Target and Suspect Analysis with High-Resolution Mass Spectrometry for the Exhaustive Monitoring of PCBs and Pesticides in Posidonia oceanica Meadows and Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Study Area and Sampling
2.3. Sample Pretreatment
2.4. Extraction Procedure
2.5. GC-Q-Orbitrap MS Parameters
2.6. Method Validation
2.7. Analysis of Organic Contaminants: Target and Suspect Screenings
3. Results
3.1. Extraction Procedure Optimization and Validation
3.2. Application: Occurrence and Compartmentation of POPs
3.2.1. Target Analysis: PCBs
3.2.2. Target Analysis: Priority Pesticides
3.2.3. Suspect Analysis: Current-Use Pesticides
4. Discussion
4.1. Extraction Procedure
4.2. Target Analysis: PCBs
4.3. Target Analysis: Priority Pesticides
4.4. Suspect Analysis: Current-Use Pesticides
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, R.; Bu, D.; Liu, G.; Zheng, M.; Lammel, G.; Fu, J.; Yang, L.; Li, C.; Habib, A.; Yang, Y.; et al. New classes of organic pollutants in the remote continental environment—Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. Environ. Int. 2020, 137, 105574. [Google Scholar] [CrossRef] [PubMed]
- Hirai, H.; Takada, H.; Ogata, Y.; Yamashita, R.; Mizukawa, K.; Saha, M.; Kwan, C.; Moore, C.; Gray, H.; Laursen, D.; et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 2011, 62, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- 2455/2001/EC. Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 Establishing the List of Priority Substances in the Field of Water Policy and Amending Directive 2000/60/EC. 2001, Volume 331. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:331:0001:0005:EN:PDF (accessed on 11 November 2022).
- Bilcke, C. Vanden The Stockholm Convention on Persistent Organic Pollutants. Am. J. Int. Law 2001, 95, 692–708. [Google Scholar] [CrossRef]
- UNEP. Report of the Meeting of the MED POL National Coordinators. In Facts Sheets on Marine Pollution Indicators; UNEP: Barcelona, Spain, 2005. [Google Scholar]
- Law, R.; Hanke, G.; Angelidis, M.O.; Batty, J.; Bignert, A.; Dachs, J.; Davies, I.; Denga, Y.; Duffek, A.; Herut, B.; et al. Marine Strategy Framework Directive. Task Group 8 Report: Contaminants and pollution effects. EUR 24335 EN—Joint Research Centre Scientific and Technical Reports; European Commission: Luxembourg, 2010. [Google Scholar]
- UNEP/RAMOGE. Manual on the Biomarkers Recommended for the MED POL Biomonitoring Programme; UNEP: Athens, Greece, 1999; ISBN 928071788X. [Google Scholar]
- Pergent-Martini, C.; Pergent, G. Marine phanerogams as a tool in the evaluation of marine trace-metal contamination: An example from the Mediterranean. Int. J. Environ. Pollut. 2000, 13, 126–147. [Google Scholar] [CrossRef]
- Pergent, G. Les indicateurs écologiques de la qualité du milieu marin en Méditerranée. Oceanis 1991, 17, 341–350. [Google Scholar]
- Bonanno, G.; Veneziano, V.; Orlando-Bonaca, M. Comparative assessment of trace element accumulation and biomonitoring in seaweed Ulva lactuca and seagrass Posidonia oceanica. Sci. Total Environ. 2020, 718, 137413. [Google Scholar] [CrossRef]
- Moreno, D.; Aguilera, P.A.; Castro, H. Assessment of the conservation status of seagrass (Posidonia oceanica) meadows: Implications for monitoring strategy and the decision-making process. Biol. Conserv. 2001, 102, 325–332. [Google Scholar] [CrossRef]
- Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. 1992, 206, 7–50. [Google Scholar]
- Vassallo, P.; Paoli, C.; Rovere, A.; Montefalcone, M.; Morri, C.; Bianchi, C.N. The value of the seagrass Posidonia oceanica: A natural capital assessment. Mar. Pollut. Bull. 2013, 75, 157–167. [Google Scholar] [CrossRef]
- Pergent-Martini, C.; Pergent, G.; Monnier, B.; Boudouresque, C.-F.; Mori, C.; Valette-Sansevin, A. Contribution of Posidonia oceanica meadows in the context of climate change mitigation in the Mediterranean Sea. Mar. Environ. Res. 2021, 165, 105236. [Google Scholar] [CrossRef]
- Jebara, A.; Lo Turco, V.; Potortì, A.G.; Bartolomeo, G.; Ben Mansour, H.; Di Bella, G. Organic pollutants in marine samples from Tunisian coast: Occurrence and associated human health risks. Environ. Pollut. 2021, 271, 116266. [Google Scholar] [CrossRef]
- Mauro, L.; Paola, G.; Margherita, V.; Rugiada, R.; Francesca, B.; Primo, M.; Duccio, S.; Enrica, F. Human impact on a small barrier reef meadow of Posidonia oceanica (L.) Delile on the north Tyrrhenian coast (Italy). Mar. Pollut. Bull. 2013, 77, 45–54. [Google Scholar] [CrossRef]
- Pergent, G.; Labbe, C.; Lafabrie, C.; Kantin, R.; Pergent-Martini, C. Organic and inorganic human-induced contamination of Posidonia oceanica meadows. Ecol. Eng. 2011, 37, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Apostolopoulou, M.V.; Monteyne, E.; Krikonis, K.; Pavlopoulos, K.; Roose, P.; Dehairs, F. Monitoring polycyclic aromatic hydrocarbons in the Northeast Aegean Sea using Posidonia oceanica seagrass and synthetic passive samplers. Mar. Pollut. Bull. 2014, 87, 338–344. [Google Scholar] [CrossRef]
- Pergent, G.; Boudouresque, C.-F.; Crouzet, A.; Meinesz, A. Cyclic Changes along Posidonia oceanica rhizomes (Lepidochronology): Present State and Perspectives. Mar. Ecol. 1989, 10, 221–230. [Google Scholar] [CrossRef]
- Pergent-Martini, C. Posidonia oceanica: A biological indicator of past and present mercury contamination in the Mediterranean Sea. Mar. Environ. Res. 1998, 45, 101–111. [Google Scholar] [CrossRef]
- Bucalossi, D.; Leonzio, C.; Casini, S.; Fossi, M.C.; Marsili, L.; Ancora, S.; Wang, W.; Scali, M. Application of a suite of biomarkers in Posidonia oceanica (L.) Delile to assess the ecotoxicological impact on the coastal environment. Mar. Environ. Res. 2006, 62, S327–S331. [Google Scholar] [CrossRef]
- Gil-Solsona, R.; Álvarez-Muñoz, D.; Serra-Compte, A.; Rodríguez-Mozaz, S. (Xeno)metabolomics for the evaluation of aquatic organism’s exposure to field contaminated water. Trends Environ. Anal. Chem. 2021, 31, e00132. [Google Scholar] [CrossRef]
- Goto, A.; Tue, N.M.; Isobe, T.; Takahashi, S.; Tanabe, S.; Kunisue, T. Nontarget and Target Screening of Organohalogen Compounds in Mussels and Sediment from Hiroshima Bay, Japan: Occurrence of Novel Bioaccumulative Substances. Environ. Sci. Technol. 2020, 54, 5480–5488. [Google Scholar] [CrossRef]
- Sanganyado, E.; Bi, R.; Teta, C.; Buruaem Moreira, L.; Yu, X.; Yajing, S.; Dalu, T.; Rajput, I.R.; Liu, W. Toward an integrated framework for assessing micropollutants in marine mammals: Challenges, progress, and opportunities. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2824–2871. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, A.; Garnacho, E.; Bayona, J.M.; Albaigés, J. Assessment of the Mediterranean sediments contamination by persistent organic pollutants. Environ. Pollut. 2007, 148, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Astudillo-Pascual, M.; Domínguez, I.; Aguilera, P.A.; Garrido Frenich, A. New Phenolic Compounds in Posidonia oceanica Seagrass: A Comprehensive Array Using High Resolution Mass Spectrometry. Plants 2021, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Analytical quality control and method validation procedures for pesticides residues analysis in food and feed (SANTE 11312/2021). Eur. Comm. 2021, 1–55. [Google Scholar]
- Commission Directive 2009/90/EC. Directive 2009/90/EC of 31 July 2009 Laying Down, Pursuant to Directive 2000/60/EC of the European Parliament and of the Council, Technical Specifications for Chemical Analysis and Monitoring of Water Status. Off. J. Eur. 2009, L201, 36–38. [Google Scholar]
- Vargas-Pérez, M.; Domínguez, I.; González, F.J.E.; Frenich, A.G. Application of full scan gas chromatography high resolution mass spectrometry data to quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities. J. Chromatogr. A 2020, 1622, 461118. [Google Scholar] [CrossRef]
- Barco-Bonilla, N.; Nieto-García, A.J.; Romero-González, R.; Martínez Vidal, J.L.; Frenich, A.G. Simultaneous and highly sensitive determination of PCBs and PBDEs in environmental water and sediments by gas chromatography coupled to high resolution magnetic sector mass spectrometry. Anal. Methods 2015, 7, 3036–3047. [Google Scholar] [CrossRef]
- Pintado-Herrera, M.G.; González-Mazo, E.; Lara-Martín, P.A. In-cell clean-up pressurized liquid extraction and gas chromatography–tandem mass spectrometry determination of hydrophobic persistent and emerging organic pollutants in coastal sediments. J. Chromatogr. A 2016, 1429, 107–118. [Google Scholar] [CrossRef]
- Domínguez, I.; Arrebola, F.J.; Romero-González, R.; Nieto-García, A.; Martínez Vidal, J.L.; Garrido Frenich, A. Solid phase microextraction and gas chromatography coupled to magnetic sector high resolution mass spectrometry for the ultra-trace determination of contaminants in surface water. J. Chromatogr. A 2017, 1518, 15–24. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Maldonado-Reina, A.J.; López-Ruiz, R.; Garrido Frenich, A.; Arrebola, F.J.; Romero-González, R. Co-formulants in plant protection products: An analytical approach to their determination by gas chromatography–high resolution mass accuracy spectrometry. Talanta 2021, 234, 122641. [Google Scholar] [CrossRef]
- Garrido Frenich, A.; Martínez Vidal, J.L.; Fernández Moreno, J.L.; Romero-González, R. Compensation for matrix effects in gas chromatography-tandem mass spectrometry using a single point standard addition. J. Chromatogr. A 2009, 1216, 4798–4808. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The ten principles of green sample preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Lewis, M.A.; Dantin, D.D.; Chancy, C.A.; Abel, K.C.; Lewis, C.G. Florida seagrass habitat evaluation: A comparative survey for chemical quality. Environ. Pollut. 2007, 146, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.W.; Qiu, H.L.; Zhang, G.; Li, J. Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of south China. Chemosphere 2019, 217, 195–203. [Google Scholar] [CrossRef]
- Robinson, C.D.; Webster, L.; Martínez-Gómez, C.; Burgeot, T.; Gubbins, M.J.; Thain, J.E.; Vethaak, A.D.; McIntosh, A.D.; Hylland, K. Assessment of contaminant concentrations in sediments, fish and mussels sampled from the North Atlantic and European regional seas within the ICON project. Mar. Environ. Res. 2017, 124, 21–31. [Google Scholar] [CrossRef] [Green Version]
- León, V.M.; Viñas, L.; Concha-Graña, E.; Fernández-González, V.; Salgueiro-González, N.; Moscoso-Pérez, C.; Muniategui-Lorenzo, S.; Campillo, J.A. Identification of contaminants of emerging concern with potential environmental risk in Spanish continental shelf sediments. Sci. Total Environ. 2020, 742, 140505. [Google Scholar] [CrossRef]
- Abbassy, M.M.S. Distribution pattern of persistent organic pollutants in aquatic ecosystem at the Rosetta Nile branch estuary into the Mediterranean Sea, North of Delta, Egypt. Mar. Pollut. Bull. 2018, 131, 115–121. [Google Scholar] [CrossRef]
- Montuori, P.; Aurino, S.; Garzonio, F.; Triassi, M. Polychlorinated biphenyls and organochlorine pesticides in Tiber River and Estuary: Occurrence, distribution and ecological risk. Sci. Total Environ. 2016, 571, 1001–1016. [Google Scholar] [CrossRef] [Green Version]
- Moschino, V.; Del Negro, P.; De Vittor, C.; Da Ros, L. Biomonitoring of a polluted coastal area (Bay of Muggia, Northern Adriatic Sea): A five-year study using transplanted mussels. Ecotoxicol. Environ. Saf. 2016, 128, 1–10. [Google Scholar] [CrossRef]
- Benedicto, J.; Campillo, J.A.; Fernández, B.; Martínez-Gómez, C.; León, V.M. Estrategia Marina Demarcación Marina Levantino-Balear Parte IV. Descriptores del Buen Estado Ambiental. Descriptor 8: Contaminantes y sus efectos. Evaluación inicial y Buen Estado Ambiental. [Marine Strategy for the Levantine—Balearic Marine Demarcation. Descriptors of Good Environmental Status. Descriptor 8: Pollutants and their Effects. Initial Evaluation and Good Environmental Status; Ministry of Agriculture, Food and Environment, Government of Spain: Madrid, Spain, 2012.
- Benedicto, J.; Campillo, J.A.; Fernández, B.; Martínez-Gómez, C.; León, V.M. Estrategia Marina Demarcación Marina Estrecho y Alborán. Descriptores del Buen Estado Ambiental. Descriptor 8: Contaminantes y sus efectos. Evaluación Inicial y Buen Estado Ambiental. [Marine Strategy for the Strait and Alboran Marine Demarcation. Descriptors of Good Environmental Status. Descriptor 8: Pollutants and their Effects. Initial Evaluation and Good Environmental Status; Ministry of Agriculture, Food and Environment, Government of Spain: Madrid, Spain, 2012.
- Bajt, O.; Ramšak, A.; Milun, V.; Andral, B.; Romanelli, G.; Scarpato, A.; Mitrić, M.; Kupusović, T.; Kljajić, Z.; Angelidis, M.; et al. Assessing chemical contamination in the coastal waters of the Adriatic Sea using active mussel biomonitoring with Mytilus galloprovincialis. Mar. Pollut. Bull. 2019, 141, 283–298. [Google Scholar] [CrossRef]
- Moreno-González, R.; León, V.M. Presence and distribution of current-use pesticides in surface marine sediments from a Mediterranean coastal lagoon (SE Spain). Environ. Sci. Pollut. Res. 2017, 24, 8033–8048. [Google Scholar] [CrossRef] [PubMed]
- Alomar, C.; Estarellas, F.; Deudero, S. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar. Environ. Res. 2016, 115, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.C. Persistent Organic Pollutants (POPs) and Related Chemicals in the Global Environment: Some Personal Reflections. Environ. Sci. Technol. 2021, 55, 9400–9412. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, I.; Sintes, T.; Bouma, T.; Duarte, C. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser. 2008, 356, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Bakir, A.; Rowland, S.J.; Thompson, R.C. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar. Coast. Shelf Sci. 2014, 140, 14–21. [Google Scholar] [CrossRef] [Green Version]
- de los Santos, C.B.; Krång, A.-S.; Infantes, E. Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume. Environ. Pollut. 2021, 269, 116050. [Google Scholar] [CrossRef]
- Gacia, E.; Granata, T.C.; Duarte, C.M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 1999, 65, 255–268. [Google Scholar] [CrossRef]
- Gerstenbacher, C.M.; Finzi, A.C.; Rotjan, R.D.; Novak, A.B. A review of microplastic impacts on seagrasses, epiphytes, and associated sediment communities. Environ. Pollut. 2022, 303, 119108. [Google Scholar] [CrossRef]
- Guigue, C.; Tedetti, M.; Dang, D.H.; Mullot, J.-U.; Garnier, C.; Goutx, M. Remobilization of polycyclic aromatic hydrocarbons and organic matter in seawater during sediment resuspension experiments from a polluted coastal environment: Insights from Toulon Bay (France). Environ. Pollut. 2017, 229, 627–638. [Google Scholar] [CrossRef]
LEAF | RHIZOME | SEDIMENT | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | LOQ (µg kg−1) | Linear Working Range (µg kg−1) | Linearity (R2) | Recovery | Inter-Day Precision (RSD%) | LOQ (µg kg−1) | Linear Working Range (µg kg−1) | Linearity (R2) | Recovery | Inter-Day Precision (RSD%) | LOQ (µg kg−1) | Linear Working Range (µg kg−1) | Linearity (R2) | Recovery | Inter-Day Precision (RSD%) | ||||||
R (%) b | R (%) b | R (%) b | |||||||||||||||||||
VL1 | VL2 | VL1 | VL2 | VL1 | VL2 | VL1 | VL2 | VL1 | VL2 | VL1 | VL2 | ||||||||||
PCBs | |||||||||||||||||||||
PCB 18 | 0.266 | 10–1000 | 0.9922 | 98(7) | 108(10) | 18 | 15 | 0.168 | 10–400 | 0.9986 | 97(9) | 98(3) | 17 | 6 | 0.017 | 1–200 | 0.9977 | 104(9) | 98(3) | 11 | 7 |
PCB 28+31 | 0.516 | 20–2000 | 0.9978 | 104(5) | 99(0) | 6 | 17 | 0.378 | 10–400 | 0.9988 | 93(3) | 99(8) | 1 | 7 | 0.023 | 1–200 | 0.9989 | 99(2) | 108(3) | 7 | 5 |
PCB 52 | 0.404 | 10–400 | 0.9966 | 110(5) | 99(1) | 17 | 13 | 0.378 | 10–400 | 0.9979 | 101(5) | 100(5) | 4 | 3 | 0.013 | 1–200 | 0.9991 | 111(4) | 100(1) | 5 | 3 |
PCB 44 | 0.015 | 20–2000 | 0.9998 | 99(0) | 100(0) | 8 | 17 | 0.127 | 10–1000 | 0.9982 | 105(4) | 99(2) | 5 | 6 | 0.009 | 1–200 | 0.9986 | 118(2) | 98(3) | 3 | 3 |
PCB 66 | 0.151 | 20–2000 | 0.9993 | 120(4) | 101(1) | 17 | 9 | 0.534 | 10–200 | 0.9930 | 115(17) | 95(8) | 18 | 5 | 0.027 | 1–200 | 0.9984 | 108(8) | 98(4) | 15 | 8 |
PCB 101 | 0.753 | 20–2000 | 0.9998 | 99(2) | 100(0) | 18 | 17 | 0.210 | 10–400 | 0.9894 | 94(11) | 106(10) | 2 | 4 | 0.040 | 1–200 | 0.9951 | 114(9) | 97(8) | 13 | 9 |
PCB 81 | 0.485 | 10–1000 | 0.9997 | 99(5) | 99(2) | 10 | 15 | 0.061 | 10–1000 | 0.9982 | 80(3) | 99(2) | 8 | 4 | 0.004 | 0.2–200 | 0.9926 | 102(7) | 108(9) | 10 | 10 |
PCB 77 | 0.018 | 10–2000 | 0.9997 | 106(7) | 100(1) | 8 | 14 | 0.162 | 10–200 | 0.9916 | 106(7) | 101(1) | 9 | 3 | 0.030 | 1–200 | 0.9964 | 94(10) | 105(7) | 12 | 10 |
PCB 123 | 0.363 | 20–1000 | 0.9996 | 104(1) | 99(2) | 8 | 15 | 0.009 | 10–400 | 0.9987 | 93(1) | 95(13) | 12 | 2 | 0.015 | 1–40 | 0.9975 | 103(7) | 100(9) | 8 | 9 |
PCB 118 | 0.121 | 20–1000 | 0.9979 | 101(2) | 100(1) | 5 | 14 | 0.037 | 10–400 | 0.9986 | 99(2) | 91(8) | 14 | 3 | 0.004 | 0.2–200 | 0.9926 | 102(5) | 93(10) | 7 | 6 |
PCB 114 | 0.032 | 10–400 | 0.9991 | 101(2) | 102(3) | 5 | 6 | 0.074 | 10–400 | 0.9984 | 98(8) | 94(10) | 18 | 9 | 0.046 | 1–200 | 0.9965 | 118(11) | 96(7) | 17 | 8 |
PCB 153 | 0.368 | 20–400 | 0.9951 | 100(6) | 100(3) | 11 | 18 | 0.035 | 10–400 | 0.9988 | 93(2) | 99(10) | 11 | 3 | 0.093 | 2–200 | 0.9989 | 97(10) | 100(1) | 15 | 5 |
PCB 105 | 0.608 | 20–1000 | 0.9973 | 97(4) | 101(1) | 10 | 18 | 0.075 | 10–400 | 0.9987 | 101(3) | 98(10) | 14 | 11 | 0.006 | 2–200 | 0.9936 | 102(13) | 95(9) | 15 | 9 |
PCB 138 | 0.267 | 10–1000 | 0.9970 | 99(0) | 100(2) | 3 | 14 | 0.261 | 10–1000 | 0.9803 | 93(15) | 97(4) | 10 | 5 | 0.004 | 1–200 | 0.9984 | 118(2) | 99(2) | 2 | 1 |
PCB 126 | 0.136 | 20–2000 | 0.9998 | 94(2) | 100(0) | 4 | 14 | 0.021 | 10–2000 | 0.9996 | 107(1) | 100(1) | 16 | 12 | 0.016 | 2–40 | 0.9760 | 85(5) | 109(15) | 15 | 7 |
PCB 128 | 0.022 | 20–400 | 0.9908 | 107(1) | 101(1) | 11 | 12 | 0.121 | 10–400 | 0.9979 | 99(12) | 99(8) | 1 | 3 | 0.019 | 2–200 | 0.9987 | 90(12) | 100(5) | 13 | 9 |
PCB 167 | 0.023 | 10–1000 | 0.9982 | 102(1) | 100(1) | 4 | 11 | 0.130 | 10–400 | 0.9988 | 92(7) | 99(10) | 3 | 1 | 0.046 | 1–200 | 0.9987 | 113(10) | 100(1) | 15 | 8 |
PCB 156 | 0.177 | 20–2000 | 0.9985 | 101(1) | 109(2) | 4 | 14 | 0.050 | 10–2000 | 0.9994 | 80(3) | 100(1) | 5 | 10 | 0.010 | 1–200 | 0.9990 | 85(7) | 99(2) | 18 | 7 |
PCB 157 | 0.265 | 20–1000 | 0.9934 | 100(1) | 102(1) | 6 | 15 | 0.035 | 10–400 | 0.9988 | 86(2) | 99(10) | 2 | 4 | 0.024 | 2–200 | 0.9995 | 84(4) | 100(1) | 18 | 10 |
PCB 180 | 0.206 | 20–1000 | 0.9965 | 108(9) | 100(0) | 9 | 17 | 0.182 | 10–400 | 0.9976 | 88(16) | 98(4) | 18 | 8 | 0.028 | 2–200 | 0.9997 | 101(16) | 100(3) | 18 | 5 |
PCB 169 | 0.171 | 10–1000 | 0.9977 | 100(1) | 100(1) | 10 | 15 | 0.052 | 10–2000 | 0.9996 | 102(1) | 100(0) | 13 | 8 | 0.048 | 2–200 | 0.9984 | 115(7) | 101(0) | 10 | 5 |
PCB 170 | 0.253 | 20–1000 | 0.9976 | 95(1) | 99(2) | 8 | 14 | 0.057 | 10–400 | 0.9987 | 91(4) | 99(9) | 5 | 4 | 0.001 | 1–200 | 0.9981 | 115(1) | 99(3) | 12 | 10 |
PCB 189 | 0.253 | 20–1000 | 0.9978 | 99(8) | 100(1) | 15 | 15 | 0.094 | 10–2000 | 0.9991 | 98(8) | 101(2) | 9 | 12 | 0.017 | 2–200 | 0.9981 | 82(6) | 103(4) | 10 | 10 |
PCB 194 | 0.078 | 20–2000 | 0.9986 | 97(5) | 99(0) | 5 | 16 | 0.069 | 10–2000 | 0.9993 | 90(8) | 100(1) | 10 | 5 | 0.070 | 2–40 | 0.9801 | 101(14) | 102(7) | 17 | 5 |
PCB 206 | 0.212 | 20–1000 | 0.9986 | 83(8) | 99(2) | 14 | 14 | 0.018 | 10–1000 | 0.9992 | 120(1) | 100(1) | 10 | 5 | 0.005 | 1- 40 | 0.9948 | 81(9) | 98(5) | 13 | 9 |
Pesticides | |||||||||||||||||||||
Pentachloro-benzene | 0.286 | 2–1000 | 0.9993 | 85(17) | 102(3) | 18 | 5 | 0.070 | 2–400 | 0.9996 | 99(3) | 100(1) | 13 | 10 | 0.001 | 0.2–40 | 0.9995 | 104(0) | 100(1) | 5 | 2 |
Trifluralin | 0.123 | 10–1000 | 0.9998 | 100(2) | 102(0) | 6 | 3 | 0.305 | 10–400 | 0.9980 | 106(5) | 99(7) | 7 | 2 | 0.050 | 1–40 | 0.9950 | 117(4) | 101(1) | 7 | 4 |
Hexachloro-benzene | 1.131 | 10–2000 | 0.9985 | 97(10) | 98(2) | 5 | 18 | 0.359 | 10–200 | 0.9969 | 120(8) | 101(0) | 3 | 8 | 0.205 | 2–40 | 0.9966 | 114(10) | 99(2) | 4 | 5 |
Simazine | 0.550 | 20–1000 | 0.9991 | 101(4) | 102(2) | 10 | 3 | 0.011 | 10–200 | 0.9978 | 119(8) | 107(1) | 5 | 2 | 0.019 | 2–40 | 0.9875 | 91(1) | 103(6) | 4 | 9 |
Atrazine | 0.376 | 10–2000 | 0.9994 | 102(6) | 102(2) | 5 | 2 | 0.777 | 10–400 | 0.9981 | 108(8) | 94(12) | 4 | 10 | 0.047 | 1–40 | 0.9981 | 102(4) | 101(4) | 5 | 11 |
Chlorpyrifos | 0.076 | 10–2000 | 0.9974 | 101(2) | 97(4) | 6 | 3 | 0.158 | 10–400 | 0.9863 | 96(5) | 109(12) | 3 | 5 | 0.103 | 2–40 | 0.9940 | 87(9) | 101(3) | 10 | 16 |
Aldrin | 0.216 | 20–1000 | 0.9993 | 85(5) | 101(1) | 2 | 1 | 0.635 | 10–2000 | 0.9997 | 112(3) | 99(2) | 4 | 6 | 0.025 | 2–40 | 0.9958 | 81(4) | 100(2) | 6 | 9 |
Isodrin | 0.756 | 10–2000 | 0.9976 | 97(15) | 100(2) | 5 | 1 | 0.221 | 10–1000 | 0.9997 | 90(5) | 99(2) | 20 | 10 | 0.098 | 2–100 | 0.9991 | 100(6) | 100(2) | 9 | 9 |
Dieldrin | 0.126 | 20–1000 | 0.9959 | 82(3) | 101(3) | 4 | 5 | 0.621 | 10–200 | 1.0000 | 108(13) | 101(3) | 9 | 6 | 0.002 | 1–100 | 0.9989 | 87(1) | 99(1) | 14 | 6 |
Endrin | 0.946 | 10–400 | 0.9805 | 89(1) | 104(2) | 9 | 10 | 1.819 | 10–200 | 0.9964 | 107(11) | 99(1) | 12 | 6 | 0.002 | 1–100 | 0.9873 | 87(1) | 100(2) | 13 | 4 |
o,p’-DDT | 5.348 | 20–1000 | 0.9882 | 92(16) | 100(1) | 18 | 15 | 9.785 | 10–400 | 0.9991 | 115(15) | 110(6) | 17 | 10 | 0.130 | 1–40 | 0.9973 | 91(9) | 102(3) | 11 | 9 |
p,p’-DDD | 0.482 | 10–400 | 0.9923 | 110(12) | 106(9) | 15 | 10 | 1.982 | 10–200 | 0.9991 | 107(13) | 100(1) | 16 | 8 | 0.048 | 1–40 | 0.9923 | 92(12) | 94(9) | 13 | 6 |
p,p’-DDT | 4.725 | 10–400 | 0.9982 | 118(15) | 100(9) | 15 | 13 | 0.419 | 10–400 | 0.9996 | 110(13) | 100(6) | 19 | 8 | 0.015 | 2–100 | 0.9996 | 112(4) | 99(2) | 8 | 9 |
Matrix | Site | PCB 18 | PCB 28+31 | PCB 52 | PCB 44 | PCB 101 | PCB 81 | PCB 77 | PCB 123 | PCB 118 | PCB 114 | PCB 153 | PCB 105 | PCB 138 | PCB 128 | PCB 167 | PCB 157 | PCB 180 | PCB 170 | ƩPCBs | ∑7 PCBs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rhizome | ALI5 | -- | 10.7 | 1.6 | 11.2 | -- | 9.7 | 11.1 | -- | -- | -- | 2.0 | -- | -- | -- | 8.7 | -- | -- | -- | 55.0 | 14.3 |
ALI6 | -- | 1.8 | 0.6 | 1.9 | -- | -- | 1.3 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 5.6 | 2.4 | |
ALI7 | -- | 2.6 | 0.6 | 1.6 | -- | 1.1 | 1.6 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 7.5 | 3.2 | |
V-sed | ALI5 | 1.4 | 1.5 | 1.1 | 1.7 | 1.2 | 0.8 | 0.9 | 1.1 | 0.9 | 0.9 | 0.9 | 0.9 | 1.6 | 1.0 | 1.4 | 1.5 | 1.1 | 1.5 | 21.5 | 8.3 |
Matrix | Site | Trifluralin | Chlorpyrifos | Isodrin | o,p´-DDT | ƩPesticides |
---|---|---|---|---|---|---|
Rhizome | ALI5 | 3.9 | 3.2 | 1.9 | * | 9.0 |
ALI6 | 2.0 | 1.3 | 1.7 | -- | 5.0 | |
ALI7 | -- | -- | 1.0 | -- | 1.0 |
Almeria Region | Alicante Region | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Matrix | Compound | EE2 | EE4 | RM4 | RM6 | ALM1 | ALM3 | V1 | V2 | CG2 | CG3 | CG4 | C2 | ALI1 | ALI2 | ALI3 | ALI7 | ALI5 | ALI6 | ALI4 |
Leaf | 1,4-Dimethyl naphthalene | 3.22 | 8.97 | -- | n.s. | -- | -- | n.s. | 28.96 | -- | 16.87 | -- | -- | -- | -- | -- | 10.02 | 14.31 | 16.32 | 9.88 |
2-Phenylphenol | -- | -- | 2.89 | n.s. | -- | -- | n.s. | -- | -- | -- | -- | -- | -- | 11.03 | 8.43 | 9.18 | 7.16 | 9.6 | ||
Terbutryn | -- | -- | -- | n.s. | -- | -- | n.s. | -- | -- | -- | -- | -- | 0.21 | 0.11 | -- | -- | -- | -- | -- | |
Tetraconazole | -- | -- | -- | n.s. | -- | -- | n.s. | -- | -- | -- | -- | -- | -- | -- | -- | 1.12 | -- | -- | -- | |
Piperonylbutoxide | -- | -- | -- | n.s. | -- | -- | n.s. | -- | -- | 84.39 | -- | -- | -- | -- | -- | -- | -- | -- | -- | |
Difenoconazole | -- | -- | -- | n.s. | -- | -- | n.s. | -- | -- | 265.24 | -- | -- | -- | -- | -- | 10.05 | -- | -- | -- | |
Mean regional values | 82.11 | 15.35 | ||||||||||||||||||
Rhizome | 2,4,6-trichlorophenol | -- | -- | -- | n.s. | -- | 0.88 | n.s. | -- | -- | -- | 0.36 | -- | -- | -- | -- | -- | -- | -- | -- |
1,4-Dimethyl naphthalene | -- | -- | -- | n.s. | -- | 5.33 | n.s. | -- | -- | -- | 4.46 | -- | -- | -- | -- | -- | -- | -- | -- | |
Lindane | -- | -- | -- | n.s. | -- | -- | n.s. | -- | -- | -- | -- | -- | -- | -- | -- | 0.22 | 0.51 | 0.11 | -- | |
Pyrimethanil | -- | -- | -- | n.s. | -- | 40.66 | n.s. | -- | -- | -- | 29.29 | -- | 0.13 | -- | -- | -- | -- | -- | ||
Penconazole | -- | -- | -- | n.s. | -- | 0.28 | n.s. | -- | -- | -- | 0.13 | -- | -- | -- | -- | -- | -- | -- | -- | |
Fludioxonil | -- | -- | -- | n.s. | -- | -- | n.s. | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 2.85 | 7.93 | |
Fenbuconazole | -- | 6.16 | 8.73 | n.s. | 6.59 | -- | n.s. | -- | 6.84 | 7.11 | -- | -- | 4.08 | -- | -- | 3.15 | -- | -- | -- | |
Mean regional values | 16.69 | 3.63 | ||||||||||||||||||
NV-Sed | Prallethrin | -- | -- | -- | 5.78 | -- | -- | 7.45; 5.52 | n.s. | -- | -- | -- | 6.9 | 4.23 | n.s. | n.s. | 7.31 | -- | -- | -- |
V-Sed | -- | -- | -- | n.s. | -- | -- | n.s. | n.s. | -- | -- | -- | 5.28 | 5.01 | 6.01; 4.27 | 7.53; -- | 5.74 | -- | -- | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astudillo-Pascual, M.; Aguilera, P.A.; Garrido Frenich, A.; Domínguez, I. Target and Suspect Analysis with High-Resolution Mass Spectrometry for the Exhaustive Monitoring of PCBs and Pesticides in Posidonia oceanica Meadows and Sediments. Chemosensors 2022, 10, 531. https://doi.org/10.3390/chemosensors10120531
Astudillo-Pascual M, Aguilera PA, Garrido Frenich A, Domínguez I. Target and Suspect Analysis with High-Resolution Mass Spectrometry for the Exhaustive Monitoring of PCBs and Pesticides in Posidonia oceanica Meadows and Sediments. Chemosensors. 2022; 10(12):531. https://doi.org/10.3390/chemosensors10120531
Chicago/Turabian StyleAstudillo-Pascual, Marina, Pedro A. Aguilera, Antonia Garrido Frenich, and Irene Domínguez. 2022. "Target and Suspect Analysis with High-Resolution Mass Spectrometry for the Exhaustive Monitoring of PCBs and Pesticides in Posidonia oceanica Meadows and Sediments" Chemosensors 10, no. 12: 531. https://doi.org/10.3390/chemosensors10120531
APA StyleAstudillo-Pascual, M., Aguilera, P. A., Garrido Frenich, A., & Domínguez, I. (2022). Target and Suspect Analysis with High-Resolution Mass Spectrometry for the Exhaustive Monitoring of PCBs and Pesticides in Posidonia oceanica Meadows and Sediments. Chemosensors, 10(12), 531. https://doi.org/10.3390/chemosensors10120531