Molecular Structure Underlying the Allosteric Mechanism of Caffeine Detection in Taste Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Lipid/Polymer Membrane and Surface Modification
2.3. Procedure of Taste Sensor Measurement
2.4. Step 1: Measurement of Caffeine Using Taste Sensors with Aniline, BA, Resorcinol, and 2,6-DHBA
2.5. Step 2: Measurement of Caffeine Using Taste Sensors with 2,6-DHTA, 1,3-DHNA, and 3-Br-2,6-DHBA
2.6. Step 3: Measurement of Caffeine Analogs Using Taste Sensors with 2,6-DHTA and 3-Br-2,6-DHBA
3. Results and Discussion
3.1. Step 1: Measurement of Caffeine with 2,6-DHBA, BA, Resorcinol, and Aniline
3.2. Step 2: Measurement of Caffeine with 2,6-DHTA, 1,3-DHNA, and 3-Br-2,6-DHBA
3.2.1. 2,6-DHTA
3.2.2. 1,3-DHNA
3.2.3. 3-Br-2,6-DHBA
3.2.4. Comparison of Responses to Caffeine among 2,6-DHBA, 2,6-DHTA, 3-Br-2,6-DHBA, and 1,3-DHNA
3.3. Step 3: Measurement of Caffeine Analogs
3.3.1. Detection of Theophylline and Theobromine Using Taste Sensors with Lipid/Polymer Membrane Modified with 2,6-DHTA
3.3.2. Detection of Theophylline and Theobromine Using Taste Sensors with Lipid/Polymer Membrane Modified with 3-Br-2,6-DHBA
3.3.3. Comparison of Responses to Caffeine Analogs among 2,6-DHBA, 2,6-DHTA, and 3-Br-2,6-DHBA
3.3.4. Confirmation of Sensor Selectivity
3.3.5. Linearity and Repeatability of the Sensor Treated with 3-Br-2,6-DHBA to Caffeine and Its Analogs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. A Comparative Study on Two Electronic Tongues for Pharmaceutical Formulation Development. J. Pharm. Biomed. Anal. 2011, 55, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.X.; Gao, X.J.; Wang, J.M.; Dai, L.P.; Kang, B.Y.; Zhang, L.; Shi, J.H.; Gui, X.J.; Liu, P.; Li, X.L. Traditional Human Taste Panel and Taste Sensors Methods for Bitter Taste Masking Research on Combined Bitterness Suppressants of Berberine Hydrochloride. Sensors Mater. 2017, 29, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Wang, J.; Geng, L.; Wei, Z.; Tian, X. Determination of Ginseng with Different Ages Using a Taste-Sensing System. Sensors Mater. 2013, 25, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, H.; Narita, Y.; Iwai, K.; Hanzawa, T.; Kobayashi, T.; Kakiuchi, M.; Ariki, S.; Wu, X.; Miyake, K.; Tahara, Y.; et al. Bitterness Compounds in Coffee Brew Measured by Analytical Instruments and Taste Sensing System. Food Chem. 2021, 342, 128228. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hirasaki, N.; Miyata, Y.; Tanaka, K.; Tanaka, T.; Wu, X.; Tahara, Y.; Toko, K.; Matsui, T. Evaluating the Reduced Hydrophobic Taste Sensor Response of Dipeptides by Theasinensin a by Using NMR and Quantum Mechanical Analyses. PLoS ONE 2016, 11, e0157315. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, T.; Uchida, T.; Yoshida, M.; Kojima, H.; Habara, M.; Ikezaki, H. The Utility of the Artificial Taste Sensor in Evaluating the Bitterness of Drugs: Correlation with Responses of Human TASTE2 Receptors (HTAS2Rs). Chem. Pharm. Bull. 2018, 66, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Iiyama, S.; Yahiro, M.; Toko, K. Measurements of Soy Sauce Using Taste Sensor. Sensors Actuators B Chem. 2000, 66, 205–206. [Google Scholar] [CrossRef]
- Hayashi, N.; Ujihara, T.; Hayakawa, F.; Nakano, Y.; Kawakami, T.; Ikezaki, H. Standardization of Tomato Juice Tastes Using a Taste Sensor Approach. Biosci. Biotechnol. Biochem. 2020, 84, 2569–2575. [Google Scholar] [CrossRef]
- Toko, K.; Tahara, Y.; Habara, M.; Kobayashi, Y.; Ikezaki, H. Taste Sensor: Electronic Tongue with Global Selectivity. In Essentials Machine Olfaction Taste; Nakamoto, T., Ed.; John Wiley & Sons Singapore Pte Ltd.: Singapore, 2016; pp. 87–174. [Google Scholar] [CrossRef]
- Wu, X.; Tahara, Y.; Yatabe, R.; Toko, K. Taste sensor: Electronic Tongue with Lipid Membranes. Anal. Sci. 2020, 36, 147–159. [Google Scholar] [CrossRef]
- Anand, V.; Kataria, M.; Kukkar, V.; Saharan, V.; Choudhury, P.K. The Latest Trends in the Taste Assessment of Pharmaceuticals. Drug Discov. Today 2007, 12, 257–265. [Google Scholar] [CrossRef]
- Mohamed-Ahmed, A.H.A.; Soto, J.; Ernest, T.; Tuleu, C. Non-Human Tools for the Evaluation of Bitter Taste in the Design and Development of Medicines: A Systematic Review. Drug Discov. Today 2016, 21, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Podrazka, M.; Báczyńska, E.; Kundys, M.; Jeleń, P.S.; Nery, E.W. Electronic Tongue-A Tool for All Tastes? Biosensors 2017, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.; Kumar, S.; Kumar, A.; Sharma, A.; Kumar, R.; Kaur, R.; Bhondekar, A.P. Development of Lipid Membrane Based Taste Sensors for Electronic Tongue. Procedia Comput. Sci. 2015, 70, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Winquist, F.; Holmin, S.; Krantz-rülcker, C.; Wide, P.; Lundström, I. A Hybrid Electronic Tongue. Anal. Chim. Acta 2000, 406, 147–157. [Google Scholar] [CrossRef]
- Ciosek, P.; Wróblewski, W. Sensor Arrays for Liquid Sensing—Electronic Tongue Systems. Analyst 2007, 132, 963–978. [Google Scholar] [CrossRef]
- Pein, M.; Kirsanov, D.; Ciosek, P.; del Valle, M.; Yaroshenko, I.; Wesoły, M.; Zabadaj, M.; Gonzalez-Calabuig, A.; Wróblewski, W.; Legin, A. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015, 114, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, P.; Du, L.; Wu, C. Advances in gustatory biomimetic biosensing technologies: In vitro and in vivo bioelectronic tongue. TrAC Trends Anal. Chem. 2022, 157, 116778. [Google Scholar] [CrossRef]
- Banerjee, R.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. A review on combined odor and taste sensor systems. J. Food Eng. 2016, 190, 10–21. [Google Scholar] [CrossRef]
- Escuder-Gilabert, L.; Peris, M. Review: Highlights in recent applications of electronic tongues in food analysis. Anal. Chim. Acta 2010, 665, 15–25. [Google Scholar] [CrossRef]
- Riul, A.; Correa, D.S. A first taste to electronic tongues. In Electronic Tongues; Shimizu, F.M., Braunger, M.L., Riul, A., Eds.; IOP Publishing: Bristol, UK, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wu, X.; Toko, K. Taste sensor with multiarray lipid/polymer membranes. Trends Anal. Chem. 2023, 158, 116874. [Google Scholar] [CrossRef]
- Bernabei, M.; Pantalei, S.; Persaud, K.C. Large-scale chemical sensor arrays for machine olfaction. In Essentials Mach. Olfaction Tast; Nakamoto, T., Ed.; John Wiley & Sons Singapore Pte Ltd.: Singapore, 2016; pp. 49–85. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, Y.; Tahara, Y.; Habara, M.; Ikezaki, H.; Toko, K. Reusability enhancement of taste sensor using lipid polymer membranes by surfactant cleaning treatment. IEEE Sens. J. 2020, 20, 4579–4586. [Google Scholar] [CrossRef]
- Ali, M.M.; Eisa, M.; Taha, M.I.; Zakaria, B.A.; Elbashir, A.A. Determination of caffeine in some Sudanese beverages by High Performance Liquid Chromatography. Pakistan J. Nutr. 2012, 11, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Bispo, M.S.; Veloso, M.C.C.; Pinheiro, H.L.C.; De Oliveira, R.F.S.; Reis, J.O.N.; Andrade, J.B.D. Simultaneous determination of caffeine, theobromine, and theophylline by high-performance liquid chromatography. J. Chromatogr. Sci. 2002, 40, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.M.; Marshman, J.A.; Schwieder, M.; Berg, R. Caffeine content of beverages as consumed. Can. Med. Assoc. J. 1976, 114, 205–208. [Google Scholar]
- Yoshimatsu, J.; Toko, K.; Tahara, Y.; Ishida, M.; Habara, M.; Ikezaki, H.; Kojima, H.; Ikegami, S.; Yoshida, M.; Uchida, T. Development of taste sensor to detect non-charged bitter substances. Sensors 2020, 20, 3455. [Google Scholar] [CrossRef]
- Zhao, Z.; Ishida, M.; Onodera, T.; Toko, K. Effect of hydroxybenzoic acids on caffeine detection using taste sensor with lipid/polymer membranes. Sensors 2022, 22, 1607. [Google Scholar] [CrossRef]
- Ishida, M.; Ide, H.; Arima, K.; Zhao, Z.; Matsui, T.; Toko, K. Identification of the principle of taste sensors to detect non-charged bitter substances by 1H-NMR measurement. Sensors 2022, 22, 2592. [Google Scholar] [CrossRef]
- Liu, J.; Nussinov, R. Allostery: An overview of its history, concepts, methods, and applications. PLoS Comput. Biol. 2016, 12, e1004966. [Google Scholar] [CrossRef] [Green Version]
- Lindsley, J.E.; Rutter, J. Whence cometh the allosterome? Proc. Natl. Acad. Sci. USA 2006, 103, 10533–10535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 1965, 12, 88–118. [Google Scholar] [CrossRef] [PubMed]
- Swain, J.F.; Gierasch, L.M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol. 2006, 16, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, K.; Ma, B.; Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins Struct. Funct. Genet. 2004, 57, 433–443. [Google Scholar] [CrossRef]
- Bührer, T.; Gehrig, P.; Simon, W. Neutral-carrier-based ion-selective microelectrodes design and application. Anal. Sci. 1988, 4, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Bučar, D.K.; Day, G.M.; Halasz, I.; Zhang, G.G.Z.; Sander, J.R.G.; Reid, D.G.; MacGillivray, L.R.; Duer, M.J.; Jones, W. The curious case of (caffeine)·(benzoic acid): How heteronuclear seeding allowed the formation of an elusive cocrystal. Chem. Sci. 2013, 4, 4417–4425. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Onitake, H.; Haraguchi, T.; Tahara, Y.; Yatabe, R.; Yoshida, M.; Uchida, T.; Ikezaki, H.; Toko, K. Quantitative prediction of bitterness masking effect of high-potency sweeteners using taste sensor. Sensors Actuators B Chem. 2016, 235, 11–17. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Tahara, Y.; Ikezaki, H.; Toko, K. A quantitative method for acesulfame K using the taste sensor. Sensors 2020, 20, 400. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Performance qualification of an electronic tongue based on ICH guideline Q2. J. Pharm. Biomed. Anal. 2010, 51, 497–506. [Google Scholar] [CrossRef]
- Kurihara, K. Inhibition of cyclic 3′, 5′-nucleotide phosphodiesterase in bovine taste papillae by bitter taste stimuli. FEBS Lett. 1972, 27, 279–281. [Google Scholar] [CrossRef]
Composition | Concentration |
---|---|
2,6-DHTA | 0.001, 0.003, 0.01, 0.03 wt% |
1,3-DHNA | 0.001, 0.003, 0.01, 0.03, 0.06, 0.1 wt% |
3-Br-2,6-DHBA | 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 wt% |
Experimental Conditions for Maximal Response to Caffeine | Sample |
---|---|
1 mM TDAB membrane modified with 0.03 wt% 2,6-DHTA | 0.1, 0.3, 1, 3, 30 mM theophylline and theobromine in reference solution |
3 mM TDAB membrane modified with 0.03 wt% 3-Br-2,6-DHBA |
Model of Allosteric Mechanism | Elements of Caffeine Detection |
---|---|
Allosteric site | Hydroxyl group that can form H bonds with caffeine |
Active site | Carboxyl group |
Ligand | Caffeine |
Substrate | H+ ionized by carboxyl group |
Modifiers | Log P | pKa | Maximum Response to Caffeine (mV) | Experimental Conditions for Maximal Caffeine Response |
---|---|---|---|---|
2,6-DHBA | 2.29 | 1.64 | 52.3 | 3 mM TDAB membrane modified with 0.03 wt% 2,6-DHBA |
2,6-DHTA | 1.81 | 1.19 | 80.1 | 1 mM TDAB membrane modified with 0.03 wt% 2,6-DHTA |
1,3-DHNA | 3.30 | 1.54 | 46.2 | 0.3 mM TDAB membrane modified with 0.001 wt% 1,3-DHNA |
3-Br-2,6-DHBA | 3.09 | 1.48 | 87.1 | 3 mM TDAB membrane modified with 0.03 wt% 3-Br-2,6-DHBA |
Modifiers | Response to 30 mM Theophylline (mV) | Response to 3 mM Theobromine (mV) | Experimental Conditions |
---|---|---|---|
2,6-DHBA | 12.8 | 3.3 | 3 mM TDAB membrane modified with 0.03 wt% 2,6-DHBA |
2,6-DHTA | 38.2 | 8.1 | 1 mM TDAB membrane modified with 0.03 wt% 2,6-DHTA |
3-Br-2,6-DHBA | 24.3 | 4.9 | 3 mM TDAB membrane modified with 0.03 wt% 3-Br-2,6-DHBA |
Caffeine | Theophylline | Theobromine | |
---|---|---|---|
Concentration range of linearity [mM] | 0.1–100 | 0.1–30 | 0.1–30 |
Slope of the regression line | 22.90 | 7.89 | 1.36 |
y-intercept | 10.63 | 5.90 | 3.30 |
Coefficient of determination | R2 = 0.77 | R2 = 0.75 | R2 = 0.89 |
Repeatability (intra-day) RSD [%] | 1 mM 2.24 | 0.3 mM 7.09 | 1 mM 5.93 |
3 mM 1.27 | 1 mM 6.21 | 3 mM 3.29 | |
10 mM 1.29 | 3 mM 4.56 | 10 mM 3.44 | |
30 mM 1.16 | 10 mM 2.69 | 30 mM 2.86 | |
100 mM 0.69 | 30 mM 1.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Zhao, Z.; Kimura, S.; Onodera, T.; Toko, K. Molecular Structure Underlying the Allosteric Mechanism of Caffeine Detection in Taste Sensor. Chemosensors 2023, 11, 97. https://doi.org/10.3390/chemosensors11020097
Xu H, Zhao Z, Kimura S, Onodera T, Toko K. Molecular Structure Underlying the Allosteric Mechanism of Caffeine Detection in Taste Sensor. Chemosensors. 2023; 11(2):97. https://doi.org/10.3390/chemosensors11020097
Chicago/Turabian StyleXu, Hengwei, Zeyu Zhao, Shunsuke Kimura, Takeshi Onodera, and Kiyoshi Toko. 2023. "Molecular Structure Underlying the Allosteric Mechanism of Caffeine Detection in Taste Sensor" Chemosensors 11, no. 2: 97. https://doi.org/10.3390/chemosensors11020097
APA StyleXu, H., Zhao, Z., Kimura, S., Onodera, T., & Toko, K. (2023). Molecular Structure Underlying the Allosteric Mechanism of Caffeine Detection in Taste Sensor. Chemosensors, 11(2), 97. https://doi.org/10.3390/chemosensors11020097