Fluorescence Evolution of Gold Nanoclusters in the Presence of Shapely Silver Nanoparticles and UV-Vis Light
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Instrumentation
2.3. BSA-Au NCs Preparation
2.4. Preparation of AgNP Colloids
2.4.1. Preparation of QS-AgNP Colloids
2.4.2. Preparation of D-AgNP Colloids Using the Photochemical Method
2.4.3. Preparation of T-AgNPt Colloids Using the Plasmon-Mediated Method
2.4.4. Preparation of HQ-AgNPt Colloids Using Photochemical Methods
3. Results and Discussion
3.1. Characterization of Shapely Silver Nanoparticles
3.2. Characterization of Gold Nanoclusters
3.3. Time Evolution of Fluorescence of BSA-Au NCs in Different AgNP Colloids
3.4. Time Evolution of Fluorescence of BSA-Au NCs in the Presence of Silver Ions
3.5. Time Evolution of Fluorescence of BSA-Au NCs under the Irradiation of Light with Different Wavelengths
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015, 87, 216–229. [Google Scholar] [CrossRef]
- Choi, H.; Chen, Y.S.; Stamplecoskie, K.G.; Kamat, P.V. Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold Nanoclusters. J. Phys. Chem. Lett. 2015, 6, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.F.; Williard, P.G.; Wang, L.S. Polymorphism of Phosphine-Protected Gold Nanoclusters: Synthesis and Characterization of a New 22-Gold-Atom Cluster. Small 2016, 12, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P.D.; Calero, G.; Ackerson, C.J.; Whetten, R.L.; Grönbeck, H.; Häkkinen, H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 105, 9157–9162. [Google Scholar] [CrossRef]
- Xie, J.; Zheng, Y.; Ying, J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef]
- Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G.U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem. Int. Ed. 2013, 52, 11154–11157. [Google Scholar] [CrossRef]
- Gao, P.; Li, M.; Zhang, Y.; Dong, C.; Zhang, G.; Shi, L.; Li, G.; Yuan, M.; Shuang, S. Facile, rapid one-pot synthesis of multifunctional gold nanoclusters for cell imaging, hydrogen sulfide detection and pH sensing. Talanta 2019, 197, 1–11. [Google Scholar] [CrossRef]
- Gan, Z.; Chen, J.; Wang, J.; Wang, C.; Li, M.-B.; Yao, C.; Zhuang, S.; Xu, A.; Li, L.; Wu, Z. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nat. Commun. 2017, 8, 14739. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, T.-Y.; Li, H.-W.; Liu, Z.; Wu, Y. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver (I) ions. Nanoscale 2012, 4, 2251–2254. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L. Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst 2010, 135, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.-A.A.; Chang, H.-C.; Su, W.-T. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem. 2012, 84, 3246–3253. [Google Scholar]
- Nath, P.; Chatterjee, M.; Chanda, N. Dithiothreitol-facilitated synthesis of bovine serum albumin–gold nanoclusters for Pb (II) ion detection on paper substrates and in live cells. ACS Appl. Nano Mater. 2018, 1, 5108–5118. [Google Scholar] [CrossRef]
- Chen, C.-W.; Wang, C.-H.; Wei, C.-M.; Hsieh, C.-Y.; Chen, Y.-T.; Chen, Y.-F.; Lai, C.-W.; Liu, C.-L.; Hsieh, C.-C.; Chou, P.-T. Highly sensitive emission sensor based on surface plasmon enhanced energy transfer between gold nanoclusters and silver nanoparticles. J. Phys. Chem. C 2010, 114, 799–802. [Google Scholar] [CrossRef]
- Casteleiro, B.; Martinho, J.M.G.; Farinha, J.P.S. Interaction between gold nanoclusters and gold nanoparticles encapsulated in polymer nanoparticles. Colloids Interface Sci. Commun. 2023, 52, 100694. [Google Scholar] [CrossRef]
- Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2020, 121, 649–735. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Lee, B.H.; Hsu, M.S.; Hsu, Y.C.; Lo, C.W.; Huang, C.L. A facile method to obtain highly stable silver nanoplate colloids with desired surface plasmon resonance wavelengths. J. Phys. Chem. C 2010, 114, 6222–6227. [Google Scholar] [CrossRef]
- Mulvihill, M.J.; Ling, X.Y.; Henzie, J.; Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274. [Google Scholar] [CrossRef]
- Langer, J.; de Aberasturi, D.J.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.; Boisen, A.; Brolo, A.G. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14, 28–117. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-C.; Lai, Y.-S.; Tsai, C.-M.; Kong, Y.-T.; Lee, C.-I.; Huang, C.-L. One-pot synthesis of monodispersed silver nanodecahedra with optimal SERS activities using seedless photo-assisted citrate reduction method. J. Phys. Chem. C 2012, 116, 24292–24300. [Google Scholar] [CrossRef]
- Langille, M.R.; Personick, M.L.; Mirkin, C.A. Plasmon-Mediated Syntheses of Metallic Nanostructures. Angew. Chem. Int. Ed. 2013, 52, 13910–13940. [Google Scholar] [CrossRef]
- Xie, Z.X.; Tzeng, W.C.; Huang, C.L. One-Pot Synthesis of Icosahedral Silver Nanoparticles by Using a Photoassisted Tartrate Reduction Method under UV Light with a Wavelength of 310 nm. ChemPhysChem 2016, 17, 2551–2557. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chen, H.-J.; Leong, Q.L.; Lai, W.K.; Hsu, C.-Y.; Chen, J.-C.; Huang, C.-L. Synthesis of silver nanoplates with a narrow LSPR band for chemical sensing through a plasmon-mediated process using photochemical seeds. Materialia 2022, 21, 101279. [Google Scholar] [CrossRef]
- Chen, J.-C.; Chu, Y.-T.; Chang, S.-H.; Chuang, Y.-T.; Huang, C.-L. Physical Properties and the Reconstruction of Unstable Decahedral Silver Nanoparticles Synthesized Using Plasmon-Mediated Photochemical Process. Nanomaterials 2022, 12, 1062. [Google Scholar] [CrossRef]
- Pietrobon, B.; Kitaev, V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem. Mater. 2008, 20, 5186–5190. [Google Scholar] [CrossRef]
- Lee, S.-W.; Chang, S.-H.; Lai, Y.-S.; Lin, C.-C.; Tsai, C.-M.; Lee, Y.-C.; Chen, J.-C.; Huang, C.-L. Effect of Temperature on the Growth of Silver Nanoparticles Using Plasmon-Mediated Method under the Irradiation of Green LEDs. Materials 2014, 7, 7781–7798. [Google Scholar] [CrossRef]
- Jia, H.; Xu, W.; An, J.; Li, D.; Zhao, B. A simple method to synthesize triangular silver nanoparticles by light irradiation. Spectrochim. Acta A Mol. Biomol. 2006, 64, 956–960. [Google Scholar] [CrossRef]
- Ciou, S.-H.; Cao, Y.-W.; Huang, H.-C.; Su, D.-Y.; Huang, C.-L. SERS enhancement factors studies of silver nanoprism and spherical nanoparticle colloids in the presence of bromide ions. J. Phys. Chem. C 2009, 113, 9520–9525. [Google Scholar] [CrossRef]
- Cirri, A.; Hernández, H.M.; Johnson, C.J. High precision electronic spectroscopy of ligand-protected gold nanoclusters: Effects of composition, environment, and ligand chemistry. J. Phys. Chem. A 2020, 124, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, M.; Wang, S.; Zhu, M. Intramolecular metal exchange reaction promoted by thiol ligands. Nanomaterials 2018, 8, 1070. [Google Scholar] [CrossRef]
- Antoine, R. Supramolecular Gold Chemistry: From Atomically Precise Thiolate-Protected Gold Nanoclusters to Gold-Thiolate Nanostructures. Nanomaterials 2020, 10, 377. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Tseng, T.-H.; Chen, B.-R.; Wu, Y.-R.; Huang, C.-L.; Chen, J.-C. Silver Nanoparticle-Mediated Synthesis of Fluorescent Thiolated Gold Nanoclusters. Nanomaterials 2021, 11, 2835. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, S.; Xie, X.; Su, X. Ag-ion-modified Au nanoclusters for fluorometric analysis of alkaline phosphatase. ACS Appl. Nano Mater. 2020, 3, 6034–6042. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, M.; Yang, J.; Zheng, X.; Cai, W.; Meng, G.; Qian, H.; Wang, H.; Jin, R. Well-defined nanoclusters as fluorescent nanosensors: A case study on Au(25) (SG)(18). Small 2012, 8, 2028–2035. [Google Scholar] [CrossRef]
- Chen, P.C.; Yeh, T.Y.; Ou, C.M.; Shih, C.C.; Chang, H.T. Synthesis of aluminum oxide supported fluorescent gold nanodots for the detection of silver ions. Nanoscale 2013, 5, 4691–4695. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, X. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag(+) and Hg(2+). Anal. Chim. Acta 2015, 870, 1–7. [Google Scholar] [CrossRef]
- Hsu, M.S.; Cao, Y.W.; Wang, H.W.; Pan, Y.S.; Lee, B.H.; Huang, C.L. Time-dependent surface plasmon resonance spectroscopy of silver nanoprisms in the presence of halide ions. ChemPhysChem 2010, 11, 1742–1748. [Google Scholar] [CrossRef]
- Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef] [PubMed]
- Canaparo, R.; Foglietta, F.; Limongi, T.; Serpe, L. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 2020, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Matulionyte, M.; Dapkute, D.; Budenaite, L.; Jarockyte, G.; Rotomskis, R. Photoluminescent gold Nanoclusters in cancer cells: Cellular uptake, toxicity, and generation of reactive oxygen species. Int. J. Mol. Sci. 2017, 18, 378. [Google Scholar] [CrossRef]
y = y0 + A1 e−t/τ1 + A2 e−t/τ2 | ||||
---|---|---|---|---|
QS-AgNPs | D-AgNPs | T-AgNPs | HQ-AgNPs | |
y0 | 0.58 ± 0.01 | 0.47 ± 0.01 | 0.39 ± 0.02 | 0.59 ± 0.01 |
A1 | 0.12 ± 0.01 | 0.19 ± 0.01 | 0.20 ± 0.01 | 0.16 ± 0.01 |
τ1 | 3.9 ± 0.4 | 3.5 ± 0.2 | 1.8 ± 0.1 | 1.4 ± 0.1 |
A2 | 0.34 ± 0.01 | 0.40 ± 0.01 | 0.50 ± 0.01 | 0.35 ± 0.01 |
τ2 | 20.2 ± 1.9 | 26.7 ± 2.1 | 35.3 ± 2.0 | 16.5 ± 0.7 |
y0/(y0 + A1 + A2) | 0.56 ± 0.01 | 0.44 ± 0.01 | 0.36 ± 0.02 | 0.54 ± 0.01 |
y = y0 + A1 e−t/τ1 + A2 e−t/τ2 | ||||
---|---|---|---|---|
QS-AgNPs | D-AgNPs | T-AgNPs | HQ-AgNPs | |
Power Density | 950 μW/cm2 | 980 μW/cm2 | 1020 μW/cm2 | 1130 μW/cm2 |
Photo Flux | 2.6 × 1015 cm−2s−1 | 2.4 × 1015 cm−2s−1 | 2.2 × 1015 cm−2s−1 | 2.1 × 1015 cm−2s−1 |
y0 | 0.78 ± 0.01 | 0.63 ± 0.01 | 0.58 ± 0.01 | 0.56 ± 0.01 |
A1 | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.29 ± 0.01 | 0.29 ± 0.04 |
τ1 | 1.1 ± 0.1 | 0.58 ± 0.04 | 0.77 ± 0.05 | 0.64 ± 0.10 |
A2 | 0.14 ± 0.01 | 0.33 ± 0.01 | 0.29 ± 0.01 | 0.33 ± 0.01 |
τ2 | 12.4 ± 1.2 | 12.5 ± 0.17 | 15.1 ± 0.78 | 12.3 ± 0.82 |
y0/(y0 + A1 + A2) | 0.78 ± 0.01 | 0.63 ± 0.01 | 0.50 ± 0.01 | 0.43 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-C.; Hsiao, W.-C.; Hsu, C.-Y.; Huang, B.-H.; Huang, C.-L. Fluorescence Evolution of Gold Nanoclusters in the Presence of Shapely Silver Nanoparticles and UV-Vis Light. Chemosensors 2023, 11, 279. https://doi.org/10.3390/chemosensors11050279
Chen J-C, Hsiao W-C, Hsu C-Y, Huang B-H, Huang C-L. Fluorescence Evolution of Gold Nanoclusters in the Presence of Shapely Silver Nanoparticles and UV-Vis Light. Chemosensors. 2023; 11(5):279. https://doi.org/10.3390/chemosensors11050279
Chicago/Turabian StyleChen, Jui-Chang, Wen-Chuan Hsiao, Chen-Yu Hsu, Bo-Hao Huang, and Cheng-Liang Huang. 2023. "Fluorescence Evolution of Gold Nanoclusters in the Presence of Shapely Silver Nanoparticles and UV-Vis Light" Chemosensors 11, no. 5: 279. https://doi.org/10.3390/chemosensors11050279
APA StyleChen, J. -C., Hsiao, W. -C., Hsu, C. -Y., Huang, B. -H., & Huang, C. -L. (2023). Fluorescence Evolution of Gold Nanoclusters in the Presence of Shapely Silver Nanoparticles and UV-Vis Light. Chemosensors, 11(5), 279. https://doi.org/10.3390/chemosensors11050279