Advancement and Perspectives of Sulfite-Based Chemiluminescence, Its Mechanism, and Sensing
Abstract
:1. Introduction
1.1. Sulfite
1.2. Sulfite-H2O2 CL
1.3. CL Enhancers
2. Mechanism
3. Different Enhancers in Sulfite CL Systems
3.1. CDs Enhanced Sulfite CL Systems
3.2. NPs-QDs-Sulfite CL Systems
3.3. Metal Ions
3.4. Complexes and Other Molecules Enhanced Sulfite CL Systems
3.5. Solvent-Enhanced Sulfite CL Systems
4. Analytical Applications
4.1. Biological and Chemical Analysis
4.2. Food and Consumer Products
4.3. Pharmaceutical and Clinical Analysis
4.4. Agricultural and Environmental Applications
Enhancer | CL Systems | Mechanism | Emitting Species | Analytes | Samples | Remarks | Publishing Year | Ref. |
---|---|---|---|---|---|---|---|---|
Ru(bipy)32+ | KBrO3-SO32- | Ru(bipy)32+ is the emitting species in the enhanced CL system | Ru(bipy)32+ | Sulfite and SO2 | Sugar and Air | The CL intensity linearly increases with an increase in the analyte concentration | 1998 | [86] |
Surfactants | Ru(bipy)32+-KMnO4-SO32− | Ru(bipy)32+ is the emitting species in the enhanced CL system | Ru(bipy)32+ | Sulfite and SO2 | Sugar and Air | The CL intensity linearly increases with an increase in the analyte concentration | 1999 | [85] |
Rh6G and Tween 80 | Na2SO3 | SO2* transfers its energy to the Rh6G | Rh6G | Sulfite | Beverages | The CL intensity linearly increases with an increase in the sulfite concentration | 1999 | [88] |
Tb3+ | KMnO4 sulfite | The Tb3+ ions form a chelate with the fluoroquinolones and result in the enhanced CL | Tb3+ | fluoroquinolones | Pharmaceutical formulation and biological fluids | The energy from the SO2* is transferred to the Tb3+ chelates and results in high CL emission | 2003 | [81] |
papaverine | Sulfite-Ce (IV) | The papaverine oxidation by Ce (IV) causes the high CL intensity | SO2* | Papaverine | Pharmaceutical formulation and biological fluids | The papaverine radical is formed during the reaction | 2004 | [91] |
Rh6G and Tween 80 | Ce (IV)-SO32− | The enhancers were excited by the reaction products | Rh6G | Sulfite | Food samples | The CL intensity linearly increases with an increase in the sulfite concentration | 2005 | [89] |
CdTe QDs | Ce (IV)-SO32− | The CdTe QDs enhance the CL intensity of the system | CdTe QDs | Chemical and biological compounds | - | - | 2008 | [74] |
Au NPs | Na2SO3− Ce (IV) | Au NPs catalyze the production of the SO2*, which results in enhanced CL emission | SO2* | Norfloxacin | Human urine | The SO2* transfers its energy to the norfloxacin on the surface of the Au NPs | 2009 | [70] |
Sulfite | KMnO4 luminol | - | - | Sulfite | Wine samples | The sulfite has enhancing effect on the system | 2010 | [93] |
Ag NPs | Ce (IV)-SO32− | The Ag NPs catalyze the CL reaction of Ce (IV)-SO32− | Tb3+ | Norfloxacin | Eyedrops | The energy of SO2* is transferred to the Tb3+ ion, and the final emission takes place from it | 2010 | [71] |
7,10-BaPQ | NaHSO3-H2O2 | The free radicals reduce 7,10-BaPQ to semiquinone in the excited state | Semiquinoline | 7,10-BaPQ | Airborne particulates | The CL intensity linearly increases with an increase in 7,10-BaPQ concentration | 2012 | [30] |
Eu3+ | Ce (IV)-Na2S2O4 | The Eu3+ ions catalyze the CL reaction of Ce (IV)-Na2S2O4 | Eu3+ | Naproxen | Pharmaceutical formulation | The SO2* transfers its energy to the Eu3+ ions to result in enhanced emission | 2012 | [72] |
CoFe2O4 | Luminol-SO32− | Luminol is oxidized by the dissolved oxygen in the presence of CoFe2O4 NPs | 3APA* | Sulfite | White wines | The sulfite has an inhibition effect, while at higher concentrations, it has an enhancing effect on CL intensity | 2013 | [78] |
Tb3+ | Na2SO3-KMO4 | The Tb3+ ion forms a complex with the gatifloxacin, which may result in CL enhancement | Tb3+ | Gatifloxacin | Pharmaceutical formulation, urine, and serum samples | CL intensity is linearly proportional to the gatifloxacin concentrations in these samples | 2014 | [80] |
Quinine sulfate | KBrO3-Na2SO3 | Quinine sulfate could be excited by the CL reaction | Quinine sulfate | KBrO3 | Flour | The intermediates of the CL reaction transfer their energy to Quinine sulfate | 2016 | [84] |
ZnS QDs | NaHSO3-H2O2 | The different free radicals produced in the systems result in the enhancement of the CL | ZnS QDs | - | - | The water helps in the hydrolysis of the NaHSO3, which further enhances the CL | 2016 | [23] |
CdS QDs | Ce (IV)-SO32− | The CdS QDs enhance the CL intensity of the system | CdS QDs | - | Cetirizine injection | The Cetirizine further enhances the CL intensity | 2016 | [73] |
Zolpidem | Na2SO3-KMO4 | SO2* is formed as an emitting species in the reaction mixture | SO2* | Zolpidem | Pharmaceutical formulation and human plasma | Zolpidem is oxidized by the KMnO4, which then excites the SO2 | 2017 | [92] |
CDs | BrO3−-Na2SO3- | Electrons and holes were injected into the CDs by the redox reaction | CDs | Bromate | Water | The CL intensity linearly increases with an increase in bromate in drinking water | 2018 | [66] |
Ru(II) complex | Hydrogen sulfite | Ru-CHO complex reacts with sulfite to form Ru-SO complex with an enhanced CL emission | Ru(II) complex | Hydrogen sulfite | Sugar and wine | The CL intensity linearly increases with an increase in hydrogen sulfite in food samples | 2018 | [82] |
NGQDs | Na2SO3-KMnO4 | The dissolved oxygen was converted to H2O2 and ●OOH radicals by the NGQDs | NGQDs | Fe3+ | Water samples | The Fe3+ ions form a chelate with the phenolic functionalities of the NGQDs and thus decrease CL intensity | 2018 | [68] |
OA-BP QDs | Na2SO3 | 1 O2 and (O2)2* transfer their energy to the OA-BP QDs | OA-BP QDs | Sulfite | PM2.5 | CL intensity is linearly proportional to the sulfite in PM2.5 | 2019 | [69] |
N,S-GQD, N-GQD, GQD | NaHSO3-NaClO, NaHSO3-H2O2 and NaHSO3-KMnO4 | SO2* transfers its energy to the N,S-GQD and thus results in enhanced CL emission | N,S-GQD | Folic acid | Food samples | Folic acid causes a linear decrease in CL emission, and thus, it is determined | 2019 | [67] |
S,N-CDs | Mn-Na2SO3 | SO2* was formed from the reaction of Mn(IV) with SO32− | S, N-CDs | Oxytetracycline | Milk and water | The SO2* transfers its energy to the CDs to result in enhanced emission | 2020 | [65] |
WS2 nanosheets | Fe (II)-sulfite | The WS2 nanosheets cause the conversion of Fe (II)/Fe(III) species and result in the high production of free radicals | SO2* | Reduction | Organic contaminants | The elevated production of free radicals causes the reduction of organic contaminants | 2020 | [76] |
Eu/CeO2 NPs | Sulfite-Eu/CeO2 | SO2* was formed at the interface of Eu/CeO2 NPs | Eu/CeO2 NPs | Sulfite | PM2.5 | The SO2* transfers its energy to Eu/CeO2 NPs through CRET | 2021 | [77] |
sulfite | Fe2+-H2O2 | The sulfite was used as a reducing agent for the easy conversion of Fe3+ to Fe2+ | - | Bisphenol A | Organic contaminants | APDI is specifically designed to detect the ●OH radical in the system | 2022 | [17] |
Nile blue and rhodamine B | Ce (IV)-MOF-sulfite | SO2* was formed from the reduction of sulfite at the interface of Ce (IV)-MOF | Nile blue and rhodamine B | Sulfite | PM2.5 | The SO2* transfers its energy to Nile blue and rhodamine B through CRET with enhanced CL emission | 2023 | [98] |
5. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fan, X.; Su, Y.; Deng, D.; Lv, Y. Carbon nitride quantum dot-based chemiluminescence resonance energy transfer for iodide ion sensing. RSC Adv. 2016, 6, 76890–76896. [Google Scholar] [CrossRef]
- Garcia-Campana, A.M.; Baeyens, W.R.; Zhang, X. Chemiluminescence-Based Analysis: An Introduction to Principles, In-Strumentation, and Applications; CRC Press: Boca Raton, FL, USA, 2001; p. 59. [Google Scholar]
- Paulls, D.A.; Townshend, A. Enhancement by cycloalkanes of the chemiluminescent oxidation of sulfite. Analyst 1996, 121, 831–834. [Google Scholar] [CrossRef]
- Dou, X.; Shah, S.N.A.; Lin, J.-M. Introduction of Ultra-Weak Chemiluminescence; Springer: Berlin/Heidelberg, Germany, 2022; p. 1. [Google Scholar] [CrossRef]
- Liu, M.; Lin, Z.; Lin, J.-M. A review on applications of chemiluminescence detection in food analysis. Anal. Chim. Acta 2010, 670, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xing, G.; Chen, H.; Ogawa, N.; Lin, J.M. Carbon nanodots sensitized chemiluminescence on peroxomonosul-fate-sulfite-hydrochloric acid system and its analytical applications. Talanta 2012, 99, 471. [Google Scholar] [CrossRef] [PubMed]
- Baeyens, W.R.G.; Schulman, S.G.; Calokerinos, A.C.; Zhao, Y.; García Campaña, A.M.; Nakashima, K.; De Keukeleire, D. Chemiluminescence-based detection: Principles and analytical applications in flowing streams and in immunoassays. J. Pharm. Biomed. Anal. 1998, 17, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, L.; Li, H.; Lin, J.-M. Quantum dots-enhanced chemiluminescence: Mechanism and application. Coord. Chem. Rev. 2014, 263–264, 86–100. [Google Scholar] [CrossRef]
- Lin, J.-M.; Lu, C.; Chen, H. Ultra-Weak Chemiluminescence; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Zuo, M.; Qian, W.; Hao, M.; Wang, K.; Hu, X.-Y.; Wang, L. An AIE singlet oxygen generation system based on supramolecular strategy. Chin. Chem. Lett. 2020, 32, 1381–1384. [Google Scholar] [CrossRef]
- Bener, M.; Şen, F.B.; Apak, R. Novel pararosaniline based optical sensor for the determination of sulfite in food extracts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 226, 117643. [Google Scholar] [CrossRef]
- Chen, S.; Hou, P.; Wang, J.; Song, X. A highly sulfite-selective ratiometric fluorescent probe based on ESIPT. RSC Adv. 2012, 2, 10869–10873. [Google Scholar] [CrossRef]
- Sapers, G. Browning of foods: Control by sulfites, antioxidants, and other means. Food Technol. 1993, 47, 75. [Google Scholar]
- Abdel-Latif, M.S. New Spectrophotometric Method for Sulfite Determination. Anal. Lett. 1994, 27, 2601–2614. [Google Scholar] [CrossRef]
- Güçlü, K.; Altun, M.; Özyürek, M.; Karademir, S.E.; Apak, R. Antioxidant capacity of fresh, sun-and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. Int. J. Food Sci. Technol. 2006, 41, 76. [Google Scholar] [CrossRef]
- Xiao, J.; Li, R.; Dong, H.; Li, Y.; Li, L.; Xiao, S.; Jin, Z. Activation of sulfite via zero-valent iron-manganese bimetallic nano-materials for enhanced sulfamethazine removal in aqueous solution:Key roles of Fe/Mn molar ratio and solution pH. Sep. Purif. Technol. 2022, 297, 121479. [Google Scholar] [CrossRef]
- Sun, M.; Song, H.; Xie, X.; Yang, W.; Su, Y.; Lv, Y. Transient Chemiluminescence Assay for Real-Time Monitoring of the Processes of SO32–-Based Advanced Oxidation Reactions. Environ. Sci. Technol. 2022, 56, 3170–3180. [Google Scholar] [CrossRef]
- Maiti, B.K. Cross-talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chem.—A Eur. J. 2022, 28, e202104342. [Google Scholar] [CrossRef]
- Chen, H.; Li, R.; Lin, L.; Guo, G.; Lin, J.-M. Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide–sodium hydrogen carbonate–CdSe/CdS quantum dots system. Talanta 2010, 81, 1688–1696. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Lin, Z.; Lin, J.-M. Preparation of Surface Imprinting Polymer Capped Mn-Doped ZnS Quantum Dots and Their Application for Chemiluminescence Detection of 4-Nitrophenol in Tap Water. Anal. Chem. 2010, 82, 7380–7386. [Google Scholar] [CrossRef]
- Dasgupta, P.K. The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulphur dioxide in cloud and rain water: Further discussion. Atmos. Environ. 1980, 14, 272–275. [Google Scholar] [CrossRef]
- Flockhart, B.D.; Ivin, K.J.; Pink, R.C.; Sharma, B.D. The nature of the radical intermediates in the reactions between hydroperoxides and sulphur dioxide and their reaction with alkene derivatives: Electron spin resonance study. J. Chem. Soc. D Chem. Commun. 1971, 2243, 339–340. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Zheng, Y.; Li, H.; Lin, J.-M. Chemiluminescence character of ZnS quantum dots with bisulphite-hydrogen per-oxide system in acidic medium. J. Phys. Chem. C 2016, 120, 9308. [Google Scholar] [CrossRef]
- Novič, M.; Grgić, I.; Poje, M.; Hudnik, V. Iron-catalyzed oxidation of s(IV) species by oxygen in aqueous solution: Influence of pH on the redox cycling of iron. Atmos. Environ. 1996, 30, 4191–4196. [Google Scholar] [CrossRef]
- Brandt, C.; Van Eldik, R. Transition metal-catalyzed oxidation of sulfur (IV) oxides. Atmospheric-relevant processes and mechanisms. Chem. Rev. 1995, 95, 119. [Google Scholar] [CrossRef]
- Lente, G.; Fábián, I. Kinetics and mechanism of the oxidation of sulfur(iv) by iron(iii) at metal ion excess. J. Chem. Soc. Dalton Trans. 2002, 5, 778–784. [Google Scholar] [CrossRef]
- Maaß, F.; Elias, H.; Wannowius, K.J. Kinetics of the oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution:: Ionic strength effects and temperature dependence. Atmos. Environ. 1999, 33, 4413–4419. [Google Scholar] [CrossRef]
- Shi, M.; Ding, J.; Liu, X.; Zhong, Q. Mechanisms of sulfite oxidation in sulfite-nitrite mixed solutions. Atmos. Pollut. Res. 2019, 10, 412–417. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, H.; Lin, J.-M. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry. Analyst 2013, 138, 5182–5193. [Google Scholar] [CrossRef]
- Li, R.; Kameda, T.; Toriba, A.; Hayakawa, K.; Lin, J.-M. Determination of benzo [a] pyrene-7, 10-quinone in airborne partic-ulates by using a chemiluminescence reaction of hydrogen peroxide and hydrosulfite. Anal. Chem. 2012, 84, 3215. [Google Scholar] [CrossRef]
- Xue, W.; Lin, Z.; Chen, H.; Lu, C.; Lin, J.-M. Enhancement of Ultraweak Chemiluminescence from Reaction of Hydrogen Peroxide and Bisulfite by Water-Soluble Carbon Nanodots. J. Phys. Chem. C 2011, 115, 21707–21714. [Google Scholar] [CrossRef]
- Han, C.; Yuan, X.; Shen, Z.; Xiao, Y.; Wang, X.; Khan, M.; Liu, S.; Li, W.; Hu, Q.; Wu, W. A paper-based lateral flow sensor for the detection of thrombin and its inhibitors. Anal. Chim. Acta 2022, 1205, 339756. [Google Scholar] [CrossRef]
- Timofeeva, I.I.; Vakh, C.S.; Bulatov, A.V.; Worsfold, P.J. Flow analysis with chemiluminescence detection: Recent advances and applications. Talanta 2018, 179, 246–270. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Tang, J.; Kang, J.; Zhang, Y. Study of influence of metal ions on CdTe/H2O2 chemiluminescence. J. Lumin. 2008, 128, 1229–1234. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, J.; Liu, K.; Ma, X.; Zhang, X. Carbon dots-peroxyoxalate micelle as a highly luminous chemiluminescence system under physiological conditions. Chin. Chem. Lett. 2021, 32, 3931–3935. [Google Scholar] [CrossRef]
- Shah, S.A.; Hu, K.-J.; Naveed, M.; Shah, S.N.A.; Hu, S.; Lu, S.; Song, F. Synthesis of Au doped Ag nanoclusters and the doping effect of Au atoms on their physical and optical properties. Mater. Res. Express 2019, 7, 016506. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Q.; Liu, X.; Luo, X. A sensitive chemiluminescence method for the determination of cysteine based on silver nanoclusters. Microchim. Acta 2012, 179, 323–328. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, B.; Gao, X.; Dong, S.; Wang, D.; Zou, G. A General Route for Chemiluminescence of n-Type Au Nanocrystals. Anal. Chem. 2022, 94, 8811–8817. [Google Scholar] [CrossRef]
- Wang, R.; Yue, N.; Fan, A. Nanomaterial-enhanced chemiluminescence reactions and their applications. Analyst 2020, 145, 7488–7510. [Google Scholar] [CrossRef]
- Su, Y.; Xie, Y.; Hou, X.; Lv, Y. Recent Advances in Analytical Applications of Nanomaterials in Liquid-Phase Chemiluminescence. Appl. Spectrosc. Rev. 2013, 49, 201–232. [Google Scholar] [CrossRef]
- Poznyak, S.K.; Talapin, D.V.; Shevchenko, E.V.; Weller, H. Quantum Dot Chemiluminescence. Nano Lett. 2004, 4, 693–698. [Google Scholar] [CrossRef]
- Giokas, D.L.; Vlessidis, A.G.; Tsogas, G.Z.; Evmiridis, N.P. Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. TrAC Trends Anal. Chem. 2010, 29, 1113–1126. [Google Scholar] [CrossRef]
- Adcock, J.L.; Barnett, N.W.; Barrow, C.J.; Francis, P.S. Advances in the use of acidic potassium permanganate as a chemilu-minescence reagent: A review. Anal. Chim. Acta 2014, 807, 9. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.N.A.; Khan, M.; Rehman, Z.U. A prolegomena of periodate and peroxide chemiluminescence. TrAC Trends Anal. Chem. 2019, 122, 115722. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Li, H.; Lin, J.-M. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid. Talanta 2016, 153, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, D.; Shah, S.N.A.; Li, H.; Lin, J.-M. Ultra-weak chemiluminescence enhanced by facilely synthesized nitro-gen-rich quantum dots through chemiluminescence resonance energy transfer and electron hole injection. Chem. Commun. 2017, 53, 5657. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.N.A.; Dou, X.; Khan, M.; Uchiyama, K.; Lin, J.-M. N-doped carbon dots/H2O2 chemiluminescence system for selective detection of Fe2+ ion in environmental samples. Talanta 2018, 196, 370–375. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Lin, L.; Zheng, Y.; Zhang, D.; Lin, J.-M. Redox cycling of iron by carbon dot enhanced chemiluminescence: Mechanism of electron–hole induction in carbon dot. Phys. Chem. Chem. Phys. 2017, 19, 21604–21611. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Xue, W.; Chen, H.; Lin, J.-M. Peroxynitrous-Acid-Induced Chemiluminescence of Fluorescent Carbon Dots for Nitrite Sensing. Anal. Chem. 2011, 83, 8245–8251. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.N.A.; Lin, J.-M. Recent advances in chemiluminescence based on carbonaceous dots. Adv. Colloid Interface Sci. 2017, 241, 24–36. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Shah, A.H.; Dou, X.; Khan, M.; Lin, L.; Lin, J.-M. Radical-Triggered Chemiluminescence of Phenanthroline De-rivatives: An Insight into Radical–Aromatic Interaction. ACS Omega 2019, 4, 15004. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Song, Q.; He, Q.; Dionysiou, D.D.; Wu, F.; Feng, Y.; Zhang, X. Fabrication of Bi1.81MnNbO6.72/sulfite system for efficient degradation of chlortetracycline. Chemosphere 2021, 268, 129269. [Google Scholar] [CrossRef]
- McArdle, J.V.; Hoffmann, M.R. Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH. J. Phys. Chem. 1983, 87, 5425–5429. [Google Scholar] [CrossRef]
- Li, R.; Chen, H.; Li, Y.; Lu, C.; Lin, J.-M. Enhancing Effect of Alcoholic Solvent on Hydrosulfite–Hydrogen Peroxide Chemi-luminescence System. J. Phys. Chem. A 2012, 116, 2192. [Google Scholar] [CrossRef] [PubMed]
- Huie, R.E.; Neta, P. Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmos. Environ. (1967) 1987, 21, 1743–1747. [Google Scholar] [CrossRef]
- Li, Q.; He, Y. An ultrasensitive chemiluminescence sensor for sub-nanomolar detection of manganese(II) ions in mineral water using modified gold nanoparticles. Sens. Actuators B Chem. 2017, 243, 454–459. [Google Scholar] [CrossRef]
- Chen, H.; Shah, S.N.A.; Lin, J.-M. Ultra-Weak Chemiluminescence from the Decomposition of Peroxymonocarbonate; Springer: Berlin/Heidelberg, Germany, 2022; p. 17. [Google Scholar] [CrossRef]
- Dou, X.; Zhang, Q.; Shah, S.N.A.; Khan, M.; Uchiyama, K.; Lin, J.-M. MoS2-quantum dot triggered reactive oxygen species generation and depletion: Responsible for enhanced chemiluminescence. Chem. Sci. 2018, 10, 497–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zheng, Y.; Dou, X.; Shah, S.N.A.; Lin, J.-M. Gas-phase chemiluminescence of reactive negative ions evolved through corona discharge in air and O2 atmospheres. RSC Adv. 2017, 7, 15926–15930. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zheng, Y.; Dou, X.; Lin, H.; Shah, S.N.A.; Lin, J.-M. Heterogeneous Chemiluminescence from Gas–Solid Phase Interactions of Ozone with Alcohols, Phenols, and Saccharides. Langmuir 2017, 33, 3666. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Lu, C.; Zhao, L.; Lin, J.-M. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hy-drogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt (II). Spectrochim. Acta A Mol. Biomole. Spectrosc. 2011, 78, 700. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Lin, J.-M. Determination of ammonia in water based on chemiluminescence resonance energy transfer be-tween peroxymonocarbonate and branched NaYF4: Yb3+/Er3+ nanoparticles. Anal. Chem. 2012, 84, 8871. [Google Scholar] [CrossRef]
- Huang, X.; Ren, J. Nanomaterial-based chemiluminescence resonance energy transfer: A strategy to develop new analytical methods. TrAC Trends Anal. Chem. 2012, 40, 77–89. [Google Scholar] [CrossRef]
- Freeman, R.; Liu, X.; Willner, I. Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer–Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots. J. Am. Chem. Soc. 2011, 133, 11597–11604. [Google Scholar] [CrossRef]
- Amjadi, M.; Hallaj, T.; Mirbirang, F. A chemiluminescence reaction consisting of manganese(IV), sodium sulfite, and sulfur- and nitrogen-doped carbon quantum dots, and its application for the determination of oxytetracycline. Microchim. Acta 2020, 187, 191. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lai, X.; Xu, X.; Li, J.; Yuan, P.; Feng, J.; Wei, L.; Cheng, X. Determination of bromate via the chemiluminescence generated in the sulfite and carbon quantum dot system. Microchim. Acta 2018, 185, 136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Han, S. Strong Enhancement of the Chemiluminescence of Hydrogen Sulfite-Oxidant Systems in the Presence of N,S-Doped Graphene Quantum Dots, and Its Application to the Determination of Folic Acid in Spinach and Kiwifruit Samples. Food Anal. Methods 2019, 12, 869–876. [Google Scholar] [CrossRef]
- Li, D.; Nie, F.; Tang, T.; Tian, K. Determination of ferric ion via its effect on the enhancement of the chemiluminescece of the permanganate-sulfite system by nitrogen-doped graphene quantum dots. Microchim. Acta 2018, 185, 431. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Su, Y.; Deng, D.; Song, H.; Lv, Y. Chemiluminescence of Oleic Acid Capped Black Phosphorus Quantum Dots for Highly Selective Detection of Sulfite in PM2.5. Anal. Chem. 2019, 91, 9174–9180. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Bao, J. Determination of norfloxacin using gold nanoparticles catalyzed cerium (IV)–sodium sulfite chemilumines-cence. J. Lumin. 2009, 129, 973. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, Z.; Wang, Q.; Guo, Y. Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin. Microchim. Acta 2010, 171, 17–22. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Alam, A.-M.; Kim, K.M.; Lee, S.H.; Kim, Y.H.; Kim, S.H. Silver Nanoparticle-Enhanced Chemiluminescence Method for Determining Naproxen Based on Europium(III)-Sensitized Ce(IV)-Na2S2O4 Reaction. J. Fluoresc. 2012, 22, 883–890. [Google Scholar] [CrossRef]
- Kouhestany, R.H.; Azizi, S.N.; Shakeri, P.; Rahmani, S. Sensitive Determination of Cetirizine Using CdS Quantum dots as Oxidase Mimic-mediated Chemiluminescence of Sulfite. Int. Curr. Pharm. J. 2016, 5, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Liu, B.; Li, J. Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications. Talanta 2008, 75, 447–454. [Google Scholar] [CrossRef]
- Chen, H.; Xue, W.; Lu, C.; Li, H.-f.; Zheng, Y.; Lin, J.-M. Plasmonic luminescent core–shell nanocomposites-enhanced chem-iluminescence arising from the decomposition of peroxomonosulfite. Spectrochim. Acta A Mole. Biomole. Spectrosc. 2013, 116, 355. [Google Scholar] [CrossRef]
- Sun, T.; Su, Y.; Liu, H.; Song, H.; Lv, Y. Efficient generation of sulfate radicals in Fe(ii)/S(iv) system induced by WS2 nanosheets and examined by its intrinsic chemiluminescence. Chem. Commun. 2020, 56, 6993. [Google Scholar] [CrossRef]
- Li, Q.; Sun, M.; Su, Y.; Zhang, K.; Lv, Y. Efficient chemiluminescence resonance energy transfer on the interface of europium doped ceria for sulfite detection in PM2.5. Sens. Actuators B Chem. 2021, 339, 129876. [Google Scholar] [CrossRef]
- Zhang, X.; He, S.; Chen, Z.; Huang, Y. CoFe2O4 Nanoparticles as Oxidase Mimic-Mediated Chemiluminescence of Aqueous Luminol for Sulfite in White Wines. J. Agric. Food Chem. 2013, 61, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Li, C.; Guo, S.; Wang, G. Reaction Kinetics and Mechanism of Iron(II)-Induced Catalytic Oxidation of Sulfur(IV) during Wet Desulfurization. Ind. Eng. Chem. Res. 2012, 51, 1158–1165. [Google Scholar] [CrossRef]
- Lian, N.; Tang, J.H.; He, X.H. Determination of gatifloxacin in drug formulations, human urine, and serum samples using energy transfer chemiluminescence coupled with flow-injection analysis. J. Anal. Chem. 2014, 69, 276–282. [Google Scholar] [CrossRef]
- Yi, L.; Zhao, H.; Chen, S.; Jin, L.; Zheng, D.; Wu, Z. Flow-injection analysis of two fluoquinolones by the sensitizing effect of terbium(III) on chemiluminescence of the potassium permanganate–sodium sulfite system. Talanta 2003, 61, 403–409. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Zhang, F.; Wang, Y.-L.; Song, B.; Zhang, R.; Yuan, J. Development of a ruthenium (II) complex-based lu-minescence probe for detection of hydrogen sulfite in food samples. Microchem. J. 2018, 141, 181. [Google Scholar] [CrossRef]
- Cao, W.; Gong, P.; Liu, W.; Zhuang, M.; Yang, J. A sensitive flow injection chemiluminescence method for the determination of progesterone. Drug Test. Anal. 2011, 5, 242–246. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Z.; Yu, Y.; Liu, Z.; Chen, J. Chemiluminescence determination of potassium bromate in flour based on flow injection analysis. Food Chem. 2016, 190, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Wu, F.; He, Z. Chemiluminescence determination of sulfite in sugar and sulfur dioxide in air using Tris (2,2′-bipyridyl) ruthenium (II)-permanganate system. Talanta 1999, 48, 571. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; He, Z.; Meng, H.; Zeng, Y. Determination of sulfite in sugar and sulfur dioxide in air by chemiluminescence using the Ru(bipy)32+–KBrO3 system. Analyst 1998, 123, 2109–2112. [Google Scholar] [CrossRef]
- Bonifácio, R.L.; Coichev, N. Chemiluminescent determination of sulfite traces based on the induced oxidation of Ni(II)/tetraglycine complex by oxygen in the presence of luminol: Mechanistic considerations. Anal. Chim. Acta 2004, 517, 125. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, C.; Zhang, X.; Zhang, Z. Chemiluminescence of sulfite based on auto-oxidation sensitized by rhodamine 6G. Anal. Chim. Acta 1999, 391, 95–100. [Google Scholar] [CrossRef]
- He, D.; Zhang, Z.; Huang, Y. Chemiluminescence Microflow Injection Analysis System on a Chip for the Determination of Sulfite in Food. Anal. Lett. 2005, 38, 563–571. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, C.; Zhang, X.; Zhang, Z. A Sensitive Chemiluminescence Flow System for the Determination of Sulfite. Anal. Lett. 1999, 32, 1211–1224. [Google Scholar] [CrossRef]
- Zhang, S.; Zhuang, Y.; Ju, H. Flow-Injection Chemiluminescence Determination of Papaverine Using Cerium(IV)-Sulfite System. Anal. Lett. 2004, 37, 143–155. [Google Scholar] [CrossRef]
- Mokhtari, A.; Aagha, M.H.M. Chemiluminescence System of Permanganate-Sulfite for Simple Determination of Zolpidem. Eurasian J. Anal. Chem. 2017, 12, 61–74. [Google Scholar] [CrossRef]
- Navarrro, M.V.; Payán, M.R.; López, M.A.B.; Fernández-Torres, R.; Mochón, M.C. Rapid flow injection method for the de-termination of sulfite in wine using the permanganate–luminol luminescence system. Talanta 2010, 82, 2003. [Google Scholar] [CrossRef]
- Al-Tamrah, S.A.; Townshend, A.; Wheatley, A.R. Flow injection chemiluminescence determination of sulphite. Analyst 1987, 112, 883–886. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Z.; Zhang, C. Reagentless chemiluminescence flow sensor for sulfite. Anal. Chim. Acta 1998, 361, 201–203. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Z.-J.; Zhang, C.-J. Chemiluminescence flow system for the determination of sulfite. Anal. Bioanal. Chem. 1998, 361, 824–826. [Google Scholar] [CrossRef]
- Yamada, M.; Nakada, T.; Suzuki, S. The determination of sulfite in a flow injection system with chemiluminescence detection. Anal. Chim. Acta 1983, 147, 401–404. [Google Scholar] [CrossRef]
- Li, Q.; Yan, S.; Song, H.; Su, Y.; Sun, M.; Lv, Y. A simple and stable chemiluminescence resonance energy transfer system based on Ce(IV)-MOFs for detection of sulfite. Sens. Actuators B Chem. 2023, 376, 132990. [Google Scholar] [CrossRef]
- Guo-Fang, Z.; Hong-Yuan, C. Studies of micelle and trace non-polar organic solvent on a new chemiluminescence system and its application to flow injection analysis. Anal. Chim. Acta 2000, 409, 75–81. [Google Scholar]
- Frigerio, C.; Ribeiro, D.S.; Rodrigues, S.S.M.; Abreu, V.L.; Barbosa, J.A.; Prior, J.A.; Marques, K.L.; Santos, J.L. Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal. Chim. Acta 2012, 735, 9–22. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, M.; Huang, Z.; Yu, C.; Yang, N.; Wu, Q.; Shi, L.; Duan, W.; Zhu, Y.; Wei, J.; et al. Ultrasensitive detection of IgE levels based on magnetic nanocapturer linked immunosensor assay for early diagnosis of cancer. Chin. Chem. Lett. 2021, 33, 1855–1860. [Google Scholar] [CrossRef]
- Zhao, H.; Su, E.; Huang, L.; Zai, Y.; Liu, Y.; Chen, Z.; Li, S.; Jin, L.; Deng, Y.; He, N. Washing-free chemiluminescence immu-noassay for rapid detection of cardiac troponin I in whole blood samples. Chin. Chem. Lett. 2022, 33, 743. [Google Scholar] [CrossRef]
- Huang, L.; Su, E.; Liu, Y.; He, N.; Deng, Y.; Jin, L.; Chen, Z.; Li, S. A microfluidic device for accurate detection of hs-cTnI. Chin. Chem. Lett. 2021, 32, 1555. [Google Scholar] [CrossRef]
- Li, N.; Zhang, W.; Lin, H.; Lin, J.-M. Di-4-ANEPPDHQ probes the response of lipid packing to the membrane tension change in living cells. Chin. Chem. Lett. 2021, 33, 1377–1380. [Google Scholar] [CrossRef]
- Pan, Y.; Deng, F.-F.; Fang, Z.; Chen, H.-J.; Long, Z.; Hou, X.-D. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds. Chin. Chem. Lett. 2021, 32, 3440–3445. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, H.; Liu, P.; Wu, X.; Li, Q.; Xu, J.-J.; Hua, D. Visualized uranium rapid monitoring system based on self-enhanced electrochemiluminescence-imaging of amidoxime functionalized polymer nanoparticles. Chin. Chem. Lett. 2022, 33, 3456–3460. [Google Scholar] [CrossRef]
- Ting, L.; Xuyang, C.; Kai, W.; Zhigang, H. Small-Molecule Fluorescent Probe for Detection of Sulfite. Pharmaceuticals 2022, 15, 1326. [Google Scholar]
- Pundir, C.S.; Rawal, R. Determination of sulfite with emphasis on biosensing methods: A review. Anal. Bioanal. Chem. 2013, 405, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Su, L.; Yang, C.; Ma, Y.; Zhang, H.; Chen, X. Colorimetric Detection of Sulfite in Foods by a TMB–O2–Co3O4 Na-noparticles Detection System. J. Agric. Food Chem. 2014, 62, 5827. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Zhang, W.; Li, N.; Pu, Q.; Lin, J.-M. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. Chin. Chem. Lett. 2022, 33, 1743–1751. [Google Scholar] [CrossRef]
- Gul, E.; Rahman, G.; Wu, Y.; Bokhari, T.H.; Rahman, A.U.; Zafar, A.; Rana, Z.; Shah, A.; Hussain, S.; Maaz, K.; et al. An amphiphilic polyoxometalate–CNT nanohybrid as a highly efficient en-zyme-free electrocatalyst for H2O2 sensing. New J. Chem. 2022, 46, 16280. [Google Scholar] [CrossRef]
- Chen, H.; Lin, L.; Li, H.; Li, J.; Lin, J.-M. Aggregation-Induced Structure Transition of Protein-Stabilized Zinc/Copper Nanoclusters for Amplified Chemiluminescence. ACS Nano 2015, 9, 2173–2183. [Google Scholar] [CrossRef]
- Al-Mugahiry, B.; Al-Lawati, H.A.J. Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. TrAC Trends Anal. Chem. 2020, 124, 115802. [Google Scholar] [CrossRef]
- Roda, A.; Guardigli, M.; Pasini, P.; Mirasoli, M. Bioluminescence and chemiluminescence in drug screening. Anal. Bioanal. Chem. 2003, 377, 826–833. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.N.A.; Gul, E.; Hayat, F.; Rehman, Z.; Khan, M. Advancement and Perspectives of Sulfite-Based Chemiluminescence, Its Mechanism, and Sensing. Chemosensors 2023, 11, 212. https://doi.org/10.3390/chemosensors11040212
Shah SNA, Gul E, Hayat F, Rehman Z, Khan M. Advancement and Perspectives of Sulfite-Based Chemiluminescence, Its Mechanism, and Sensing. Chemosensors. 2023; 11(4):212. https://doi.org/10.3390/chemosensors11040212
Chicago/Turabian StyleShah, Syed Niaz Ali, Eman Gul, Faisal Hayat, Ziaur Rehman, and Mashooq Khan. 2023. "Advancement and Perspectives of Sulfite-Based Chemiluminescence, Its Mechanism, and Sensing" Chemosensors 11, no. 4: 212. https://doi.org/10.3390/chemosensors11040212
APA StyleShah, S. N. A., Gul, E., Hayat, F., Rehman, Z., & Khan, M. (2023). Advancement and Perspectives of Sulfite-Based Chemiluminescence, Its Mechanism, and Sensing. Chemosensors, 11(4), 212. https://doi.org/10.3390/chemosensors11040212