Recent Advances in Electrochemiluminescence-Based Single-Cell Analysis
Abstract
:1. Introduction
2. ECL Systems and Apparatus
2.1. Mechanistic Pathways
2.2. Fundamental Apparatus
3. Single-Cell Analysis
3.1. Extracellular Measurement
3.2. Intracellular Measurement
3.3. ECL Imaging of Membrane Proteins
3.4. ECL Imaging of Morphologic Change of Cells
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, S.C.; Tao, S.C.; Dawn, H. Microfluidics-based on-achip systems for isolating and analysing extracellular vesicles. J. Extracell. Vesicles 2018, 7, 1508271. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Guo, W.; Su, B. Electrochemiluminescence Single-Cell Analysis: Intensity-and Imaging-Based Methods. ChemPlusChem 2020, 85, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Eberwine, J.; Bartfai, T. Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response: Signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol. Ther. 2011, 129, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, X.; Xu, Z.; Zhang, X.; Gao, Y. Super-resolution fluorescence microscopy for single cell imaging. Single Cell Biomed. 2018, 1068, 59–71. [Google Scholar]
- Endesfelder, U. From single bacterial cell imaging towards in vivo single-molecule biochemistry studies. Essays Biochem. 2019, 63, 187–196. [Google Scholar]
- Miyashiro, T.; Goulian, M. Single-cell analysis of gene expression by fluorescence microscopy. Methods Enzymol. 2007, 423, 458–475. [Google Scholar]
- Tsuyama, N.; Mizuno, H.; Masujima, T. Molecular and functional analysis of cellular phenomena using single-cell mass spectrometry. Biol. Pharm. Bull. 2012, 35, 1425–1431. [Google Scholar] [CrossRef]
- Masuda, K.; Abouleila, Y.; Ali, A.; Yanagida, T.; Masujima, T. Live single-cell mass spectrometry (LSC-MS) for plant metabolomics. Plant Metab. Methods Protoc. 2018, 1778, 269–282. [Google Scholar]
- Wang, H.Y.; Xu, Y.T.; Wang, B.; Yu, S.Y.; Shi, X.M.; Zhao, W.W.; Jiang, D.; Chen, H.Y.; Xu, J.J. A Photoelectrochemical Nanoreactor for Single-Cell Sampling and Near Zero-Background Faradaic Detection of Intracellular microRNA. Angew. Chem. 2022, 134, e202212752. [Google Scholar]
- Gregas, M.K.; Yan, F.; Scaffidi, J.; Wang, H.N.; Vo-Dinh, T. Characterization of nanoprobe uptake in single cells: Spatial and temporal tracking via SERS labeling and modulation of surface charge. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 115–122. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Pan, R.; Jiang, D.; Burgess, J.D.; Chen, H.Y. New frontiers and challenges for single-cell electrochemical analysis. ACS Sens. 2018, 3, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yang, D.; Jiang, D.; Chen, H.Y. Phosphate assay kit in one cell for electrochemical detection of intracellular phosphate ions at single cells. Front. Chem. 2019, 7, 360. [Google Scholar] [CrossRef] [PubMed]
- Schmid, V.J.; Cremer, M.; Cremer, T. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. Methods 2017, 123, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Strickfaden, H. Reflections on the organization and the physical state of chromatin in eukaryotic cells. Genome 2021, 64, 311–325. [Google Scholar] [CrossRef]
- Venugopal, V.; Venkatesh, V.; Northcutt, R.G.; Maddox, J.; Sundaresan, V.B. Nanoscale polypyrrole sensors for near-field electrochemical measurements. Sens. Actuators B Chem. 2017, 242, 1193–1200. [Google Scholar] [CrossRef]
- Bai, S.J.; Prinz, F.B. In vivo electrochemical impedance measurement on single cell membrane. Microelectron. Eng. 2011, 88, 3094–3100. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Zhu, J.J. Recent advances in electrochemiluminescence analysis. Anal. Chem. 2017, 89, 358–371. [Google Scholar] [CrossRef]
- Valenti, G.; Fiorani, A.; Li, H.; Sojic, N.; Paolucci, F. Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem 2016, 3, 1990–1997. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ecl). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef]
- Bard, A.J. A life in electrochemistry. Annu. Rev. Anal. Chem. 2014, 7, 1–21. [Google Scholar] [CrossRef]
- Santhanam, K.S.V.; Bard, A.J. Chemiluminescence of electrogenerated 9,10-Diphenylanthracene anion radical1. J. Am. Chem. Soc. 1965, 87, 139–140. [Google Scholar] [CrossRef]
- Short, G.D.; Hercules, D.M. Electroluminescence of organic compounds. The role of gaseous discharge in the excitation process. J. Am. Chem. Soc. 1965, 87, 1439–1442. [Google Scholar] [CrossRef]
- Munawar, A.; Zafar, F.; Majeed, S.; Irfan, M.; Khan, H.U.; Yasmin, G.; Akhtar, N. Bioinspired NC coated ZnO based electrochemiluminescence sensor for dopamine screening from neuroblastoma patient. J. Electroanal. Chem. 2021, 895, 115469. [Google Scholar] [CrossRef]
- Zhu, X.; Kou, F.; Xu, H.; Yang, G. A rapid and sensitive electrochemiluminescent sensor for nitrites based on C3N4 quantum dots on C3N4 nanosheets. RSC Adv. 2016, 6, 105331–105337. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, X.; Chai, Y.; Yuan, R. Ultrasensitive electrochemiluminescence biosensor for organophosphate pesticides detection based on carboxylated graphitic carbon nitride-poly (ethylenimine) and acetylcholinesterase. Electrochim. Acta 2017, 224, 194–200. [Google Scholar] [CrossRef]
- Fang, Y.M.; Song, J.; Zheng, R.J.; Zeng, Y.M.; Sun, J.J. Electrogenerated chemiluminescence emissions from CdS nanoparticles for probing of surface oxidation. J. Phys. Chem. C 2011, 115, 9117–9121. [Google Scholar] [CrossRef]
- Ibáñez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Understanding the ECL interaction of luminol and Ru(bpy)32+ luminophores by spectro-electrochemiluminescence. Phys. Chem. Chem. Phys. 2020, 22, 18261–18264. [Google Scholar] [CrossRef]
- Song, L.; Wu, J.; Zhang, G.; Liu, P.; Kuang, G.; Fu, Y. Novel gold nanoparticles functionalized Mo-polydopamine hollow sphere as an efficient quencher in conjugated microporous polymer electrochemiluminescent system. Sens. Actuators B Chem. 2021, 344, 130130. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, D.; Qin, Y.; Xia, J.; Jiang, D.; Chen, H.Y. C3N4 nanosheet modified microwell array with enhanced electrochemiluminescence for total analysis of cholesterol at single cells. Anal. Chem. 2017, 89, 2216–2220. [Google Scholar] [CrossRef]
- Zhou, H.; Ding, K.; Yu, Q.; Wang, H.; Liu, J.; Wang, Z. Enhanced electrochemiluminescence ratiometric cytosensing based on surface plasmon resonance of Au nanoparticles and nanosucculent films. Biosens. Bioelectron. 2021, 189, 113367. [Google Scholar] [CrossRef]
- Hu, L.; Xu, G. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef] [PubMed]
- Tokel, N.E.; Bard, A.J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris (2, 2′-bipyridine) ruthenium (II) dichloride. J. Am. Chem. Soc. 1972, 94, 2862–2863. [Google Scholar] [CrossRef]
- Miao, W.; Choi, J.P.; Bard, A.J. Electrogenerated chemiluminescence 69: The Tris (2, 2 ‘-bipyridine) ruthenium (II),(Ru (bpy) 32+)/Tri-n-propylamine (TPrA) system revisited A new route involving TPrA•+ Cation Radicals. J. Am. Chem. Soc. 2002, 124, 14478–14485. [Google Scholar] [CrossRef] [PubMed]
- Hesari, M.; Ding, Z. Electrogenerated chemiluminescence: Light years ahead. J. Electrochem. Soc. 2015, 163, H3116. [Google Scholar] [CrossRef]
- Guo, W.; Liu, Y.; Cao, Z.; Su, B. Imaging analysis based on electrogenerated chemiluminescence. J. Anal. Test. 2017, 1, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, D.; Chen, H.Y. Electrochemiluminescence analysis of hydrogen peroxide using L012 modified electrodes. J. Anal. Test. 2020, 4, 122–127. [Google Scholar] [CrossRef]
- Chen, M.M.; Xu, C.H.; Zhao, W.; Chen, H.Y.; Xu, J.J. Observing the structure-dependent electrocatalytic activity of bimetallic Pd–Au nanorods at the single-particle level. Chem. Commun. 2020, 56, 3413–3416. [Google Scholar] [CrossRef]
- Arora, A.; Eijkel, J.C.; Morf, W.E.; Manz, A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal. Chem. 2001, 73, 3282–3288. [Google Scholar] [CrossRef]
- Zu, Y.; Ding, Z.; Zhou, J.; Lee, Y.; Bard, A.J. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal. Chem. 2001, 73, 2153–2156. [Google Scholar] [CrossRef]
- Zhang, H.R.; Wang, Y.Z.; Wu, M.S.; Feng, Q.M.; Shi, H.W.; Chen, H.Y.; Xu, J.J. Visual electrochemiluminescence detection of telomerase activity based on multifunctional Au nanoparticles modified with G-quadruplex deoxyribozyme and luminol. Chem. Commun. 2014, 50, 12575–12577. [Google Scholar] [CrossRef]
- Deiss, F.; LaFratta, C.N.; Symer, M.; Blicharz, T.M.; Sojic, N.; Walt, D.R. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J. Am. Chem. Soc. 2009, 131, 6088–6089. [Google Scholar] [CrossRef]
- Wang, N.; Ao, H.; Xiao, W.; Chen, W.; Li, G.; Wu, J.; Ju, H. Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine. Biosens. Bioelectron. 2022, 201, 113959. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, C.; Xu, Q.; Zhu, J.J. Recent progress in electrochemiluminescence microscopy analysis of single cells. Analyst 2022, 147, 2884–2894. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, H.Y.; Xu, J.J. Electrogenerated chemiluminescence detection of single entities. Chem. Sci. 2021, 12, 5720–5736. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Ding, H.; Zhou, P.; Xi, L.; Su, B. Surface-Sensitive Imaging Analysis of Cell–Microenvironment Interactions by Electrochemiluminescence Microscopy. Anal. Chem. 2022, 94, 10885–10892. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Su, B.; Jiang, D. Recent Advances in Single Cell Analysis by Electrochemiluminescence. ChemistryOpen 2022, 12, e202200113. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Gao, B.; Gao, L.; Yu, F.; Wang, F. Advances in electrochemiluminescence for single-cell analysis. Analyst 2023, 148, 9–25. [Google Scholar] [CrossRef]
- Knezevic, S.; Bouffier, L.; Liu, B.; Jiang, D.; Sojic, N. Electrochemiluminescence microscopy: From single objects to living cells. Curr. Opin. Electrochem. 2022, 35, 101096. [Google Scholar] [CrossRef]
- Meng, C.; Knezevic, S.; Du, F.; Guan, Y.; Kanoufi, F.; Sojic, N.; Xu, G. Recent advances in electrochemiluminescence imaging analysis. eScience 2022, 2, 591–605. [Google Scholar] [CrossRef]
- Cui, C.; Chen, Y.; Jiang, D.; Chen, H.Y.; Zhang, J.; Zhu, J.J. Steady-state electrochemiluminescence at single semiconductive titanium dioxide nanoparticles for local sensing of single cells. Anal. Chem. 2018, 91, 1121–1125. [Google Scholar] [CrossRef]
- Jian, X.; Xu, J.; Wang, Y.; Zhao, C.; Gao, Z.; Song, Y.Y. Deployment of MIL-88B (Fe)/TiO2 nanotube-supported Ti wires as reusable electrochemiluminescence microelectrodes for noninvasive sensing of H2O2 from single cancer cells. Anal. Chem. 2021, 93, 11312–11320. [Google Scholar] [CrossRef]
- Liu, G.; Ma, C.; Jin, B.K.; Chen, Z.; Zhu, J.J. Direct electrochemiluminescence imaging of a single cell on a chitosan film modified electrode. Anal. Chem. 2018, 90, 4801–4806. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhou, J.; Tian, C.; Jiang, D.; Fang, D.; Chen, H. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells. Anal. Chem. 2013, 85, 3912–3917. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, J.; Wu, Z.Q.; Fang, D.; Jiang, D. Fast serial analysis of active cholesterol at the plasma membrane in single cells. Anal. Chem. 2014, 86, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, S.; Jiang, D.; Chen, H.Y. Cholesterol oxidase/triton X-100 parked microelectrodes for the detection of cholesterol in plasma membrane at single cells. Anal. Chem. 2018, 90, 1054–1058. [Google Scholar] [CrossRef]
- Huang, S.; Liu, K.; Jiang, D.; Fang, D. Codetermination of sphingomyelin and cholesterol in cellular plasma membrane in sphingomyelin-depletion-induced cholesterol efflux. Anal. Chem. 2018, 91, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, K.; Fang, D. Single cell electrochemiluminescence analysis of cholesterol in plasma membrane during testosterone treatment. Electroanalysis 2020, 32, 958–963. [Google Scholar] [CrossRef]
- Xu, J.; Huang, P.; Qin, Y.; Jiang, D.; Chen, H.Y. Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal. Chem. 2016, 88, 4609–4612. [Google Scholar] [CrossRef]
- He, R.; Tang, H.; Jiang, D.; Chen, H.Y. Electrochemical visualization of intracellular hydrogen peroxide at single cells. Anal. Chem. 2016, 88, 2006–2009. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, G.; Chen, Y.; Fang, D.; Jiang, D.; Chen, H.Y. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. Anal. Chem. 2015, 87, 8138–8143. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, H.; Zhao, S.; Jiang, D.; Chen, H.Y. Confined electrochemiluminescence in vertically ordered silica mesochannels for the imaging of hydrogen peroxide released from single cells. Electrochem. Commun. 2019, 98, 38–42. [Google Scholar] [CrossRef]
- Xia, J.; Zhou, J.; Zhang, R.; Jiang, D.; Jiang, D. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells. Anal. Bioanal. Chem. 2018, 410, 4787–4792. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, R.; Sojic, N.; Jiang, D.; Chen, H.Y. Intracellular wireless analysis of single cells by bipolar electrochemiluminescence confined in a nanopipette. Angew. Chem. 2020, 132, 10502–10506. [Google Scholar] [CrossRef]
- Huang, R.; Jin, R.; Jiang, D.; Chen, H.Y. Single-cell-resolved measurement of enzyme activity at the tissue level using drop-on-demand microkits. Analyst 2021, 146, 1548–1551. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, D.; Chen, H.Y. Wireless Electrochemical Visualization of Intracellular Antigens in Single Cells. CCS Chem. 2022, 4, 2221–2227. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Wang, X.; Qi, H.; Gao, Q.; Zhang, C. Monitoring casein kinase II at subcellular level via bio-bar-code-based electrochemiluminescence biosensing method. Chin. Chem. Lett. 2020, 31, 2520–2524. [Google Scholar] [CrossRef]
- Ma, Y.; Colin, C.; Descamps, J.; Arbault, S.; Sojic, N. Shadow electrochemiluminescence microscopy of single mitochondria. Angew. Chem. 2021, 133, 18890–18897. [Google Scholar] [CrossRef]
- Ma, C.; Wu, S.; Zhou, Y.; Wei, H.F.; Zhang, J.; Chen, Z.; Zhu, J.J.; Lin, Y.; Zhu, W. Bio-Coreactant-Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angew. Chem. 2021, 133, 4957–4964. [Google Scholar] [CrossRef]
- Valenti, G.; Scarabino, S.; Goudeau, B.; Lesch, A.; Jovic, M.; Villani, E.; Sentic, M.; Rapino, S.; Arbault, S.; Paolucci, F.; et al. Single cell electrochemiluminescence imaging: From the proof-of-concept to disposable device-based analysis. J. Am. Chem. Soc. 2017, 139, 16830–16837. [Google Scholar] [CrossRef]
- Rebeccani, S.; Zanut, A.; Santo, C.I.; Valenti, G.; Paolucci, F. A guide inside electrochemiluminescent microscopy mechanisms for analytical performance improvement. Anal. Chem. 2022, 94, 336–348. [Google Scholar] [CrossRef]
- Han, D.; Goudeau, B.; Manojlovic, D.; Jiang, D.; Fang, D.; Sojic, N. Electrochemiluminescence loss in photobleaching. Angew. Chem. 2021, 133, 7764–7768. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, R.; Jiang, D.; Chen, H.Y. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J. Am. Chem. Soc. 2019, 141, 10294–10299. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gou, X.; Ma, C.; Jiang, D.; Zhu, J.J. A synergistic coreactant for single-cell electrochemiluminescence imaging: Guanine-rich ssDNA-loaded high-index faceted gold nanoflowers. Anal. Chem. 2021, 93, 7682–7689. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Jin, B.K.; Ma, C.; Chen, Z.; Zhu, J.J. Potential-resolved electrochemiluminescence nanoprobes for visual apoptosis evaluation at single-cell level. Anal. Chem. 2019, 91, 6363–6370. [Google Scholar] [CrossRef]
- Wang, N.; Gao, H.; Li, Y.; Li, G.; Chen, W.; Jin, Z.; Lei, J.; Wei, Q.; Ju, H. Dual intramolecular electron transfer for in situ coreactant-embedded electrochemiluminescence microimaging of membrane protein. Angew. Chem. Int. Ed. 2021, 60, 197–201. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Z.; Wang, H.; Zhuo, Y.; Yuan, R.; Chai, Y. A novel metal–organic framework loaded with abundant N-(aminobutyl)-N-(ethylisoluminol) as a high-efficiency electrochemiluminescence indicator for sensitive detection of mucin1 on cancer cells. Chem. Commun. 2017, 53, 9705–9708. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, B.; Yang, X.; Long, D.; Hao, Y.; Yang, P. Novel single-cell analysis platform based on a solid-state zinc-coadsorbed carbon quantum dots electrochemiluminescence probe for the evaluation of CD44 expression on breast cancer cells. ACS Appl. Mater. Interfaces 2017, 9, 16848–16856. [Google Scholar] [CrossRef]
- Long, D.; Chen, C.; Cui, C.; Yao, Z.; Yang, P. A high precision MUA-spaced single-cell sensor for cellular receptor assay based on bifunctional Au@ Cu-PbCQD nanoprobes. Nanoscale 2018, 10, 18597–18605. [Google Scholar] [CrossRef]
- Cao, J.T.; Wang, Y.L.; Zhang, J.J.; Dong, Y.X.; Liu, F.R.; Ren, S.W.; Liu, Y.M. Immuno-electrochemiluminescent imaging of a single cell based on functional nanoprobes of heterogeneous Ru (bpy)32+@ SiO2/Au nanoparticles. Anal. Chem. 2018, 90, 10334–10339. [Google Scholar] [CrossRef]
- Gao, H.; Han, W.; Qi, H.; Gao, Q.; Zhang, C. Electrochemiluminescence imaging for the morphological and quantitative analysis of living cells under external stimulation. Anal. Chem. 2020, 92, 8278–8284. [Google Scholar] [CrossRef]
- Ding, H.; Guo, W.; Su, B. Imaging cell-matrix adhesions and collective migration of living cells by electrochemiluminescence microscopy. Angew. Chem. Int. Ed. 2020, 59, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xing, Z.; Gou, X.; Jiang, L.P.; Zhu, J.J. A temperature-tuned electrochemiluminescence layer for reversibly imaging cell topography. Chem. Sci. 2022, 13, 13938–13947. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Liu, Y.; Zhang, H.; Wang, Z. Electrochemiluminescence biosensor for nucleolin imaging in a single tumor cell combined with synergetic therapy of tumor. ACS Sens. 2020, 5, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, W.; Liu, Y.; Sun, Y.; Jiang, Y.; Zhang, S. Electrochemiluminescence-microscopy for microRNA imaging in single cancer cell combined with chemotherapy-photothermal therapy. Anal. Chem. 2019, 91, 12581–12586. [Google Scholar] [CrossRef]
- Chen, M.M.; Xu, C.H.; Zhao, W.; Chen, H.Y.; Xu, J.J. Single Cell Imaging of Electrochemiluminescence-Driven Photodynamic Therapy. Angew. Chem. 2022, 134, e202117401. [Google Scholar]
- Dong, J.; Lu, Y.; Xu, Y.; Chen, F.; Yang, J.; Chen, Y.; Feng, J. Direct imaging of single-molecule electrochemical reactions in solution. Nature 2021, 596, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.M.; Xu, C.H.; Zhao, W.; Chen, H.Y.; Xu, J.J. Super-Resolution Electrogenerated Chemiluminescence Microscopy for Single-Nanocatalyst Imaging. J. Am. Chem. Soc. 2021, 143, 18511–18518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.-N.; Ma, Z.-Y.; Yang, Y.-X.; Xu, C.-H.; Zhao, W. Recent Advances in Electrochemiluminescence-Based Single-Cell Analysis. Chemosensors 2023, 11, 281. https://doi.org/10.3390/chemosensors11050281
He Q-N, Ma Z-Y, Yang Y-X, Xu C-H, Zhao W. Recent Advances in Electrochemiluminescence-Based Single-Cell Analysis. Chemosensors. 2023; 11(5):281. https://doi.org/10.3390/chemosensors11050281
Chicago/Turabian StyleHe, Qian-Nan, Zheng-Yuan Ma, Yu-Xin Yang, Cong-Hui Xu, and Wei Zhao. 2023. "Recent Advances in Electrochemiluminescence-Based Single-Cell Analysis" Chemosensors 11, no. 5: 281. https://doi.org/10.3390/chemosensors11050281
APA StyleHe, Q. -N., Ma, Z. -Y., Yang, Y. -X., Xu, C. -H., & Zhao, W. (2023). Recent Advances in Electrochemiluminescence-Based Single-Cell Analysis. Chemosensors, 11(5), 281. https://doi.org/10.3390/chemosensors11050281