C.; Min, J.; Ahn, J.-Y.; Kim, Y.-H. Detecting and Discriminating Shigella Sonnei Using an Aptamer-Based Fluorescent Biosensor Platform. Molecules 2017, 22, 825. [Google Scholar] [CrossRef]
Method | Linear Range (CFU/mL) | LOD (CFU/mL) | Detection Time | Reference |
---|---|---|---|---|
Electrochemical DNA biosensor | 80–8 × 108 | 10 | 1.5 h | [36] |
Electrochemical sensor | 3 × 103–3 × 104 | 18 | 78 min | [37] |
SERS biosensor | 10–106 | 10 | 1.5 h | [38] |
Fluorescence sensor | 103–108 | 2.5 × 102 | 1 h | [39] |
Fluorescence sensor | 103–107 | 103 | 1.5h | [40] |
MNPs@UCNPs fluorescence sensor | 2.3 × 102–2.3 × 107 | 32 | 1 h | This work |
Sample | Spiked Levels (CFU/mL) | Measured (Mean ± SD) (CFU/mL) | Recovery (%) | |
---|---|---|---|---|
This Work | Plate Count | |||
Chicken | 103 | (1.034 ± 0.130) × 103 | (1.025 ± 0.071) × 103 | 103.4 |
103 | (1.065 ± 0.084) × 103 | (1.011 ± 0.124) × 103 | 106.5 | |
103 | (0.892 ± 0.191) × 103 | (0.914 ± 0.218) × 103 | 106.5 | |
104 | (1.085 ± 0.122) × 104 | (1.064 ± 0.131) × 104 | 108.5 | |
104 | (1.042 ± 0.108) × 104 | (1.107 ± 0.151) × 104 | 104.2 | |
104 | (0.986 ± 0.130) × 104 | (0.951 ± 0.087) × 104 | 98.6 | |
105 | (0.978 ± 0.240) × 105 | (1.013 ± 0.111) × 105 | 97.8 | |
105 | (1.074 ± 0.070) × 105 | (1.012 ± 0.108) × 105 | 107.4 | |
105 | (1.064 ± 0.267) × 105 | (0.997 ± 0.121) × 105 | 106.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Chen, M.; Yan, Z.; Han, L.; Pan, L.; Tu, K. A Novel Nanoplatform Based on Biofunctionalized MNPs@UCNPs for Sensitive and Rapid Detection of Shigella. Chemosensors 2023, 11, 309. https://doi.org/10.3390/chemosensors11050309
Song Y, Chen M, Yan Z, Han L, Pan L, Tu K. A Novel Nanoplatform Based on Biofunctionalized MNPs@UCNPs for Sensitive and Rapid Detection of Shigella. Chemosensors. 2023; 11(5):309. https://doi.org/10.3390/chemosensors11050309
Chicago/Turabian StyleSong, Yaqi, Min Chen, Zhongyu Yan, Lu Han, Leiqing Pan, and Kang Tu. 2023. "A Novel Nanoplatform Based on Biofunctionalized MNPs@UCNPs for Sensitive and Rapid Detection of Shigella" Chemosensors 11, no. 5: 309. https://doi.org/10.3390/chemosensors11050309
APA StyleSong, Y., Chen, M., Yan, Z., Han, L., Pan, L., & Tu, K. (2023). A Novel Nanoplatform Based on Biofunctionalized MNPs@UCNPs for Sensitive and Rapid Detection of Shigella. Chemosensors, 11(5), 309. https://doi.org/10.3390/chemosensors11050309