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Abstract: We report on plasmonic sensors based on arrays of metallic bow tie nanoantennas with high
sensitivity and an enhanced figure of merit. In the present sensing device, each gold nanoantenna
is positioned on the upper surface of a SiO2 nanopillar that is placed on a quartz substrate. The
presence of the nanopillar significantly reduces the coupling of the enhanced electromagnetic field
generated at the plasmon resonance to the substrate. The simulated results show that the sensitivity
of the device to refractive index sensing is 612 nm/RIU, calculated by the resonance wavelength shift
per refractive index unit due to the change in the ambient medium index, while the full width at half
maximum is calculated at around 10 nm with a figure of merit of 61. The proposed sensor thus has a
great potential for sensing and detection applications.

Keywords: plasmonic lattice resonance; plasmonic sensors; sensitivity

1. Introduction

When light is incident on a metal nanoparticle at the resonant frequency, the conduc-
tion electrons are excited, resulting in collective oscillations known as localized surface
plasmon resonances (LSPR) [1,2]. The excitation of LSPRs enables the subwavelength local-
ization and enhancement of electromagnetic fields, which are determined by the dielectric
properties of the metal and the surrounding medium [3] and by the nanoparticle size and
shape [4,5]. Metallic nanoantennas have recently gained much popularity due to their
potential to localize and trap electromagnetic fields in nano regimes, attained by the cou-
pling of LSPRs [6]. The recent development in micro-nano fabrication and characterization
technologies has led to rapid advancement in improving the performance of the nanoan-
tennas for a variety of applications, such as biological and chemical sensing with enhanced
efficiency and sensitivity [7–9], wireless communication in nanophotonic chips [10], energy
harvesting [11], nanoscale nonlinear optics [12], etc. Single or paired metallic nanoparticles
are the most fundamental geometry of a plasmonic antenna. Amongst the other designs,
bow tie nanoantennas, made of two gold triangles in a tip-to-tip configuration, provide
much stronger electric field localization and enhancement because of the coupling across
the gap and the lightning rod effect [13–15].

Periodic arrays of metal nanoantennas can generate plasmonic lattice resonances
(PLR), arising from the coupling between diffracted waves from the periodic array and
the localized surface plasmons of the metal nanoantennas [16–22]. The coupling generates
an enhanced electric field around the nanostructures that can be employed in plasmonic
sensors that rely on shifts in their lattice resonant wavelength prompted by an alteration
in the refractive indices of the ambient media [23–27]. The performance of a sensor based
on such periodic metal arrays is determined by the figure of merit (FOM), which is the
ratio of the sensitivity, defined as the shift in the wavelength of PLR per refractive index
unit (RIU) to the full width at half maximum (FWHM) [28]. There have been several
such geometries arranged in a periodic manner, like L-shaped gold nanobars [29,30], MIM
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nanograting structures [31], etc., with a higher FOM and sensitivity. In practice, however,
any periodic metal arrays require a substrate to be supported. Such substrate-supported
nanostructures suffer from the intrinsic drawback that a portion of the electromagnetic
field around the structure is transferred to the substrate due to the high refractive index of
the latter [32]. This weakens the intensity of the lattice resonance owing to the difference in
material properties between the superstrate (air) and the substrate, and thus its FWHM.
The detection of resonance shifts of several nanometers in sensitivity studies will thus be
hindered, resulting in a reduced FOM of the periodic metal array sensors.

The substrate effect can be overcome by separating the periodic metal arrays from the
substrate. One such method is lifting the metal arrays by using dielectric nano-separators
such as nanopillars, as has been shown in the literature [33,34]. The refractive index
difference between the air and the substrate is reduced because of the lower equivalent
index of SiO2 nanopillars, thereby providing a more uniform dielectric environment for
the metal arrays. This can increase the efficiency of the PLR formation of the periodic
metal arrays as well as the related sensitivity. However, the FWHM of the plasmonic lattice
resonance is still relatively wide, and the FOM should be further increased.

Previous studies on overcoming the substrate effect have considered simple metallic
nanoparticles in spherical and cylindrical (dielectric pillar) shapes [33,34] or gold caps on
photoresists pillars in geometries like plasmonic mushroom arrays [35]. In the present
work, we study a geometry combining plasmon-enhanced structures in the form of metallic
bow-tie nanoantennas and dielectric pillars to decrease the FWHM of the lattice resonance
and improve the FOM. Here, each metallic nanoantenna is placed on top of the dielectric
pillar, which in turn is placed on the quartz substrate. The dielectric pillar arrays provide
more homogenous surroundings for the nanoantennas, resulting in the formation of the
PLRs. This, together with the much-enhanced fields at the gap of metallic nanoantennas,
will reduce the FWHM of the lattice resonances. It is shown that the PLRs generated by the
present design configuration are more sensitive to the ambient medium, thereby improving
the performance of the sensor device, especially in comparison to the previously reported
structures [34].

2. Materials and Methods

Figure 1 shows the plasmonic system under study, consisting of an array of Au
nanoantennas on SiO2 nanopillar arrays, placed on the surface of a quartz substrate. Each
SiO2 nanopillar has a diameter d and height h1. P is the period of the arrays in the x
and y directions. A three-dimensional finite difference time domain (3D-FDTD) method
implemented in a commercial software from Lumerical Inc. (Canada) is used to conduct
the simulations.
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Before considering the nanoantennas placed on dielectric pillars, an optimization
study of a nanoantenna placed directly on a quartz substrate is conducted to find the
geometrical parameters that give the maximum field enhancement at the gap. These
parameter optimizations of Au nanoantennas are conducted using FDTD, thereby fixing
the geometry of nanoantennas in the subsequent calculations, which is found to be height
h2 = 50 nm, the length and width of each nanotriangle in the bow tie = 70 and 150 nm,
respectively, and gap distance between the tips of the two nano triangles in the bow
tie = 5 nm. Here, the width is the base of the isosceles triangle, and the length is the
distance of the perpendicular from the base to the opposite vertex. Each SiO2 nanopillar
has a diameter (d) of 200 nm to support the chosen geometry of the nanoantenna on the top
of the pillar.

Cartesian coordinates are used to represent the geometry of the device. The x and y
axes are in the plane, and the z axis is perpendicular, i.e., parallel to the axis of the cylindrical
nanopillars. In all simulations, the mesh size is 2 nm along the three axes. Perfectly matched
layers (PML) are kept in the z axis, and periodic Bloch boundary conditions are kept in
the x and y axes. Electromagnetic fields in the vicinity of the nanoantennas are simulated
presuming plane wave illumination, with wavelengths changing between 500 nm and
1000 nm. The FDTD calculations are performed for the incident electric field with TE
(transverse electric) polarization along the axis of the nano antennas. The optical refractive
indices (wavelength dependent) of Au and SiO2 are taken from literature [36], and those
of the quartz substrate are taken to be constant (ns = 1.46). The refractive index, n, of the
ambient media varies from 1.0 to 1.3.

3. Results and Discussions

In a periodic array of metallic nanostructures, different orders of diffraction can
be generated if the wavelength of the incident light is comparable to the period of the
structures [18]. The projection of the wave vector into the x-y plane is calculated as [18]

k||m1,m2
= kxex + kyey + m1Gxex + m2Gyey (1)

where kx and ky are components of the wave number along x and y directions, Gx and Gy are
reciprocal lattice vectors along x and y directions, and m1 and m2 are integers corresponding
to diffraction orders. Here, the zeroth-order diffracted wave propagates in the z direction,
and the first order propagates horizontally, parallel to the surface. When the incident
wavelength is lesser than the period, the zeroth order continues to propagate in the vertical
z direction, whereas the first order propagates at an angle to the x-y plane. As the incident
wavelength gets longer than the period, the first order vanishes while the zeroth order
waves propagate in the z direction. The wavevector component in the z direction is
determined as [18]

kz =
√

k2 − k2
||m1,m2

(2)

where k = n 2π
λ is the wave vector magnitude in a medium of refractive index, n.

However, in a periodic array of metallic bow tie nanoantennas, the transmission is
influenced by diffraction and also by localized surface plasmon resonance. When the
incident wavelength is comparable to the period of the array, the diffraction waves are
stronger, and the localized field around the nanoantennas is converted into diffraction
waves. This dampens the resonance of the nanostructures, thus increasing the transmission.
The threshold wavelength above which this phenomenon happens is the Rayleigh anomaly
wavelength [37,38] as follows

λRA = nP (3)

where P is the period of the array.
Rayleigh anomaly in the present configuration is observed in the transmission curve

for a representative geometry in Figure 2. In Figure 2a, the excitation of the localized
plasmons and the diffractive surface waves in periodic Au nanoantenna arrays result in a
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fan-like shape in transmission. The transmittance varies from the highest, around 550 nm,
to the lowest, around 670 nm, in a small range of the spectrum. The highest value of
transmittance is generated by the Rayleigh anomaly when a diffraction order appears or
disappears [37]. When the incident wavelength rises beyond the period, the first-order
wave disappears, but diffraction in the substrate doesn’t die out, and the plasmonic field
around the metallic bow tie nanoantennas still dissipates through it. This is the reason for
the weakened PLR when the metallic nanoantennas are placed directly on the substrate, as
seen in the red curve in Figure 2a. The PLR corresponds to the minimum transmittance,
toward the higher wavelength side of the Rayleigh anomaly. The black curve in Figure 2a
shows the transmission for Au bow tie nanoantennas on 500 nm high nanopillars, which
are placed on the quartz substrate.
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Figure 2. (a) The transmission spectra of the plasmonic structures depicted in Figure 1, with
P = 550 nm and n = 1. The black curve is for Au bow tie nanoantennas on SiO2 nanopillars, which are
placed on the quartz substrate. The red curve is for Au bow tie nanoantennas directly placed on the
quartz substrate. Electric field distribution, abs (E/E0) (in a linear scale), of the structure with Au bow
tie nanoantennas on nanopillar, which is placed on the quartz substrate (b) top view (c) side view.

The presence of SiO2 nanopillars reduces the line width of the plasmonic lattice
resonance, as the former have a similar equivalent refractive index to the air and furnish
Au nanoantennas with a homogeneous environment. This reduces the unevenness of the
diffraction in the superstrate and in the substrate and facilitates the generation of narrower
resonances [39,40]. These resonances will be sensitive to variations in different structural
parameters. We now show how the period and height of the SiO2 nanopillars can influence
the efficient generation of plasmonic lattice resonances.

3.1. Change in Height of the Nanopillar

Figure 3a shows the transmission spectra of Au bow tie nanoantennas on SiO2 nanopil-
lars for different heights of the nanopillars. When the distance between the quartz substrates
and Au nanoantennas is lower, the first-order diffracted waves of the quartz substrate
take away the energy from the nanoantennas, leading to a radiative damping of the res-
onance [33,41]. This weakens the PLR of Au nanoantennas, resulting in a broadening of
the resonances.
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a periodic increase in the height of the nanopillars.

As the height of the nanopillar is increased, the impact of the quartz substrate on
the diffraction is reduced because of the more homogeneous surroundings of the Au
nanoantennas. This lowers the transmission at the dip position, allowing more energy to
be gathered around the nanoantennas and thus optimizing the PLR. The strength of the
diffraction decreases rapidly as the height of the nanopillar is increased, resulting in a rapid
decrease in the transmittance in the height range of 350 nm–450 nm of SiO2 nanopillars.
The diffraction in the substrate is reduced when the pillar is higher than 500 nm, thereby
resulting in a slow reduction of transmission, as is observed as flattening out in Figure 3b.
As the height of the pillars is varied, there can also be a periodic change in the reflection
from the substrate surface, resulting in constructive and destructive interference with the
resonance of the nanostructures and being observed as oscillations in the curve.

3.2. Change in Periodicity of the Arrays

Figure 4a shows the transmission spectra of Au nanoantennas on SiO2 nanopillars
for different array periods. When the array period is increased (with other parameters
held constant), the PLR wavelength position is red-shifted and the transmission at the PLR
wavelength is increased as is observed in Figure 4a. This is because of the red-shifting of
the wavelengths of surface diffraction waves, or the Rayleigh anomaly (that propagate in
the direction parallel to the substrate surface), which is relative to the period of the arrays
and the refractive index of the surrounding medium [37], as is seen in Equation (3). The
wavelength shifting of the surface diffraction waves weakens the coupling between the
diffracted waves and the localized surface plasmons, resulting in a reduced PLR intensity.
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3.3. Sensitivity Studies

Figure 5a shows the transmission spectra of the present sensor in various media
environments. Since the wavelength of the diffraction waves is redshifted as per the
Rayleigh anomaly [37,39], as the refractive index of the ambient medium increases, the



Chemosensors 2023, 11, 121 6 of 8

lattice resonant wavelength linearly shifts towards red. Thus, the variation in the refractive
index of the ambient medium can be measured by observing the transmission near the
resonance wavelength. It can be seen in Figure 5b that as the refractive index of the ambient
medium increases from 1.0 to 1.5, the lattice resonance wavelength of the structure with
nanopillars predominantly shifts linearly from 653 nm to 959 nm. The sensitivity of the
proposed structure, which is the shift of the wavelength of PLR per RIU change, is thereby
calculated as 612 nm/RIU.
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Moreover, it can be observed from Figure 5a that the FWHM of the PLR is around
10 nm and that it is not susceptible to the refractive index of the ambient medium. The
figure of merit (FOM) is calculated as the ratio of sensitivity to FWHM and is thus obtained
as 61, which is larger than the previously communicated periodic nanoparticle arrays [42].
In addition, it can be observed from Figure 5b that the presence of SiO2 nanopillar arrays
has significantly improved the sensitivity performance of the present device in comparison
to the device having nanoantenna arrays directly placed on a quartz substrate.

Previous studies based on the same principle of lifting the nanostructures from the
substrate using nanopillars have used different geometries of metallic nanoparticles. Ag
nanospheres on silica pillar arrays [43] and Ag/Si/SiO2 nanopillar arrays [34] have demon-
strated sensitivities of 460 nm/RIU and 450 nm/RIU, respectively. As noted before, our
geometry using metallic bow tie nanoantennas on silica pillar arrays has a sensitivity of
612 nm/RIU with a comparable FOM. This sensitivity is 33% higher than these previously
reported values from the literature [34,43].

4. Conclusions

In conclusion, a plasmonic sensor device is developed consisting of Au bow tie nanoan-
tennas on SiO2 nanopillar arrays with a reduced FWHM of the plasmonic lattice resonance
of 10 nm (for n = 1.3, P = 550 nm, d = 200 nm, h1 = 500 nm, h2 = 50 nm). The presence of the
nanopillars provides a more homogenous surrounding for Au nanoantennas, generating
ambient-sensitive PLRs. The effects of different structural parameters, including the height
and period of the nanopillar arrays and the ambient medium, on the PLRs generated by
the proposed structure are systematically investigated. The calculated refractive index sen-
sitivity of the optimized structure is 612 nm/RIU, which is significantly higher compared
to approximately 300 nm/RIU for arrays of Au nanoantennas placed directly on quartz
substrates, as well as 450–460 nm/RIU for metallic nanoparticles on silica pillar arrays.
The higher sensitivity and narrow FWHM of this device provide potential advantages
in improving the development and deployment of plasmonic array sensors in different
applications. Our plasmonic system with a high field enhancement at the gap of Au
nanoantennas can also be used as a SERS (surface enhanced Raman scattering) sensor [44].
By coupling SERS tags onto the plasmonic sensor chip, SERS sensors can be developed [45].
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This sensor configuration, with a more homogenous environment around the nanoantennas,
is expected to have an outstanding capability to perform chemical analysis and imaging
with the measurement of a wide range of biomolecules.
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