Highly Sensitive Plasmonic Sensor with Au Bow Tie Nanoantennas on SiO2 Nanopillar Arrays
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Change in Height of the Nanopillar
3.2. Change in Periodicity of the Arrays
3.3. Sensitivity Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rivera, V.; Ferri, F.; Marega, E. Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions. In Plasmonics; Young, K.K., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 11. [Google Scholar]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Hong, R.; Shao, W.; Sun, W.; Deng, C.; Tao, C.; Zhang, D. The influence of dielectric environment on the localized surface plasmon resonance of silver-based composite thin films. Opt. Mater. 2018, 83, 212–219. [Google Scholar] [CrossRef]
- Sandu, T. Shape effects on localized surface plasmon resonances in metallic nanoparticles. J. Nanopart. Res. 2013, 14, 905. [Google Scholar] [CrossRef]
- Ringe, E.; Zhang, J.; Langille, M.; Sohn, K.; Cobley, C.; Au, L.; Xia, Y.; Mirkin, C.; Huang, J.; Marks, L.; et al. Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes. MRS Proc. 2010, 1208, 52–57. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical Antennas. Adv. Opt. Photon. 2009, 1, 438–483. [Google Scholar] [CrossRef]
- Biagioni, P.; Huang, J.-S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402. [Google Scholar] [CrossRef]
- Venugopalan, P.; Mousavi, N.S.S.; Dabirian, A.; Kumar, S. Ultrasensitive biosensing based on plasmonic nanostructures. In Proceedings of the SPIE Micro + Nano Materials, Devices, and Applications 2019, Melbourne, Australia, 8–12 December 2019. [Google Scholar] [CrossRef]
- Kumawat, N.; Varma, M.; Kumar, S. Phase sensitive diffraction sensor for high sensitivity refractive index measurement. In Proceedings of the SPIE BIOS Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics, San Francisco, CA, USA, 27 January–1 February 2018. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas. Phys. Rev. Lett. 2010, 104, 213902. [Google Scholar] [CrossRef]
- Cao, L.; Fan, P.; Vasudev, A.P.; White, J.S.; Yu, Z.; Cai, W.; Schuller, J.A.; Fan, S.; Brongersma, M.L. Semiconductor Nanowire Optical Antenna Solar Absorbers. Nano Lett. 2010, 10, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Argyropoulos, C.; Alù, A. Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics 2012, 1, 221–233. [Google Scholar] [CrossRef]
- Fromm, D.P.; Sundaramurthy, A.; Schuck, P.J.; Kino, G.; Moerner, W.E. Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible. Nano Lett. 2004, 4, 957–961. [Google Scholar] [CrossRef]
- Patel, S.K.; Argyropoulos, C. Plasmonic nanoantennas: Enhancing light-matter interactions at the nanoscale. EPJ Appl. Metamater. 2015, 2, 4. [Google Scholar] [CrossRef]
- Morshed, M.; Khaleque, A.; Hattori, H. Multi-layered bowtie nano-antennas. J. Appl. Phys. 2017, 121, 133106. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Gutha, R.R.; Wing, W.J. Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films. Opt. Lett. 2016, 41, 3367–3370. [Google Scholar] [CrossRef]
- Böhm, M.; Uhlig, T.; Derenko, S.; Eng, L.M. Mechanical tuning of plasmon resonances in elastic, two-dimensional gold-nanorod arrays. Opt. Mater. Express 2017, 7, 1882–1897. [Google Scholar] [CrossRef]
- ANikitin, A.G.; Kabashin, A.; Dallaporta, H. Plasmonic resonances in diffractive arrays of gold nanoantennas: Near and far field effects. Opt. Express 2012, 20, 27941–27952. [Google Scholar] [CrossRef]
- Kravets, V.G.; Schedin, F.; Grigorenko, A.N. Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles. Phys. Rev. Lett. 2008, 101, 087403. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, A.D.; Barnes, W.L. Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers. J. Opt. 2016, 18. [Google Scholar] [CrossRef]
- Offermans, P.; Schaafsma, M.C.; Rodriguez, S.R.K.; Zhang, Y.; Crego-Calama, M.; Brongersma, S.H.; Rivas, J.G. Universal Scaling of the Figure of Merit of Plasmonic Sensors. ACS Nano 2011, 5, 5151–5157. [Google Scholar] [CrossRef]
- Venugopalan, P.; Kumar, S. Plasmonic properties of gold nanostructures on Hf-doped ZnO film and its application for refractive index sensing with a high figure of merit. Opt. Mater. Express 2022, 12, 2127. [Google Scholar] [CrossRef]
- Su, W.; Ding, Y.; Luo, Y.; Liu, Y. A high figure of merit refractive index sensor based on Fano resonance in all-dielectric metasurface. Results Phys. 2019, 16, 102833. [Google Scholar] [CrossRef]
- Sasi, S.; Francis, S.M.; Jacob, J.; Thomas, V.I. A Tunable Plasmonic Refractive Index Sensor with Ultrabroad Sensing Range for Cancer Detection. Plasmonics 2021, 16, 1705–1717. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Han, Y. Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator. Sensors 2018, 18, 116. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 2019, 66, 1038–1043. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Highly Sensitive Refractive Index Sensor Based on Plasmonic Bow Tie Configuration. Photon-Sens. 2020, 10, 223–232. [Google Scholar] [CrossRef]
- Liu, J.; Xu, B.; Zhang, J.; Song, G. Double Plasmon-Induced Transparency in Hybrid Waveguide-Plasmon System and Its Application for Localized Plasmon Resonance Sensing with High Figure of Merit. Plasmonics 2013, 8, 995–1001. [Google Scholar] [CrossRef]
- Khan, A.D. Refractive index sensing with fano resonant L-shaped metasurface. Opt. Mater. 2018, 82, 168–174. [Google Scholar] [CrossRef]
- Li, G.; Hu, H.; Wu, L. Tailoring Fano lineshapes using plasmonic nanobars for highly sensitive sensing and directional emission. Phys. Chem. Chem. Phys. 2019, 21, 252–259. [Google Scholar] [CrossRef]
- Ye, H.-Y.; Huang, X.-Q.; Wen, K.-H.; Xue, J.-C.; Zhou, J.-Y.; Meng, Z.-M. Near-infrared narrow plasmonic resonances for high-performance optical sensing in a sodium-based nanograting. Results Phys. 2022, 38, 105566. [Google Scholar] [CrossRef]
- Martinsson, E.; Otte, M.A.; Shahjamali, M.M.; Sepulveda, B.; Aili, D. Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles. J. Phys. Chem. C 2014, 118, 24680–24687. [Google Scholar] [CrossRef]
- Huang, X.; Lou, C.; Zhang, H.; Pribat, D. Plasmonic Lattice Mode Formed by Ag Nanospheres on Silica Pillar Arrays. Plasmonics 2019, 14, 241–245. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Wang, Y.; Zhu, M.; Shao, G. Reduced resonance line-width and enhanced figure of merit in Ag/Si/SiO2 nanopillar array sensors. Results Phys. 2020, 19, 103612. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, J.; Liu, T.; Tao, Y.; Jiang, R.; Liu, M.; Xiao, G.; Zhu, J.; Zhou, Z.-K.; Wang, X.; et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Maradudin, A.A.; Simonsen, I.; Polanco, J.; Fitzgerald, R.M. Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating. J. Opt. 2016, 18. [Google Scholar] [CrossRef]
- Hessel, A.; Oliner, A.A. A New Theory of Wood’s Anomalies on Optical Gratings. Appl. Opt. 1965, 4, 1275–1297. [Google Scholar] [CrossRef]
- Meier, M.; Wokaun, A.; Liao, P.F. Enhanced fields on rough surfaces: Dipolar interactions among particles of sizes exceeding the Rayleigh limit. J. Opt. Soc. Am. B 1985, 2, 931–949. [Google Scholar] [CrossRef]
- Carron, K.T.; Fluhr, W.; Meier, M.; Wokaun, A.; Lehmann, H.W. Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering. J. Opt. Soc. Am. B 1986, 3, 430–440. [Google Scholar] [CrossRef]
- Huang, X.; Lou, C.; Zhang, H. Experimentally demonstrating plasmonic lattice mode in periodic Ag nanoparticle arrays on quartz trapezoidal pillars. J. Phys. D Appl. Phys. 2018, 51, 465101. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Evlyukhin, A.; Gonçalves, M.R.; Reinhardt, C.; Koroleva, A.; Arnedillo, M.L.; Kiyan, R.; Marti, O.; Chichkov, B. Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications. ACS Nano 2011, 5, 4843–4849. [Google Scholar] [CrossRef]
- Huang, X.; Lou, C.; Zhang, H.; Yang, H. Effects of different structural parameters and the medium environment on plasmonic lattice resonance formed by Ag nanospheres on SiO2 nanopillar arrays. Chin. Opt. Lett. 2020, 18, 033601. [Google Scholar] [CrossRef]
- Hatab, N.A.; Hsueh, C.-H.; Gaddis, A.L.; Retterer, S.T.; Li, J.-H.; Eres, G.; Zhang, Z.; Gu, B. Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 4952–4955. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cushing, S.K.; Liang, H.; Suri, S.; Ma, D.; Wu, N. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA. Anal. Chem. 2013, 85, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venugopalan, P.; Kumar, S. Highly Sensitive Plasmonic Sensor with Au Bow Tie Nanoantennas on SiO2 Nanopillar Arrays. Chemosensors 2023, 11, 121. https://doi.org/10.3390/chemosensors11020121
Venugopalan P, Kumar S. Highly Sensitive Plasmonic Sensor with Au Bow Tie Nanoantennas on SiO2 Nanopillar Arrays. Chemosensors. 2023; 11(2):121. https://doi.org/10.3390/chemosensors11020121
Chicago/Turabian StyleVenugopalan, Priyamvada, and Sunil Kumar. 2023. "Highly Sensitive Plasmonic Sensor with Au Bow Tie Nanoantennas on SiO2 Nanopillar Arrays" Chemosensors 11, no. 2: 121. https://doi.org/10.3390/chemosensors11020121
APA StyleVenugopalan, P., & Kumar, S. (2023). Highly Sensitive Plasmonic Sensor with Au Bow Tie Nanoantennas on SiO2 Nanopillar Arrays. Chemosensors, 11(2), 121. https://doi.org/10.3390/chemosensors11020121