Highly Sensitive Simultaneous Stripping Voltametric Detection of Zn2+, Cd2+ and Hg2+ by Bismuth Codeposition Procedure with Graphdiyne−Modified Electrode
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Apparatus
2.2. Fabrication of GDY/GCE
2.3. Electrochemical Procedure
3. Discussion
3.1. Characterization of GDY and Modified Electrodes
3.2. Electrochemical Characterizations
3.3. Electrochemical Behaviors of Zn2+, Cd2+ and Hg2+
3.4. Optimization of Experimental Conditions
3.5. Electroanalysis Performance
3.6. Selectivity, Repeatability, and Stability Study
3.7. Analytical Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Souvik, P.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; et al. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci. Technol. 2021, 109, 674–689. [Google Scholar] [CrossRef]
- March, G.; Nguyen, T.D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 2015, 5, 241–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Li, Y.Q.; Hu, J.M.; Yang, J.G.; Zheng, B.; Ha, Y.Q. Multi-component analysis by flow injection-diode array detection-spectrophotometry using partial least squares calibration model for simultaneous determination of zinc, cadmium and lead. Anal. Chim. Acta 2002, 461, 181–188. [Google Scholar]
- Schramel, P.; Wendler, I.; Angerer, J. The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry. Int. Arch. Occup. Environ. Health 1997, 69, 219–223. [Google Scholar] [CrossRef]
- Willis, J.B. Determination of lead and other heavy metals in urine by atomic absorption spectroscopy. Anal. Chem. 1962, 34, 614–617. [Google Scholar] [CrossRef]
- Pyle, S.M.; Nocerino, J.M.; Deming, S.N.; Palasota, J.A.; Palasota, J.M.; Miller, E.L.; Hillman, D.C.; Kuharic, C.A.; Cole, W.H.; Fitzpatrick, P.M. Comparison of AAS, ICPAES, PSA, and XRF in determining lead and cadmium in soil. Environ. Sci. Technol. 1995, 30, 204–213. [Google Scholar] [CrossRef]
- Becka, N.G.; Franks, R.P.; Bruland, K.W. Analysis for Cd, Cu, Ni, Zn, and Mn in estuarine water by inductively coupled plasma mass spectrometry coupled with an automated flow injection system. Anal. Chim. Acta 2002, 455, 11–22. [Google Scholar] [CrossRef]
- Ouyang, R.; Zhu, Z.; Tatum, C.E.; Chambers, J.Q.; Xue, Z.L. Simultaneous stripping detection of Zn(II), Cd(II) and Pb(II) using a bimetallic Hg–Bi/single-walled carbon nanotubes composite electrode. J. Electroanal. Chem. 2011, 656, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Mettakoonpitak, J.; Mehaffy, J.; Volckens, J.; Henry, C.S. AgNP/Bi/Nafion-modified disposable electrodes for sensitive Zn(II), Cd(II), and Pb(II) detection in aerosol samples. Electroanalysis 2016, 29, 880–889. [Google Scholar] [CrossRef]
- Odobasic, A.; Voudouris, K.; Voutsa, D. Determination and speciation of trace heavy metals in natural water by DPASV. Water Qual. Monit. Assess. 2012, 4, 429–456. [Google Scholar]
- Kumar, K.K.; Devendiran, M.; Kumar, P.S.; Narayanan, S.S. Quercetin-rGO based mercury-free electrode for the determination of toxic Cd (II) and Pb (II) ions using DPASV technique. Environ. Res. 2021, 202, 111707. [Google Scholar] [CrossRef]
- Shi, D.; Wu, W.; Li, X. Multiplexed detection of aqueous Cd2+, Pb2+ and Cu2+ ions at mercury-on-graphene film modified electrode by DPASV. Sens. Bio-Sens. Res. 2021, 34, 100464. [Google Scholar] [CrossRef]
- Sherigara, B.S.; Shivaraj, Y.; Mascarenhas, R.J.; Satpatic, A.K. Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode: Assessment of quantification procedures by anodic stripping voltammetry. Electrochim. Acta 2007, 52, 3137–3142. [Google Scholar] [CrossRef]
- Economou, A. Bismuth-film electrodes: Recent developments and potentialities for electroanalysis. TrAC Trends Anal. Chem. 2005, 24, 334–340. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Zhao, S.; Cui, G. Simultaneous determination of trace Pb(II), Cd(II), and Zn(II) using an integrated three-electrode modified with bismuth film. Microchem. J. 2021, 168, 106390. [Google Scholar] [CrossRef]
- Lee, G.J.; Lee, H.M.; Uhm, Y.R.; Lee, M.K.; Rhee, C.K. Square-wave voltammetric determination of thallium using surface modified thick-film graphite electrode with Bi nanopowder. Electrochem. Commun. 2008, 10, 1920–1923. [Google Scholar] [CrossRef]
- Tian, Y.; Hu, L.Z.; Han, S.; Yuan, Y.L.; Wang, J.G.; Xu, G.B. Electrodes with extremely high hydrogen overvoltages as substrate electrodes for stripping analysis based on bismuth-coated electrodes. Anal. Chim. Acta 2012, 738, 41–44. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Efstathioua, C.E. Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb (II) and Cd (II) by anodic stripping voltammetry. Electrochim. Acta 2008, 53, 5294–5299. [Google Scholar] [CrossRef]
- Finšgar, M.; Petovar, B.; Vodopivec, K. Bismuth-tin-film electrodes for Zn (II), Cd (II), and Pb (II) trace analysis. Microchem. J. 2019, 145, 676–685. [Google Scholar] [CrossRef]
- Thanh, N.M.; Van Hop, N.; Luyen, N.D.; Hai Phong, N.; Toan, T.T.T. Simultaneous determination of Zn (II), Cd (II), Pb (II), and Cu (II) using differential pulse anodic stripping voltammetry at a bismuth film-modified electrode. Adv. Mater Sci. Eng. 2019, 1826148, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bilge, S.; Karadurmus, L.; Sınağ, A.; Ozkan, S.A. Green synthesis and characterization of carbon-based materials for sensitive detection of heavy metal ions, TrAC-Trend Anal. Chem. 2021, 145, 116473. [Google Scholar]
- Du, Y.; Zhou, W.; Gao, J.; Pan, X.; Li, Y. Fundament and application of graphdiyne in electrochemical energy, Acc. Chem. Res. 2020, 53, 459–469. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Wang, N.; Xue, Y.; Zuo, Z.; Liu, H.; Li, Y. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803. [Google Scholar] [CrossRef]
- Yan, L.; Hu, T.; Li, X.; Ding, F.; Wang, B.; Wang, B.; Zhang, B.; Shi, F.; Sun, W. Graphdiyne and ionic liquid composite modified gold electrode for sensitive voltammetric analysis of rutin. Electroanalysis 2022, 34, 286–293. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Cui, R.; Wang, D.; Yin, Z.; Wang, D.; Zheng, L.; Zhang, J.; Zhao, Y.; Yuan, H.; et al. Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water. Sens. Actuat. B-Chem. 2021, 332, 129519. [Google Scholar] [CrossRef]
- Wang, F.; Zuo, Z.; Li, L.; Li, K.; He, F.; Jiang, Z.; Li, Y. Large-Area Aminated-Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angew. Chem. Int. Ed. 2019, 58, 15010–15015. [Google Scholar] [CrossRef]
- Zhang, S.; Si, H.; Fan, W.; Shi, M.; Li, M.; Xu, C.; Zhang, Z.; Liao, Q.; Sattar, A.; Kang, Z.; et al. Graphdiyne omnibearingly bridges the collocation between SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 2020, 132, 2–12. [Google Scholar]
- Zhang, J.X.; Wang, F.H.; Qi, G.C.; Cheng, J.L.; Chen, L.; Liu, H.B.; Wang, B. Rechargeable Li-CO2 batteries with graphdiyne as efficient metal-free cathode catalysts. Adv. Funct. Mater 2021, 31, 2101423. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Sun, X.; Duan, M.; Li, R.; Meng, Y.; Bai, Q.; Wang, L.; Liu, M.; Yang, Z.; Zhu, Z.; Sui, N. Ultrathin graphdiyne/graphene heterostructure as a robust electrochemical sensing platform. Anal. Chem. 2022, 94, 13598–13606. [Google Scholar] [CrossRef]
- Mafa, P.J.; Idris, A.O.; Mabuba, N.; Arotiba, O.A. Electrochemical co-detection of As (III), Hg (II) and Pb (II) on a bismuth modified exfoliated graphite electrode. Talanta 2016, 153, 99–106. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Chen, Z.; Megharaj, M.; Naidu, R. Voltammetric determination of lead (II) and cadmium (II) using a bismuth film electrode modified with mesoporous silica nanoparticles, Electrochim. Acta 2014, 132, 223–229. [Google Scholar]
- Lei, P.; Zhou, Y.; Zhao, S.; Dong, C.; Shuang, S.M. Carbon-supported X-manganate (X = Ni, Zn, and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions. J. Hazard. Mater. 2022, 435, 129036. [Google Scholar] [CrossRef]
- Devnani, H.; Rajawat, D.S.; Satsangee, S.P. Black rice modified carbon paste electrode for the voltammetric determination of Pb(II), Cd(II), Cu(II) and Zn(II). Proc. Nat. Acad. Sci. India A 2014, 84, 361–370. [Google Scholar] [CrossRef]
- Finšgar, M.; Kovačec, L. Copper-bismuth-film in situ electrodes for heavy metal detection, Microchem. J. 2020, 154, 104635. [Google Scholar]
- Zhang, P.; Dong, S.; Gu, G.; Huang, T. Simultaneous determination of Cd2+, Pb2+, Cu2+, and Hg2+ at a carbon paste electrode modified with ionic liquidfunctionalized ordered mesoporous silica, Bull. Korean Chem. Soc. 2010, 31, 2949–2954. [Google Scholar] [CrossRef] [Green Version]
- Meenakshi, S.; Devi, S.; Pandian, K.; Chitra, K.; Tharmaraj, P. Aniline-mediated synthesis of carboxymethyl cellulose protected silver nanoparticles modified electrode for the differential pulse anodic stripping voltammetry detection of mercury at trace level. Ionics 2019, 25, 3431–3441. [Google Scholar] [CrossRef]
- Fu, L.; Li, X.; Yu, J.; Ye, J. Facile and simultaneous stripping determination of zinc, cadmium and lead on disposable multi-walled carbon nanotubes modified screen-printed electrode. Electroanalysis 2013, 25, 567–572. [Google Scholar] [CrossRef]
Electrodes | Stripping Currents (μA) | ||
---|---|---|---|
Zn2+ | Cd2+ | Hg2+ | |
GCE | 28.25 | 52.58 | 14.61 |
GDY/GCE | 46.72 | 58.25 | 31.82 |
Bi–GCE | 74.46 | 83.32 | 14.98 |
Bi–GDY/GCE | 121.2 | 133.9 | 114.7 |
Electrode | Method | Target Metal Ions | Linear Range (μM) | LOD (μM) | Reference |
---|---|---|---|---|---|
NiMn2O4−graphene/GCE | SWASV | Hg2+ | 0.7–6.7 | 0.027 | [36] |
BRMCPE | SWASV | Zn2+ | 6.3–15.6 | 2.094 | [37] |
Cd2+ | 3.6–9.0 | 1.396 | |||
BiCuFE | SWASV | Zn2+ | 10.8–21.6 | 0.597 | [38] |
Cd2+ | 1.4–13.8 | 0.083 | |||
SBA−15/IL/CPE | DPASV | Cd2+ | 0.6–30 | 0.08 | [39] |
Hg2+ | 0.08–50 | 0.01 | |||
PVP@AgNPs/GCE | DPASV | Hg2+ | 5–70 | 0.073 | [40] |
Bi–GDY/GCE | DPASV | Zn2+ | 2.0–100 | 0.255 | This work |
Cd2+ | 0.367 | ||||
Hg2+ | 0.796 |
Sample | Metal Ions | Added (μM) | Found (μM) | Recovery (%) |
---|---|---|---|---|
River water | Zn2+ | 0 | 1.566 | − |
10.00 | 11.27 | 97.04 | ||
60.00 | 63.16 | 102.7 | ||
100.0 | 95.19 | 93.36 | ||
Cd2+ | 0 | 1.012 | − | |
10.00 | 10.82 | 98.08 | ||
60.00 | 64.16 | 105.2 | ||
100.0 | 101.8 | 100.8 | ||
Hg2+ | 0 | NF | − | |
10.00 | 10.24 | 102.4 | ||
60.00 | 58.18 | 96.97 | ||
100.0 | 95.37 | 95.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, Y.; Wang, L.; Fu, W.; Ye, X.; Zhou, J.; Zhang, X.; He, S.; Sun, W. Highly Sensitive Simultaneous Stripping Voltametric Detection of Zn2+, Cd2+ and Hg2+ by Bismuth Codeposition Procedure with Graphdiyne−Modified Electrode. Chemosensors 2023, 11, 75. https://doi.org/10.3390/chemosensors11020075
Ai Y, Wang L, Fu W, Ye X, Zhou J, Zhang X, He S, Sun W. Highly Sensitive Simultaneous Stripping Voltametric Detection of Zn2+, Cd2+ and Hg2+ by Bismuth Codeposition Procedure with Graphdiyne−Modified Electrode. Chemosensors. 2023; 11(2):75. https://doi.org/10.3390/chemosensors11020075
Chicago/Turabian StyleAi, Yijing, Lisi Wang, Wanting Fu, Xiang Ye, Juan Zhou, Xiaoping Zhang, Shuhai He, and Wei Sun. 2023. "Highly Sensitive Simultaneous Stripping Voltametric Detection of Zn2+, Cd2+ and Hg2+ by Bismuth Codeposition Procedure with Graphdiyne−Modified Electrode" Chemosensors 11, no. 2: 75. https://doi.org/10.3390/chemosensors11020075
APA StyleAi, Y., Wang, L., Fu, W., Ye, X., Zhou, J., Zhang, X., He, S., & Sun, W. (2023). Highly Sensitive Simultaneous Stripping Voltametric Detection of Zn2+, Cd2+ and Hg2+ by Bismuth Codeposition Procedure with Graphdiyne−Modified Electrode. Chemosensors, 11(2), 75. https://doi.org/10.3390/chemosensors11020075