Chemical Sensors for Volatile Organic Compound Detection
Conflicts of Interest
References
- Bari, M.A.; Kindzierski, W.B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and Screening Health Risk Assessment. Sci. Total Environ. 2018, 631–632, 627–640. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Y.; Chai, X.; Xu, L.; Zhang, L.; Ning, P.; Huang, J.; Tian, S. Interaction of Inhalable Volatile Organic Compounds and Pulmonary Surfactant: Potential Hazards of VOCs Exposure to Lung. J. Hazard Mater. 2019, 369, 512–520. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.; Cheng, J.; Jiang, T.; Chen, L.; Xu, B. Health Risk Assessment and Personal Exposure to Volatile Organic Compounds (VOCs) in Metro Carriages-A Case Study in Shanghai. China. Sci. Total Environ. 2017, 574, 1432–1438. [Google Scholar] [CrossRef]
- Wang, C.; Scherrer, S.; Hossain, D. Measurements of Cavity Ring Down Spectroscopy of Acetone in the Ultraviolet and Near-infrared Spectral Regions: Potential for Development of a Breath Analyzer. Appl. Spectrosc. 2004, 58, 784–791. [Google Scholar] [CrossRef]
- Han, B.; Chen, J.; Zheng, L.; Zhou, T.; Li, J.; Wang, X.; Wang, J. Development of an Impurity-profiling Method for Source Identification of Spilled Benzene Series Compounds by Gas Chromatography with Mass Spectrometry: Toluene as a Case Study. J. Sep. Sci. 2015, 38, 3198–3204. [Google Scholar] [CrossRef]
- De Oliveira, D.P.; De Siqueira, M.E.P.B. A Simple and Rapid Method for Urinary Acetone Analysis by Headspace/gas Chromatography. Quim. Nova 2007, 30, 1362–1364. [Google Scholar] [CrossRef]
- Hao, X.; Wu, D.; Wang, Y.; Ouyang, J.; Wang, J.; Liu, T.; Liang, X.; Zhang, C.; Liu, F.; Yan, X.; et al. Gas sniffer (YSZ-based electrochemical gas phase sensor) toward Acetone Detection. Sens. Actuators B Chem. 2019, 278, 1–7. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on Non-dispersive Infrared Gas Sensors: Improvement of Sensor Detection Limit and Interference Correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Zhang, X.; Jin, H.; Jin, Q.; Shen, W.; Zou, J.; Deng, S.; Cheung, W.; Kam, W.; et al. Light-Regulated Electrochemical Reaction Assisted Core-Shell Heterostructure for Detecting Specific Volatile Markers with Controllable Sensitivity and Selectivity. ACS Sens. 2019, 4, 1081–1089. [Google Scholar] [CrossRef]
- Fergus, J.W. Perovskite Oxides for Semiconductor-based Gas Sensors. Sens. Actuators B Chem. 2007, 123, 1169–1179. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and Transition Metal Dichalcogenide for Selective Detection of Volatile Organic Compounds. Nat. Commun. 2020, 11, 1302. [Google Scholar] [CrossRef]
- Cho, I.; Sim, Y.C.; Cho, M.; Cho, Y.H.; Park, I. Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption. ACS Sens. 2020, 5, 563–570. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Dong, D.; Yao, G.; Wei, G.; He, A.; Wu, H.; Zhu, H.; Huang, Z.; Tang, Z. E-nose based on a high-integrated and low-power metal oxide gas sensor array. Sens. Actuators B Chem. 2023, 380, 133289. [Google Scholar] [CrossRef]
- Ji, H.; Liu, Y.; Zhang, R.; Yuan, Z.; Meng, F. Detection and Recognition of Toluene and Butanone in Mixture based on SnO2 Sensor via Dynamic Transient and Steady-state Response Analysis in Jump Heating Voltage Mode. Sens. Actuators B Chem. 2023, 376, 132969. [Google Scholar] [CrossRef]
- Ji, H.; Liu, Y.; Zhu, H.; Zhang, H.; Yuan, Z.; Meng, F. Interference Suppression Strategies for Trace Minor Component of Semiconductor Gas Sensor based on Temperature Modulation Mode. Sens. Actuators B Chem. 2023, 388, 133874. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, S.; Yang, Q.; Sun, P.; Gao, Y.; Liang, X.; Liu, F.; Lu, G. Highly Sensitive and Humidity-independent Ethanol Sensors based on In2O3 Nanoflower/SnO2 Nanoparticle Composites. RSC Adv. 2015, 5, 52252–52258. [Google Scholar] [CrossRef]
- Li, B.; Li, M.; Meng, F.; Liu, J. Highly Sensitive Ethylene Sensors using Pd Nanoparticles and rGO Modified Flower-like Hierarchical Porous α-Fe2O3. Sens. Actuators B Chem. 2019, 290, 396–405. [Google Scholar] [CrossRef]
- Zhu, K.M.; Ma, S.Y. Preparations of Bi-doped SnO2 Hierarchical Flower-shaped Nanostructures with Highly Sensitive HCHO Sensing Properties. Mater. Lett. 2019, 236, 491–494. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Engineering Approaches for the Improvement of Conductometric Gas Sensor Parameters. Sens. Actuators B Chem. 2013, 188, 709–728. [Google Scholar] [CrossRef]
- Yuan, H.; Aljneibi, S.A.A.A.; Yuan, J.; Wang, Y.; Liu, H.; Fang, J.; Tang, C.; Yan, X.; Cai, H.; Gu, Y.; et al. ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing. Adv. Mater. 2019, 31, e1807161. [Google Scholar] [CrossRef]
- Suematsu, K.; Harano, W.; Oyama, T.; Shin, Y.; Watanabe, K.; Shimanoe, K. Pulse-Driven Semiconductor Gas Sensors Toward ppt Level Toluene Detection. Anal. Chem. 2018, 90, 11219–11223. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.K.; Jeong, S.Y.; Moon, Y.K.; Jo, Y.M.; Yoon, J.W.; Lee, J.H. Exclusive and Ultrasensitive Detection of Formaldehyde at Room Temperature Using a Flexible and Monolithic Chemiresistive Sensor. Nat. Commun. 2021, 12, 4955. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ji, J.; Song, P.; Liu, M.; Wang, Q. α-Fe2O3 Nanocubes/Ti3C2Tx MXene Composites for Improvement of Acetone Sensing Performance at Room Temperature. Sens. Actuators B Chem. 2021, 349, 130782. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Song, P.; Yang, Z.; Wang, Q. Flexible MXene/rGO/CuO Hybrid Aerogels for High Performance Acetone Sensing at Room Temperature. Sens. Actuators B Chem. 2021, 340, 129946. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Z.; Zhang, Y.; Li, H.Y.; Gao, N.; Tian, Z.; Zhou, L.; Zhang, B.; Tang, J.; Zhang, J.; et al. MoS2 Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors. Nano-Micro Lett. 2020, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C. Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-precision Gas Sensors Operated at Room Temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2015, 28, 795–831. [Google Scholar] [CrossRef]
- Li, C.; Kim, K.; Fuchigami, T.; Asaka, T.; Kakimoto, K.; Masuda, Y. Acetone Gas Sensor Based on Nb2O5@SnO2 hybrid Structure with High Selectivity and Ppt-level Sensitivity. Sens. Actuators B Chem. 2023, 393, 134144. [Google Scholar] [CrossRef]
- Xiao, C.; Tang, Z.; Ma, Z.; Gao, X.; Wang, H.; Jia, L. High Performance Porous LaFeO3 Gas Sensor with Embedded p-n Junctions Enabling Ppb-level Formaldehyde Detection. Sens. Actuators B Chem. 2023, 397, 134670. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, L.; Fu, X.; Fan, Y.; Sun, M.; Zhou, D.; Wang, Z.; Li, Z.; Xu, S.; Gu, H. Au-functionalized MoO3 Nanoribbons Towards Rapid and Selective Formaldehyde Gas Sensing at Room Temperature. Results Phys. 2023, 49, 106525. [Google Scholar] [CrossRef]
- Li, M.; Chang, J.; Deng, Z.; Mi, L.; Kumar, M.; Wang, S.; He, Y.; Meng, G. Discriminating Gas Molecules at Room Temperature by UV Light Modulation (ULM) of Nonselective Metal Oxide Sensors. Sens. Actuators B Chem. 2023, 378, 133115. [Google Scholar] [CrossRef]
- Li, Z.H.; Li, S.J.; Song, Z.J.; Yang, X.L.; Wang, Z.Y.; Zhang, H.; Guo, L.L.; Sun, C.X.; Liu, H.Y.; Shao, J.K.; et al. Influence of Nickel Doping on Ultrahigh Toluene Sensing Performance of Core-Shell ZnO Microsphere Gas Sensor. Chemosensors 2022, 10, 327. [Google Scholar] [CrossRef]
- San, X.G.; Zhang, Y.; Zhang, L.; Wang, G.S.; Meng, D.; Cui, J.; Jin, Q. One-Step Hydrothermal Synthesis of 3D Interconnected rGO/In2O3 Heterojunction Structures for Enhanced Acetone Detection. Chemosensors 2022, 10, 270. [Google Scholar] [CrossRef]
- Wang, H.Y.; Shi, X.Q.; Liu, F.; Duan, T.M.; Sun, B. Non-Invasive Rapid Detection of Lung Cancer Biomarker Toluene with a Cataluminescence Sensor Based on the Two-Dimensional Nanocomposite Pt/Ti3C2Tx-CNT. Chemosensors 2022, 10, 333. [Google Scholar] [CrossRef]
- Shen, X.Y.; Shi, G.L.; Zhang, Y.X.; Weng, S.Z. Wireless Volatile Organic Compound Detection for Restricted Internet of Things Environments Based on Cataluminescence Sensors. Chemosensors 2022, 10, 179. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.H.; Meng, F.L. Metal Oxide Semiconductor Sensors for Triethylamine Detection: Sensing Performance and Improvements. Chemosensors 2022, 10, 231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Yuan, Z.; Meng, D. Chemical Sensors for Volatile Organic Compound Detection. Chemosensors 2023, 11, 553. https://doi.org/10.3390/chemosensors11110553
Meng F, Yuan Z, Meng D. Chemical Sensors for Volatile Organic Compound Detection. Chemosensors. 2023; 11(11):553. https://doi.org/10.3390/chemosensors11110553
Chicago/Turabian StyleMeng, Fanli, Zhenyu Yuan, and Dan Meng. 2023. "Chemical Sensors for Volatile Organic Compound Detection" Chemosensors 11, no. 11: 553. https://doi.org/10.3390/chemosensors11110553
APA StyleMeng, F., Yuan, Z., & Meng, D. (2023). Chemical Sensors for Volatile Organic Compound Detection. Chemosensors, 11(11), 553. https://doi.org/10.3390/chemosensors11110553