Hierarchical Modelling of Raman Spectroscopic Data Demonstrates the Potential for Manufacturer and Caliber Differentiation of Smokeless Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Raman Spectroscopy
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khandasammy, S.R.; Fikiet, M.A.; Mistek, E.; Ahmed, Y.; Halámková, L.; Bueno, J.; Lednev, I.K. Bloodstains, paintings, and drugs: Raman spectroscopy applications in forensic science. Forensic Chem. 2018, 8, 111–133. [Google Scholar] [CrossRef]
- Vyas, B.; Halámková, L.; Lednev, I.K. A universal test for the forensic identification of all main body fluids including urine. Forensic Chem. 2020, 20, 100247. [Google Scholar] [CrossRef]
- Mistek, E.; Fikiet, M.A.; Khandasammy, S.R.; Lednev, I.K. Toward Locard’s exchange principle: Recent developments in forensic trace evidence analysis. Anal. Chem. 2019, 91, 637–654. [Google Scholar] [CrossRef] [PubMed]
- FBI. Crime Data Explorer. Available online: https://crime-data-explorer.app.cloud.gov/pages/explorer/crime/crime-trend (accessed on 20 October 2022).
- Maitre, M.; Kirkbride, K.P.; Horder, M.; Roux, C.; Beavis, A. Current perspectives in the interpretation of gunshot residues in forensic science: A review. Forensic Sci. Int. 2017, 270, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Doty, K.C.; Lednev, I.K. Raman spectroscopy for forensic purposes: Recent applications for serology and gunshot residue analysis. TrAC Trends Anal. Chem. 2018, 103, 215–222. [Google Scholar] [CrossRef]
- Mattijssen, E.J.A.T. Interpol review of forensic firearm examination 2016-2019. Forensic Science International: Synergy 2020, 2, 389–403. [Google Scholar] [CrossRef]
- Karahacane, D.S.; Dahmani, A.; Khimeche, K. Raman spectroscopy analysis and chemometric study of organic gunshot residues originating from two types of ammunition. Forensic Sci. Int. 2019, 301, 129–136. [Google Scholar] [CrossRef]
- Wallace, J.S. Chemical Analysis of Firearms, Ammunition, and Gunshot Residue; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Bueno, J.; Lednev, I.K. Raman microspectroscopic chemical mapping and chemometric classification for the identification of gunshot residue on adhesive tape. Anal. Bioanal. Chem. 2014, 406, 4595–4599. [Google Scholar] [CrossRef]
- Bueno, J.; Sikirzhytski, V.; Lednev, I.K. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: Potential for ammunition determination. Anal. Chem. 2013, 85, 7287–7294. [Google Scholar] [CrossRef]
- Maitre, M.; Horder, M.; Kirkbride, K.P.; Gassner, A.-L.; Weyermann, C.; Roux, C.; Beavis, A. A forensic investigation on the persistence of organic gunshot residues. Forensic Sci. Int. 2018, 292, 1–10. [Google Scholar] [CrossRef]
- Bueno, J.; Sikirzhytski, V.; Lednev, I.K. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation. Anal. Chem. 2012, 84, 4334–4339. [Google Scholar] [CrossRef] [PubMed]
- López-López, M.; Delgado, J.J.; García-Ruiz, C. Ammunition identification by means of the organic analysis of gunshot residues using Raman spectroscopy. Anal. Chem. 2012, 84, 3581–3585. [Google Scholar] [CrossRef] [PubMed]
- Heramb, R.M.; McCord, B.R. The manufacture of smokeless powders and their forensic analysis: A brief review. Forensic Sci. Commun. 2002, 4, 1–7. [Google Scholar]
- NCFS. Smokeless Powder Database. Available online: https://www.ilrc.ucf.edu/powders/ (accessed on 4 May 2022).
- Lennert, E.; Bridge, C. Correlation and analysis of smokeless powder, smokeless powder residues, and lab generated pyrolysis products via GC–MS. Forensic Chem. 2021, 23, 100316. [Google Scholar] [CrossRef]
- Black, O.; Smith, S.C.; Roper, C. Advances and limitations in the determination and assessment of gunshot residue in the environment. Ecotoxicol. Environ. Saf. 2021, 208, 111689. [Google Scholar] [CrossRef]
- Weber, A.; Hoplight, B.; Ogilvie, R.; Muro, C.; Khandasammy, S.R.; Pérez-Almodóvar, L.; Sears, S.; Lednev, I.K. Innovative vibrational spectroscopy research for forensic application. Anal. Chem. 2023; 95, in press. [Google Scholar]
- Bueno, J.; Lednev, I.K. Attenuated total reflectance-FT-IR imaging for rapid and automated detection of gunshot residue. Anal. Chem. 2014, 86, 3389–3396. [Google Scholar] [CrossRef]
- López-López, M.; Ferrando, J.L.; García-Ruiz, C. Comparative analysis of smokeless gunpowders by Fourier transform infrared and Raman spectroscopy. Anal. Chim. Acta 2012, 717, 92–99. [Google Scholar] [CrossRef]
- López-López, M.; Merk, V.; García-Ruiz, C.; Kneipp, J. Surface-enhanced Raman spectroscopy for the analysis of smokeless gunpowders and macroscopic gunshot residues. Anal. Bioanal. Chem. 2016, 408, 4965–4973. [Google Scholar] [CrossRef]
- Weon, B.M.; Xu, L.; Je, J.H.; Hwu, Y.; Margaritondo, G.; Weitz, D. Reverse coffee-ring effect. Phys. Rev. E 2009, 82, 015305. [Google Scholar] [CrossRef] [Green Version]
- Khandasammy, S.R.; Rzhevskii, A.; Lednev, I.K. A novel two-step method for the detection of organic gunshot residue for forensic purposes: Fast fluorescence imaging followed by Raman microspectroscopic identification. Anal. Chem. 2019, 91, 11731–11737. [Google Scholar] [CrossRef] [PubMed]
- Raman Spectroscopy for Analysis and Monitoring. Available online: https://static.horiba.com/fileadmin/Horiba/Technology/Measurement_Techniques/Molecular_Spectroscopy/Raman_Spectroscopy/Raman_Academy/Raman_Tutorial/Raman_bands.pdf (accessed on 1 November 2022).
- López-López, M.; Fernández de la Ossa, M.Á.; García-Ruiz, C. Fast analysis of complete macroscopic gunshot residues on substrates using Raman imaging. Appl. Spectrosc. 2015, 69, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.; Lednev, I.K. Advanced statistical analysis and discrimination of gunshot residue implementing combined Raman and FT-IR data. Anal. Methods 2013, 5, 6292–6296. [Google Scholar] [CrossRef]
- Leonard, J.M. The Advanced Spectroscopic Analysis of Organic Gunshot Residue and Explosives; The Graduate Center, City University of New York: New York, NY, USA, 2017. [Google Scholar]
- Sett, P.; De, A.K.; Chattopadhyay, S.; Mallick, P.K. Raman excitation profile of diphenylamine. Chem. Phys. 2002, 276, 211–224. [Google Scholar] [CrossRef]
- Kramer, K.A.; Hall, L.O.; Goldgof, D.B.; Remsen, A.; Luo, T. Fast support vector machines for continuous data. Trans. Syst. Man Cybern. Part B (Cybernetics) 2009, 39, 989–1001. [Google Scholar] [CrossRef] [PubMed]
Winchester 9mm | |||
---|---|---|---|
Sample Number | Name | Bullet Type | Grain Weight |
1 | Winchester 9mm Luger | Full Metal Jacket | 115 |
2 | Winchester Defender 9 mm Luger (+P) | Bonded Jacketed Hollow Point | 124 |
Winchester 38 | |||
Sample Number | Name | Bullet Type | Grain Weight |
3 | Winchester Train & Defend (Train) Lead Free Primer | Full Metal Jacket | 130 |
4 | Winchester 38 Special Target | Lead Round Nose | 150 |
Remington 9 mm | |||
Sample Number | Name | Bullet Type | Grain Weight |
5 | Remington UMC | Jacketed Hollow Point | 115 |
6 | Ultimate Defense Full Size Handgun | Golden Saber Brass Jacketed Hollow Point | 124 |
Remington 38 | |||
Sample Number | Name | Bullet Type | Grain Weight |
7 | Ultimate Defense Compact Handgun (+P) | Brass Jacketed Hollow Point | 125 |
8 | Remington UMC Target | Full Metal Jacket | 130 |
Federal 9mm | |||
Sample Number | Name | Bullet Type | Grain Weight |
9 | American Eagle Pistol Cartridges | Total Synthetic Jacket | 115 |
10 | Federal Premium Ammunition Personal Defense | “HST” Jacketed Hollow Point | 147 |
Federal 38 | |||
Sample Number | Name | Bullet Type | Grain Weight |
11 | American Eagle Pistol Cartridges | Lead Round Nose | 158 |
12 | Federal Premium Ammunition HST (+P) Personal Defense | “HST” Jacketed Hollow Point | 130 |
Raman Shift (cm−1) | Assignment |
---|---|
406 | C-C aliphatic chains bending [25] |
853 | NO Scissoring or Stretching Mode, nitrocellulose [13,14,26] |
1291 | NO2 Symmetric Stretching, attributable to nitrate ester in smokeless powders [10,13,14,24,27] |
1370 | C-NO2 symmetric stretching, diphenylamine [28] |
1456 | In plane C-C stretching [29] |
1593 | NO2 Asymmetric Stretching, dinitrotoulene [13] |
Winchester | Correctly Classified | Remington | Federal |
---|---|---|---|
Sample 1 | 43% | 40% | 17% |
Sample 2 | 67% | 20% | 13% |
Sample 3 | 40% | 43% | 17% |
Sample 4 | 10% | 83% | 7% |
Remington | Correctly Classified | Winchester | Federal |
Sample 5 | 97% | 0% | 3% |
Sample 6 | 57% | 37% | 7% |
Sample 7 | 87% | 3% | 10% |
Sample 8 | 70% | 20% | 10% |
Federal | Correctly Classified | Winchester | Remington |
Sample 9 | 73% | 13% | 13% |
Sample 10 | 73% | 3% | 23% |
Sample 11 | 87% | 10% | 3% |
Sample 12 | 93% | 7% | 0% |
Actual Class | |||
---|---|---|---|
Winchester | Remington | Federal | |
Predicted as Winchester | 2 | 0 | 0 |
Predicted as Remington | 2 | 4 | 0 |
Predicted as Federal | 0 | 0 | 4 |
Predicted as Unassigned | 0 | 0 | 0 |
Class Predicted | Actual Class | |
---|---|---|
9 mm | 0.38 | |
Winchester Model PLS-DA 6 Latent Variables | ||
9 mm | 54 | 2 |
0.38 | 6 | 58 |
Unassigned | 0 | 0 |
Remington Model PLS-DA 10 Latent Variables | ||
9 mm | 55 | 5 |
0.38 | 5 | 55 |
Unassigned | 0 | 0 |
Federal Model PLS-DA 8 Latent Variables | ||
9 mm | 57 | 0 |
0.38 | 3 | 60 |
Unassigned | 0 | 0 |
Percentage of Correctly Classified Spectra | |||
---|---|---|---|
Manufacturer | Number of Latent Variables in PLS-DA Model | 9 mm | 0.38 in |
Winchester | 6 | 90% | 97% |
Remington | 10 | 95% | 100% |
Federal | 8 | 92% | 92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khandasammy, S.R.; Bartlett, N.R.; Halámková, L.; Lednev, I.K. Hierarchical Modelling of Raman Spectroscopic Data Demonstrates the Potential for Manufacturer and Caliber Differentiation of Smokeless Powders. Chemosensors 2023, 11, 11. https://doi.org/10.3390/chemosensors11010011
Khandasammy SR, Bartlett NR, Halámková L, Lednev IK. Hierarchical Modelling of Raman Spectroscopic Data Demonstrates the Potential for Manufacturer and Caliber Differentiation of Smokeless Powders. Chemosensors. 2023; 11(1):11. https://doi.org/10.3390/chemosensors11010011
Chicago/Turabian StyleKhandasammy, Shelby R., Nathan R. Bartlett, Lenka Halámková, and Igor K. Lednev. 2023. "Hierarchical Modelling of Raman Spectroscopic Data Demonstrates the Potential for Manufacturer and Caliber Differentiation of Smokeless Powders" Chemosensors 11, no. 1: 11. https://doi.org/10.3390/chemosensors11010011
APA StyleKhandasammy, S. R., Bartlett, N. R., Halámková, L., & Lednev, I. K. (2023). Hierarchical Modelling of Raman Spectroscopic Data Demonstrates the Potential for Manufacturer and Caliber Differentiation of Smokeless Powders. Chemosensors, 11(1), 11. https://doi.org/10.3390/chemosensors11010011