Assessment of Volatile Characteristics of Okinawan Pineapple Breeding Lines by Gas-Chromatography–Mass-Spectrometry-Based Electronic Nose Profiling and Odor Activity Value Calculation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Pineapple Samples
2.3. GC-MS-e-Nose Analysis
2.4. Volatile Component Analysis and OAV Calculation
2.5. Statistical Analysis
3. Results
3.1. GC–MS–e-Nose Profiles of Okinawan Pineapple
3.2. Volatile Composition of Okinawan Pineapple
3.3. OAVs of Okinawan Pineapple
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spence, C. Are pineapples really delicious? The history of the pineapple’s taste/flavour and the role of varietal and terroir. Int. J. Gastron. Food Sci. 2023, 31, 100682. [Google Scholar] [CrossRef]
- Wei, C.-B.; Liu, S.-H.; Liu, Y.-G.; Lv, L.-L.; Yang, W.-X.; Sun, G.-M. Characteristic aroma compounds from different pineapple parts. Molecules 2011, 16, 5104–5112. [Google Scholar] [CrossRef]
- Pino, J.A. Odour-active compounds in pineapple (Ananas comosus [L.] Merril cv. Red Spanish). Int. J. Food Sci. Technol. 2013, 48, 564–570. [Google Scholar] [CrossRef]
- Shoda, M.; Urasaki, N.; Sakiyama, S.; Terakami, S.; Hosaka, F.; Shigeta, N.; Nishitani, C.; Yamamoto, T. DNA profiling of pineapple cultivars in Japan discriminated by SSR markers. Breed. Sci. 2012, 62, 352–359. [Google Scholar] [CrossRef]
- Asikin, Y.; Shimoda, K.; Takeuchi, M.; Maekawa, R.; Kamiyoshihara, Y.; Takara, K.; Wada, K. Free and glycosidically bound volatile compounds in Okinawan pineapple (Ananas comosus). Appl. Sci. 2022, 12, 9522. [Google Scholar] [CrossRef]
- Sugawara, T.; Nishiba, Y.; Takeuchi, M.; Moromizato, C. Carotenoid content in different varieties of pineapple (Ananas comosus L.) cultivated in Okinawa Prefecture. Nippon. Shokuhin Kagaku Kogaku Kaishi 2019, 66, 100–107. [Google Scholar] [CrossRef]
- Ogata, T.; Yamanaka, S.; Shoda, M.; Urasaki, N.; Yamamoto, T. Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: Pineapple, mango, and papaya. Breed. Sci. 2016, 66, 69–81. [Google Scholar] [CrossRef]
- Santo, S.; Uchiyama, T. Analysis of importers’ behavior in the context of pineapple distribution in Japan: A case study of Dole Japan and a survey of consumers’ attitudes. J. Food Syst. Res. 2014, 21, 2–16. [Google Scholar] [CrossRef]
- Kim, C.; Kim, S.J.; Lee, Y.; Nguyen, T.M.; Lee, J.M.; Moon, J.S.; Han, D.W.; Oh, J.W. A phage-and colorimetric sensor-based artificial nose model for banana ripening analysis. Sens. Actuators B Chem. 2022, 362, 131763. [Google Scholar] [CrossRef]
- Asikin, Y.; Kusumiyati; Shikanai, T.; Wada, K. Volatile aroma components and MS-based electronic nose profiles of dogfruit (Pithecellobium jiringa) and stink bean (Parkia speciosa). J. Adv. Res. 2018, 9, 79–85. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Zhang, C.; Li, X.; Yue, N.; Shao, H.; Wang, J.; Jin, F. Discrimination and characterization of volatile flavor compounds in fresh oriental melon after forchlorfenuron application using electronic nose (e-nose) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Foods 2023, 12, 1272. [Google Scholar] [CrossRef] [PubMed]
- Torri, L.; Sinelli, N.; Limbo, S. Shelf life evaluation of fresh-cut pineapple by using an electronic nose. Postharvest Biol. Technol. 2010, 56, 239–245. [Google Scholar] [CrossRef]
- Yang, Q.; Gong, X.; Chen, M.; Tu, J.; Zheng, X.; Yuan, Y. Comparative analysis of the aroma profile of pineapple beers brewed with juice added at different times. J. Inst. Brew. 2023, 129, 151–163. [Google Scholar] [CrossRef]
- Weerawatanakorn, M.; Asikin, Y.; Kamchonemenukool, S.; Tamaki, H.; Takara, K.; Wada, K. Physicochemical, antioxidant, volatile component, and mass spectrometry-based electronic nose analyses differentiated unrefined non-centrifugal cane, palm, and coconut sugars. Food Meas. 2021, 15, 1563–1577. [Google Scholar] [CrossRef]
- Majcher, M.A.; Kaczmarek, A.; Klensporf-Pawlik, D.; Pikul, J.; Jelen, H.H. SPME-MS-based electronic nose as a tool for determination of authenticity of PDO cheese, Oscypek. Food Anal. Methods 2015, 8, 2211–2217. [Google Scholar] [CrossRef]
- Sung, J.; Kim, B.K.; Kim, B.S.; Kim, Y. Mass spectrometry-based electric nose system for assessing rice quality during storage at different temperatures. J. Stored Prod. Res. 2014, 59, 204–208. [Google Scholar] [CrossRef]
- Chaparro-Torres, L.A.; Bueso, M.C.; Fernández-Trujillo, J.P. Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. J. Sci. Food Agric. 2016, 96, 2352–2365. [Google Scholar] [CrossRef]
- Cervellieri, S.; Lippolis, V.; Mancini, E.; Pascale, M.; Logrieco, A.F.; De Girolamo, A. Mass spectrometry-based electronic nose to authenticate 100% Italian durum wheat pasta and characterization of volatile compounds. Food Chem. 2022, 383, 132548. [Google Scholar] [CrossRef]
- Li, Q.; Li, B.; Zhang, R.; Liu, S.; Yang, S.; Li, Y.; Li, J. Flavoromics approach in critical aroma compounds exploration of peach: Correlation to origin based on OAV combined with chemometrics. Foods 2023, 12, 837. [Google Scholar] [CrossRef]
- Williams, J.; Ringsdorf, A. Human odour thresholds are tuned to atmospheric chemical lifetimes. Philos. Trans. R. Soc. Lond B Biol. Sci. 2020, 375, 20190274. [Google Scholar] [CrossRef]
- Qian, Y.L.; Zhang, D.; An, Y.; Zhou, Q.; Qian, M.C. Characterization of aroma-active compounds in northern highbush blueberries “Bluecrop” (Vaccinium corymbosum “Bluecrop”) and “Elliott” (Vaccinium corymbosum “Elliott”) by gas chromatography-olfactometry dilution analysis and odor activity value. J. Agric. Food Chem. 2021, 69, 5691–5701. [Google Scholar] [CrossRef]
- Liang, S.; Liu, Y.; Yuan, S.; Liu, Y.; Zhu, B.; Zhang, M. Study of consumer liking of six Chinese vinegar products and the correlation between these likings and the volatile profile. Foods 2022, 11, 2224. [Google Scholar] [CrossRef] [PubMed]
- van Gemert, L.J. Flavour Thresholds: Compilations of Flavour Threshold Values in Water and Other Media, Second Enlarged and Revised, ed.; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Tokitomo, Y.; Steinhaus, M.; Büttner, A.; Schieberle, P. Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation. Biosci. Biotechnol. Biochem. 2005, 69, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Arakawa, N.; Takamura, A.; Morimitsu, Y.; Kubota, K. Potent odorants in Sweetio pineapple (Ananas comosus [L.] Merr. var. Marian-gold (MG-3)). Nippon. Shokuhin Kagaku Kogaku Kaishi 2006, 53, 121–129. [Google Scholar] [CrossRef]
- Asikin, Y.; Kawahira, S.; Goki, M.; Hirose, N.; Kyoda, S.; Wada, K. Extended aroma extract dilution analysis profile of Shiikuwasha (Citrus depressa Hayata) pulp essential oil. J. Food Drug Anal. 2018, 26, 268–276. [Google Scholar] [CrossRef]
- Li, S.; Tian, Y.; Sun, M.; Liu, J.; Bai, Y.; Liu, X.; Guo, Y. Characterization of key aroma compounds in fermented bamboo shoots using gas chromatography-olfactometry-mass spectrometry, odor activity values, and aroma recombination experiments. Foods 2022, 11, 2106. [Google Scholar] [CrossRef]
- Cai, X.; Mai, R.Z.; Zou, J.J.; Zhang, H.Y.; Zeng, X.L.; Zheng, R.R.; Wang, C.Y. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS. J. Zhejiang Univ. Sci. B 2014, 15, 638–648. [Google Scholar] [CrossRef]
- Qian, X.; Liu, Y.; Zhang, G.; Yan, A.; Wang, H.; Wang, X.; Pan, Q.; Xu, H.; Sun, L.; Zhu, B. Alcohol acyltransferase gene and ester precursors differentiate composition of volatile esters in three interspecific hybrids of Vitis labrusca × V. vinifera during berry development period. Food Chem. 2019, 295, 234–246. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Hashem, C.; Hochrinner, J.; Bürgler, M.B.; Rinnofner, C.; Pichler, H.; Winkler, M. From linoleic acid to hexanal and hexanol by whole cell catalysis with a lipoxygenase, hydroperoxide lyase and reductase cascade in Komagataella phaffii. Front. Mol. Biosci. 2022, 9, 965315. [Google Scholar] [CrossRef]
- Kang, M.K.; Kim, J.Y.; Choi, Y.I.; Hu, L.; Yang, C.; Jin, Z.; Park, Y.J.; Kim, S.U.; Kim, S.M. Enhanced metabolic flux of methylerythritol phosphate (MEP) pathway by overexpression of Ginkgo biloba 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate Reductase 1 (GbHDR1) gene in poplar. Appl. Biol. Chem. 2022, 65, 50. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
Accession Name | Parentage | Type |
---|---|---|
‘N67-10’ | ‘Hawaiian Smooth Cayenne’ | Cultivar |
‘Okinawa No. 22’ | ‘A882’ × ‘Soft Touch’ | Breeding line |
‘Okinawa No. 25’ | ‘Julio Star’ × ‘A882’ | Breeding line |
‘Okinawa No. 26’ | ‘Julio Star’ × ‘MD2’ | Breeding line |
‘Okinawa No. 27’ | ‘Summer Gold’ × ‘MD2’ | Breeding line |
‘Okinawa No. 28’ | ‘Okinawa P17’ × ‘Bogor’ | Breeding line |
No | RIexp 1 | RIlit 2 | Compound | ‘N67-10’ | ‘No. 22’ | ‘No. 25’ | ‘No. 26’ | ‘No. 27’ | ‘No. 28’ |
---|---|---|---|---|---|---|---|---|---|
1 | 892 | 893 | Ethyl acetate | 9.20 ± 4.31 a | 0.19 ± 0.08 b | 2.75 ± 2.33 b | 1.98 ± 1.58 b | 2.58 ± 1.54 b | 0.52 ± 0.22 b |
2 | 909 | 906 | Methyl propanoate | 1.75 ± 1.37 ab | 0.60 ± 0.13 b | 2.14 ± 0.19 a | 1.66 ± 0.72 ab | 0.62 ± 0.49 b | 1.23 ± 0.47 ab |
3 | 971 | 972 | Propyl acetate | nd | nd | 0.47 ± 0.21 a | 0.09 ± 0.06 b | 0.23 ± 0.08 ab | nd |
4 | 983 | 985 | Methyl butanoate | 0.70 ± 0.09 b | 3.12 ± 0.34 ab | 3.71 ± 3.09 ab | 3.37 ± 1.80 ab | 1.18 ± 0.53 b | 5.17 ± 1.29 a |
5 | 1008 | 1007 | Methyl 2-methylbutanoate | 0.21 ± 0.05 c | 1.70 ± 0.60 c | 3.98 ± 3.60 abc | 9.47 ± 5.55 a | 3.31 ± 1.64 bc | 7.47 ± 2.52 ab |
6 | 1011 | 1013 | 2-Methylpropyl acetate | nd | 0.08 ± 0.02 c | 0.30 ± 0.14 a | 0.15 ± 0.10 bc | 0.24 ± 0.04 ab | 0.14 ± 0.03 bc |
7 | 1017 | 1017 | Methyl 3-methylbutanoate | 0.25 ± 0.04 c | 0.20 ± 0.03 c | 0.93 ± 0.51 a | 0.53 ± 0.10 bc | 0.65 ± 0.15 ab | 0.70 ± 0.03 ab |
8 | 1035 | 1035 | Ethyl butanoate | 1.12 ± 0.56 ab | 0.22 ± 0.07 c | 1.48 ± 0.23 a | 0.80 ± 0.29 b | 0.65 ± 0.32 bc | 0.67 ± 0.03 bc |
9 | 1051 | 1048 | Ethyl 2-methylbutanoate | nd | nd | 0.69 ± 0.42 a | 0.58 ± 0.30 a | 0.71 ± 0.24 a | 0.24 ± 0.13 a |
10 | 1086 | 1086 | Methyl pentanoate | nd | 0.56 ± 0.11 a | tr | 0.23 ± 0.11 b | 0.13 ± 0.02 b | 0.51 ± 0.03 a |
11 | 1120 | 1121 | 2-Methylbutyl acetate | nd | 0.40 ± 0.20 b | 1.62 ± 0.31 a | tr | 1.23 ± 0.59 a | 0.28 ± 0.03 b |
12 | 1122 | 1124 | 3-Methylbutyl acetate | nd | nd | nd | 0.25 ± 0.19 a | 0.50 ± 0.09 a | 0.23 ± 0.06 a |
13 | 1187 | 1187 | Methyl hexanoate | 6.65 ± 0.10 bc | 39.53 ± 10.56 a | 5.15 ± 1.18 bc | 3.52 ± 1.95 c | 6.64 ± 1.59 bc | 18.31 ± 10.01 b |
14 | 1234 | 1237 | Ethyl hexanoate | 0.80 ± 0.40 b | 0.46 ± 0.36 b | 0.73 ± 0.23 b | 1.29 ± 1.78 b | 3.32 ± 1.54 a | 0.87 ± 0.19 b |
15 | 1254 | 1256 | Prenyl acetate | 1.22 ± 0.29 a | 0.18 ± 0.03 b | 0.42 ± 0.15 b | 0.23 ± 0.13 b | 0.30 ± 0.10 b | 0.29 ± 0.04 b |
16 | 1259 | 1253 | Methyl (Z)-3-hexanoate | 0.48 ± 0.41 a | 0.31 ± 0.04 a | nd | 0.17 ± 0.07 a | nd | 0.26 ± 0.04 a |
17 | 1264 | 1259 | Methyl (E)-3-hexanoate | nd | 0.44 ± 0.02 a | 0.25 ± 0.03 b | 0.19 ± 0.02 b | 0.20 ± 0.03 b | 0.22 ± 0.05 b |
18 | 1289 | 1291 | Methyl heptanoate | 0.70 ± 0.06 abc | 0.25 ± 0.11 bc | 1.00 ± 0.82 ab | 1.18 ± 0.63 a | 0.18 ± 0.06 c | 0.69 ± 0.39 abc |
19 | 1376 | 1366 | Methyl 3-hydroxy-3-methylbutanoate | nd | nd | 0.33 ± 0.11 a | 0.16 ± 0.08 a | nd | 0.17 ± 0.03 a |
20 | 1391 | 1441 | Methyl octanoate | 0.47 ± 0.02 a | tr | 0.84 ± 0.83 a | 0.39 ± 0.10 a | 0.67 ± 0.11 a | 0.54 ± 0.11 a |
21 | 1412 | 1395 | Methyl (Z)-5-octenoate | 0.73 ± 0.13 a | 0.18 ± 0.04 b | nd | nd | nd | 0.41 ± 0.30 ab |
22 | 1437 | 1441 | Ethyl octanoate | 0.67 ± 0.18 a | nd | nd | nd | 0.41 ± 0.36 a | nd |
23 | 1458 | 1446 | Methyl (E)-3-octenoate | nd | 0.16 ± 0.14 | nd | nd | nd | nd |
24 | 1513 | 1506 | Dimethyl propanedioate | 0.32 ± 0.06 b | 0.42 ± 0.20 b | 0.83 ± 0.08 a | 0.12 ± 0.02 b | 0.20 ± 0.06 b | 1.11 ± 0.24 a |
25 | 1525 | 1525 | Methyl 3-(methylthio)propanoate | 2.09 ± 1.44 d | 19.2 ± 2.68 ab | 11.43 ± 3.21 bcd | 16.1 ± 7.70 abc | 9.12 ± 4.16 cd | 23.15 ± 5.31 a |
26 | 1529 | 1532 | 2,3-Butanediyl diacetate | 0.33 ± 0.06 b | 0.09 ± 0.05 d | 0.78 ± 0.05 a | 0.26 ± 0.12 bc | 0.69 ± 0.08 a | 0.16 ± 0.03 cd |
27 | 1542 | 1535 | Methyl 2-acetoxybutanoate | 0.52 ± 0.11 b | 0.48 ± 0.15 b | 1.98 ± 0.85 a | 1.63 ± 0.47 a | 0.25 ± 0.03 b | 2.52 ± 0.78 a |
28 | 1561 | 1554 | Methyl 3-acetoxy-2-methylbutanoate | nd | 0.09 ± 0.04 b | 0.58 ± 0.26 ab | 1.35 ± 0.73 a | tr | 0.62 ± 0.26 ab |
29 | 1568 | 1569 | Ethyl 3-(methylthio)propanoate | 0.27 ± 0.08 b | 0.19 ± 0.08 b | 1.14 ± 0.88 b | 3.61 ± 2.60 a | 3.77 ± 0.32 a | 1.03 ± 0.34 b |
30 | 1573 | - | Tetrahydrofuranyl acetate | 1.58 ± 0.87 | tr | nd | nd | nd | nd |
31 | 1582 | 1592 | Ethyl 2-hydroxyhexanoate | nd | tr | tr | 0.15 ± 0.02 a | 0.16 ± 0.04 a | nd |
32 | 1628 | 1623 | Methyl (Z)-4-decenoate | nd | 0.19 ± 0.06 | nd | tr | nd | nd |
33 | 1631 | 1625 | 3-(Methylthio)propyl acetate | tr | 0.29 ± 0.05 bc | 1.19 ± 0.52 a | 0.14 ± 0.02 c | 0.65 ± 0.18 b | 0.32 ± 0.02 bc |
34 | 1640 | 1636 | Methyl 4-(methylthio)butanoate | nd | 0.07 ± 0.03 | nd | nd | nd | nd |
35 | 1653 | - | Methyl 3-hydroxydecanoate | 0.23 ± 0.05 b | 0.18 ± 0.06 b | nd | 0.75 ± 0.30 a | nd | 0.16 ± 0.01 b |
36 | 1729 | 1720 | Phenylmethyl acetate | 0.73 ± 0.36 a | 0.08 ± 0.01 c | 0.58 ± 0.03 ab | 0.37 ± 0.19 abc | 0.46 ± 0.23 ab | 0.36 ± 0.09 bc |
37 | 1736 | 1726 | Methyl 4-acetoxyhexanoate | 0.36 ± 0.12 a | 0.41 ± 0.13 a | nd | 0.45 ± 0.15 a | nd | nd |
38 | 1760 | 1758 | Methyl phenylacetate | nd | 0.24 ± 0.03 b | nd | 0.17 ± 0.02 b | 0.38 ± 0.19 ab | 0.45 ± 0.06 a |
39 | 1776 | 1766 | Methyl 5-acetoxyhexanoate | 1.20 ± 0.29 abc | 1.41 ± 0.57 ab | 0.94 ± 0.21 bcd | 1.56 ± 0.37 a | 0.52 ± 0.04 d | 0.77 ± 0.03 cd |
40 | 1924 | 1904 | Methyl 5-acetoxyoctanoate | nd | 0.12 ± 0.01 a | nd | 0.79 ± 0.49 a | 0.15 ± 0.04 a | nd |
Total esters | 28.54 | 72.20 | 39.98 | 53.16 | 39.93 | 69.26 | |||
41 | 936 | 955 | Ethanol | 2.43 ± 1.95 ab | 0.67 ± 0.51 b | 2.35 ± 1.58 ab | 2.85 ± 2.65 ab | 3.81 ± 0.64 a | 1.38 ± 1.11 b |
42 | 1041 | 1040 | 2-Methyl-3-buten-2-ol | 0.71 ± 0.31 | nd | nd | nd | nd | nd |
43 | 1360 | 1360 | 1-Hexanol | 0.49 ± 0.15 ab | 0.10 ± 0.04 b | 0.51 ± 0.34 a | 0.43 ± 0.40 ab | 0.20 ± 0.06 ab | 0.22 ± 0.06 ab |
44 | 1462 | 1468 | 1-Heptanol | 2.31 ± 0.89 a | 0.91 ± 0.94 b | 0.64 ± 0.36 b | 0.22 ± 0.12 b | 0.23 ± 0.10 b | 0.32 ± 0.05 b |
45 | 1496 | 1499 | 2-Ethyl-1-hexanol | 2.58 ± 0.69 a | 0.44 ± 0.14 c | 1.86 ± 0.35 b | 0.83 ± 0.42 c | 1.11 ± 0.19 c | 1.10 ± 0.24 c |
46 | 1565 | 1561 | 1-Octanol | 0.95 ± 0.33 a | 0.13 ± 0.04 c | 0.72 ± 0.31 ab | 0.37 ± 0.20 bc | 0.30 ± 0.05 c | 0.36 ± 0.12 bc |
47 | 1661 | 1666 | 2-Furanmethanol | 1.15 ± 0.99 a | 0.46 ± 0.04 a | 1.13 ± 0.25 a | 0.61 ± 0.23 a | 0.80 ± 0.20 a | 0.95 ± 0.32 a |
Total alcohols | 10.61 | 2.40 | 7.21 | 5.31 | 6.50 | 4.22 | |||
48 | 1080 | 1080 | Hexanal | 2.05 ± 0.81 a | 0.29 ± 0.13 b | 1.68 ± 0.99 a | 1.10 ± 0.74 ab | 0.55 ± 0.18 b | 0.37 ± 0.26 b |
49 | 1217 | 1216 | 2-Hexenal | nd | 0.13 ± 0.08 a | 0.44 ± 0.25 a | 0.35 ± 0.17 a | 0.33 ± 0.18 a | nd |
50 | 1393 | 1396 | Nonanal | 1.51 ± 0.18 b | 0.27 ± 0.10 b | 3.35 ± 2.04 a | 1.52 ± 0.98 b | 0.63 ± 0.21 b | 0.73 ± 0.55 b |
51 | 1643 | 1639 | trans-2-Decenal | 2.07 ± 0.73 a | 0.36 ± 0.15 c | 1.71 ± 1.15 ab | 0.70 ± 0.38 bc | 0.62 ± 0.29 c | 0.63 ± 0.23 c |
Total aldehydes | 5.63 | 0.97 | 7.18 | 3.68 | 2.14 | 1.73 | |||
52 | 1232 | 1234 | cis-β-Ocimene | nd | 0.28 ± 0.07 b | nd | nd | 0.74 ± 0.24 a | 0.18 ± 0.06 b |
53 | 1249 | 1250 | trans-β-Ocimene | nd | 0.53 ± 0.23 b | nd | 0.11 ± 0.04 b | 4.97 ± 1.93 a | nd |
54 | 1420 | 1422 | Isodurene | 0.68 ± 0.11 a | 0.20 ± 0.01 bc | 0.37 ± 0.18 b | 0.16 ± 0.04 c | 0.26 ± 0.11 bc | 0.26 ± 0.04 bc |
55 | 1488 | 1480 | Copaene | 3.75 ± 0.74 | nd | nd | nd | nd | nd |
56 | 1553 | 1552 | Linalool | 0.75 ± 0.16 a | 0.32 ± 0.05 bc | 0.25 ± 0.07 c | 0.14 ± 0.02 c | 0.63 ± 0.40 ab | 0.47 ± 0.12 abc |
57 | 1588 | 1586 | β-Elemene | 2.13 ± 0.42 a | 0.09 ± 0.03 b | nd | nd | nd | nd |
58 | 1605 | 1601 | 4-Terpineol | 0.51 ± 0.01 a | 0.13 ± 0.01 d | 0.28 ± 0.10 bc | nd | 0.31 ± 0.07 b | 0.22 ± 0.01 c |
59 | 1646 | 1636 | Menthol | 0.86 ± 0.33 a | 0.07 ± 0.03 c | 0.39 ± 0.04 b | 0.20 ± 0.02 bc | 0.40 ± 0.00 b | 0.24 ± 0.11 bc |
60 | 1686 | 1690 | γ-Muurolene | 0.94 ± 0.25 a | 0.16 ± 0.05 b | nd | 0.38 ± 0.10 b | 0.18 ± 0.02 b | 0.25 ± 0.02 b |
61 | 1723 | 1720 | α-Muurolene | 1.88 ± 0.61 | tr | nd | nd | nd | nd |
62 | 1756 | 1753 | δ-Cadinene | 0.65 ± 0.24 | nd | nd | nd | nd | nd |
63 | 2181 | 2184 | Eugenol | 1.02 ± 0.20 ab | 0.15 ± 0.04 c | 1.01 ± 0.11 ab | 0.28 ± 0.04 c | 0.83 ± 0.08 b | 1.12 ± 0.23 a |
Total terpenes | 13.16 | 1.88 | 2.21 | 1.14 | 8.26 | 2.36 | |||
64 | 1338 | 1341 | Methyl heptenone | nd | 0.08 ± 0.01 b | 0.34 ± 0.12 a | 0.25 ± 0.13 ab | nd | tr |
65 | 1595 | 1600 | 2,5-Dimethyl-4-methoxy-3(2H)-furanone | 0.48 ± 0.32 b | 0.35 ± 0.19 b | 0.29 ± 0.07 b | 3.47 ± 3.12 b | 20.52 ± 5.34 a | 1.12 ± 0.04 b |
66 | 1699 | 1708 | γ-Hexalactone | 1.27 ± 0.30 ab | 1.96 ± 0.46 a | 0.65 ± 0.15 b | 1.71 ± 0.92 a | 1.81 ± 0.34 a | 0.50 ± 0.08 b |
67 | 1790 | 1792 | δ-Hexalactone | nd | 0.23 ± 0.07 a | nd | 0.28 ± 0.09 a | 0.26 ± 0.08 a | nd |
68 | 1799 | 1789 | Methyl 4-hydroxyhexalactone | nd | 0.08 ± 0.03 a | nd | 0.16 ± 0.04 a | nd | nd |
69 | 1802 | 1797 | γ-Heptalactone | tr | 0.17 ± 0.03 c | 0.55 ± 0.06 a | 0.28 ± 0.07 b | 0.26 ± 0.01 bc | 0.22 ± 0.08 bc |
70 | 1915 | 1916 | γ-Octalactone | 0.91 ± 0.19 c | 1.81 ± 0.32 a | 0.75 ± 0.23 c | 0.38 ± 0.11 d | 1.38 ± 0.19 b | 0.66 ± 0.09 cd |
71 | 1969 | 1976 | δ-Octalactone | nd | 0.59 ± 0.17 a | 0.25 ± 0.03 b | 0.25 ± 0.02 b | 0.39 ± 0.04 ab | nd |
72 | 2043 | 2045 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | 1.33 ± 0.14 a | 0.45 ± 0.14 b | 1.12 ± 0.29 a | 0.55 ± 0.32 b | 1.22 ± 0.20 a | 1.21 ± 0.22 a |
73 | 2146 | 2149 | γ-Decalactone | nd | 0.30 ± 0.07 a | 0.28 ± 0.09 a | nd | 0.24 ± 0.04 a | tr |
74 | 2196 | 2193 | δ-Decalactone | nd | 0.30 ± 0.05 a | nd | nd | 0.28 ± 0.01 a | nd |
Total ketones | 3.93 | 6.32 | 3.87 | 7.24 | 26.28 | 3.73 | |||
75 | 1856 | 1854 | Hexanoic acid | 1.87 ± 0.27 ab | 1.89 ± 1.38 a | 2.95 ± 0.50 a | 0.66 ± 0.34 b | 1.76 ± 0.27 ab | 1.75 ± 0.63 ab |
76 | 2073 | 2070 | Octanoic acid | 0.61 ± 0.14 ab | 0.96 ± 0.50 a | 1.11 ± 0.19 a | 0.29 ± 0.17 b | 0.76 ± 0.04 ab | 0.72 ± 0.42 ab |
77 | 2183 | 2180 | Nonanoic acid | nd | 0.15 ± 0.02 | tr | nd | nd | nd |
Total carboxylic acids | 2.49 | 3.00 | 4.06 | 0.95 | 2.52 | 2.47 | |||
78 | 1451 | 1454 | 1,3,5,8-Undecatetraene | nd | 0.31 ± 0.07 a | 0.25 ± 0.03 a | nd | tr | 0.28 ± 0.05 a |
Total hydrocarbons | nd | 0.31 | 0.25 | nd | nd | 0.28 | |||
Total identified volatile components | 64.35 | 87.13 | 64.80 | 71.61 | 85.94 | 83.96 |
Compound | Aroma Description 1 | Odor Threshold (μg/kg) 2 | Content (μg/kg) 3 | |||||
---|---|---|---|---|---|---|---|---|
‘N67-10’ | ‘No. 22’ | ‘No. 25’ | ‘No. 26’ | ‘No. 27’ | ‘No. 28’ | |||
Methyl butanoate | Fruity, sweet, pineapple | 5 | 3.86 | 104.70 | 16.75 | 69.20 | 10.72 | 57.58 |
Methyl 2-methylbutanoate | Fruity, ethereal, green | 0.25 | 1.18 | 58.98 | 17.60 | 196.74 | 30.28 | 84.43 |
Methyl 3-methylbutanoate | Fruity, pungent, apple | 0.4 | 1.19 | 6.48 | 4.33 | 9.16 | 5.90 | 7.77 |
Ethyl butanoate | Fruity, sweet, pineapple, banana | 1 | 5.11 | 7.01 | 7.28 | 12.49 | 5.73 | 7.41 |
3-Methylbutyl acetate | Fruity, sweet, banana | 3 | nd | nd | nd | 4.05 | 4.41 | 2.50 |
Methyl hexanoate | Fruity, ethereal, pineapple | 75 | 36.53 | 1338.28 | 20.96 | 60.08 | 59.33 | 197.39 |
Ethyl hexanoate | Fruity, sweet, waxy, pineapple | 0.5 | 3.89 | 17.28 | 3.14 | 17.83 | 28.70 | 9.68 |
Ethyl octanoate | Fruity, waxy, winey | 0.1 | 3.38 | nd | nd | nd | 3.42 | nd |
Methyl 3-(methylthio)propanoate | Sweet, sulfureous, vegetable | 150 | 11.46 | 623.35 | 46.24 | 326.56 | 83.87 | 249.10 |
Nonanal | Waxy, green, citrus | 3.5 | 7.42 | 9.39 | 16.62 | 21.24 | 5.53 | 8.57 |
Linalool | Floral, sweet, citrus | 1.5 | 3.58 | 10.26 | 1.25 | 2.43 | 5.36 | 5.14 |
2,5-Dimethyl-4-methoxy-3(2H)-furanone | Sweet, caramel, musty | 25 | 2.64 | 10.73 | 1.39 | 58.60 | 184.38 | 12.28 |
2,5-Dimethyl-4-hydroxy-3(2H)-furanone | Sweet, caramel, cotton candy | 10 | 6.58 | 14.07 | 5.49 | 9.21 | 10.81 | 12.99 |
δ-Decalactone | Sweet, creamy, peach, coconut | 1 | nd | 9.68 | nd | nd | 2.67 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asikin, Y.; Kawahara, M.; Kochi, S.; Maekawa, R.; Omine, Y.; Takeuchi, M.; Takara, K.; Wada, K. Assessment of Volatile Characteristics of Okinawan Pineapple Breeding Lines by Gas-Chromatography–Mass-Spectrometry-Based Electronic Nose Profiling and Odor Activity Value Calculation. Chemosensors 2023, 11, 512. https://doi.org/10.3390/chemosensors11100512
Asikin Y, Kawahara M, Kochi S, Maekawa R, Omine Y, Takeuchi M, Takara K, Wada K. Assessment of Volatile Characteristics of Okinawan Pineapple Breeding Lines by Gas-Chromatography–Mass-Spectrometry-Based Electronic Nose Profiling and Odor Activity Value Calculation. Chemosensors. 2023; 11(10):512. https://doi.org/10.3390/chemosensors11100512
Chicago/Turabian StyleAsikin, Yonathan, Mutsumi Kawahara, Sora Kochi, Ryota Maekawa, Yuta Omine, Makoto Takeuchi, Kensaku Takara, and Koji Wada. 2023. "Assessment of Volatile Characteristics of Okinawan Pineapple Breeding Lines by Gas-Chromatography–Mass-Spectrometry-Based Electronic Nose Profiling and Odor Activity Value Calculation" Chemosensors 11, no. 10: 512. https://doi.org/10.3390/chemosensors11100512
APA StyleAsikin, Y., Kawahara, M., Kochi, S., Maekawa, R., Omine, Y., Takeuchi, M., Takara, K., & Wada, K. (2023). Assessment of Volatile Characteristics of Okinawan Pineapple Breeding Lines by Gas-Chromatography–Mass-Spectrometry-Based Electronic Nose Profiling and Odor Activity Value Calculation. Chemosensors, 11(10), 512. https://doi.org/10.3390/chemosensors11100512