Characterisation of Channel Waveguides Fabricated in an Er3+-Doped Tellurite Glass Using Two Ion Beam Techniques
Abstract
:1. Introduction
2. Waveguide Design and Fabrication
2.1. First Method: Implantation through a Silicon Mask
2.2. Second Method: Direct Writing by an 11 MeV Carbon Ion Microbeam
3. SRIM Simulation to Predict Waveguide Structure
3.1. Implantation through a Silicon Mask
3.2. Direct Writing by an 11 MeV Carbon Ion Microbeam
4. Microscopic Measurements of the Ion-Beam-Implanted Channel Waveguides
4.1. Implantation through a Silicon Mask
4.2. Direct Writing by an 11 MeV Carbon Ion Microbeam
5. Measurements of the Surface Profiles of the Ion-Beam-Implanted Channel Waveguides
5.1. Implantation through a Silicon Mask
5.2. Direct Writing by an 11 MeV Carbon Ion Microbeam
6. Spectroscopic Ellipsometry Measurements
7. Micro Raman Spectroscopy
7.1. Implantation through a Silicon Mask
7.2. Direct Writing by an 11 MeV Carbon Ion Microbeam
8. Functional Tests of the Channel Waveguides
8.1. Implantation through a Silicon Mask
8.2. Direct Writing by an 11 MeV Carbon Ion Microbeam
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lifante, G. Integrated Photonics: Fundamentals; John Wiley and Sons Ltd.: Atrium, UK, 2003. [Google Scholar]
- Hunsperger, R.G. Integrated Optics: Theory and Technology; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Hukriede, J.; Kip, D.; Kratzig, E. Permanent narrow-band reflection holograms for infrared light recorded in LiNbO3:Ti:Cu channel waveguides. Appl. Phys. B 2001, 72, 749. [Google Scholar] [CrossRef]
- Ramponi, R.; Marangoni, M.; Osellame, R. Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide. Appl. Phys. Lett. 2001, 78, 2098. [Google Scholar] [CrossRef]
- Yip, G.L.; Albert, J. Characterization of planar optical waveguides by K+-ion exchange in glass. Opt. Lett. 1985, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Najafi, S.I.; Touam, T.; Sara, R.; Andrews, M.P.; Fardad, M.A. Sol-Gel Glass Waveguide and Grating on Silicon. J. Lightwave Technol. 1998, 16, 1640. [Google Scholar] [CrossRef]
- Townsend, P.D. Development of ion implantation for optical applications. Vacuum 1998, 51, 301. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Garside, B.K. Low-loss GeO2 optical waveguide fabrication using low deposition rate rf sputtering. Appl. Opt. 1982, 21, 4324. [Google Scholar] [CrossRef] [PubMed]
- Yamashiki, T.; Tsuda, K. Low-loss waveguides of benzylidene-aniline derivatives by organic molecular beam heteroepitaxy. Opt. Lett. 2003, 28, 316. [Google Scholar] [CrossRef]
- Wang, K.-M.; Shi, B.-R.; Cue, N.; Zhu, Y.-Y.; Xiao, R.-F.; Lu, F.; Li, W.; Liu, Y.-G. Waveguide laser film in erbium-doped by pulsed laser deposition. Appl. Phys. Lett. 1998, 73, 1020. [Google Scholar] [CrossRef]
- Bruno, F.; del Guidice, M.; Recca, R.; Testa, F. Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 1.5-μm wavelength. Appl. Opt. 1991, 30, 4560. [Google Scholar] [CrossRef]
- Townsend, P.D.; Chandler, P.J.; Zhang, L. Optical Effects of Ion Implantation; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Bindner, P.; Boudrioua, A.; Loulergue, J.C.; Moretti, P. Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons. Appl. Phys. Lett. 2001, 79, 2558–2560. [Google Scholar] [CrossRef]
- Vincent, B.; Boudrioua, A.; Loulergue, J.C.; Tascu, S.; Moretti, P.; Jacquier, B.; Aka, G.; Vivien, D. Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation. Opt. Lett. 2003, 28, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Bonfigli, F.; Jacquier, B.; Montereali, R.M.; Moretti, P.; Mussi, V.; Nichelatti, E.; Somma, F. Concentration of F2 and F3+ defects in He+ implanted LiF crystals determined by optical transmission and photoluminescence measurements. Opt. Mater. 2003, 24, 291–293. [Google Scholar] [CrossRef]
- Szachowicz, M.; Moretti, P.; Joubert, M.-F.; Couchaud, M.; Ferrand, B. Fabrication of implanted channel waveguides in single crystal buried epitaxial layers for infrared to blue upconversion laser systems. Appl. Phys. Lett. 2007, 90, 03111. [Google Scholar] [CrossRef]
- Petit, V.; Moretti, P.; Camy, P.; Doualan, J.L.; Moncorgé, R. Active waveguides produced in Yb3+: CaF2 by H+ implantation for laser applications. J. Alloys Compd. 2008, 451, 68–70. [Google Scholar] [CrossRef]
- Buchal, C. Ion implantation for optical applications. Nucl. Instrum. Methods B 1995, 96, 370. [Google Scholar] [CrossRef]
- Schineller, E.R.; Flam, R.P.; Wilmot, D.W. Optical waveguides formed by proton irradiation of fused silica. J. Opt. Soc. Am. 1968, 58, 1171. [Google Scholar] [CrossRef]
- Meneghini, C.; le Foulgoc, K.; Knystautas, E.J.; Villeneuve, A.; Cardinal, T.; Richardson, K.A. Ion implantation: An efficient method for doping or fabricating channel chalcogenide glass waveguides. Proc. SPIE 1998, 3413, 46. [Google Scholar]
- Kulish, J.R.; Franke, H.; Singh, A.; Lessard, R.A.; Knystautas, E.J. Ion implantation, a method for fabricating light guides in polymers. J. Appl. Phys. 1988, 63, 2517. [Google Scholar] [CrossRef]
- Wilson, R.G.; Betts, D.A.; Sadana, D.K.; Zavada, J.M.; Hunsperger, R.G. Proton, deuteron, and helium implantation into GaAs and LiNbO3 for waveguide fabrication. J. Appl. Phys. 1985, 57, 5006. [Google Scholar] [CrossRef]
- Akano, U.G.; Mitchell, I.V.; Shepherd, F.R.; Miner, C.J.; Rousina, R. Implant-damage isolation of InP and InGaAsP. J. Vac. Sci. Technol. A 1993, 11, 1016. [Google Scholar] [CrossRef]
- Aithal, P.S.; Nagaraja, H.S.; Rao, P.M.; Avasthi, D.K.; Sarma, A. Effect of high energy ion irradiation on electrical and optical properties of para-hydroxy acetophenone. J. Appl. Phys. 1997, 81, 7526. [Google Scholar] [CrossRef]
- Szenes, G. Ion-velocity-dependent track formation in yttrium iron garnet: A thermal-spike analysis. Phys. Rev. B 1995, 52, 6154–6157. [Google Scholar] [CrossRef]
- Bentini, G.G.; Bianconi, M.; Correra, L.; Chiarini, M.; Mazzoldi, P.; Sada, C.; Argiolas, N.; Bazzan, M.; Guzzi, R. Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions. J. Appl. Phys. 2004, 96, 242–247. [Google Scholar] [CrossRef]
- Zhu, Q.-F.; Shen, X.-L.; Zheng, R.-L.; Lv, P.; Guo, H.-T.; Li, W.-N.; Liu, C.-X. Waveguiding structures in Yb3+-doped phosphate glasses by double-energy proton and single-energy carbon-ion implantations. Mater. Res. Express 2018, 5, 016404. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Zhu, Q.; Shen, J.; Wang, Z.; Guo, H.-T.; Liu, C. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses. Front. Optoelectron. 2019, 12, 392–396. [Google Scholar] [CrossRef]
- Olivares, J.; García, G.; García-Navarro, A.; Agulló-López, F.; Caballero, O.; García-Cabañes, A. Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation. Appl. Phys. Lett. 2005, 86, 183501. [Google Scholar] [CrossRef]
- Vázquez, G.V.; Valiente, R.; Gómez-Salces, S.; Flores-Romero, E.; Rickards, J.; Trejo-Luna, R. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission. Opt. Laser Technol. 2016, 79, 132–136. [Google Scholar] [CrossRef]
- Roberts, A.; von Bibra, M.L. Fabrication of Buried Channel Waveguides in Fused Silica Using Focused MeV Proton Beam Irradiation. J. Lightwave Technol. 1996, 14, 2554–2557. [Google Scholar] [CrossRef]
- Bettiol, A.A.; Rao, S.V.; Teo, E.J.; van Kan, J.A.; Watt, F. Fabrication of buried channel waveguides in photosensitive glass using proton beam writing. Appl. Phys. Lett. 2006, 88, 171106. [Google Scholar] [CrossRef]
- Liu, K.; Pun, E.Y.B.; Sum, T.C.; Bettiol, A.A.; van Kan, J.A.; Watt, F. Erbium-doped waveguide amplifiers fabricated using focused proton beam writing. Appl. Phys. Lett. 2004, 84, 684–686. [Google Scholar] [CrossRef]
- An, Q.; Cheng, C.; Vanga, S.K.; Bettiol, A.A.; Chen, F. Proton Beam Writing of Chalcogenide Glass: A New Approach for Fabrication of Channel Waveguides at Telecommunication O and C Bands. J. Lightwave Technol. 2014, 32, 4365–4369. [Google Scholar] [CrossRef]
- Yao, Y.; Tan, Y.; Dong, N.; Chen, F.; Bettiol, A.A. Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing. Opt. Express 2010, 18, 24516–24521. [Google Scholar] [CrossRef]
- Bányász, I.; Fried, M.; Dücső, C.; Vértesy, Z. Recording of transmission phase gratings in glass by ion implantation. Appl. Phys. Lett. 2001, 79, 3755–3757. [Google Scholar]
- Bányász, I.; Berneschi, S.; Khánh, N.Q.; Lohner, T.; Lengyel, K.; Fried, M.; Péter, Á.; Petrik, P.; Zolnai, Z.; Watterich, A.; et al. Formation of slab waveguides in eulytine type BGO and CaF2 crystals by implantation of MeV nitrogen ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 286, 80–84. [Google Scholar] [CrossRef]
- Berneschi, S.; Conti, G.N.; Bányász, I.; Watterich, A.; Khanh, N.Q.; Fried, M.; Pászti, F.; Brenci, M.; Pelli, S.; Righini, G.C. Ion beam irradiated channel waveguides in Er3+- doped tellurite glass. Appl. Phys. Lett. 2007, 90, 121136. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Bányász, I.; Szilágyi, E.; Rajta, I.; Nagy, G.U.L.; Pelli, S.; Comti, G.N.; Berneschi, S.; Havránek, V.; Vosecek, V.; Nagy, N.; et al. Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band. Opt. Mater. X 2019, 4, 100035. [Google Scholar] [CrossRef]
- Aspnes, D.E. Optical properties of thin films. Thin Solid Film. 1982, 89, 249–262. [Google Scholar] [CrossRef]
- Woollam Co., Inc. 645 M Street Suite 102 Lincoln, NE 68508 USA. Available online: http://www.jawoollam.com (accessed on 16 August 2022).
- Upender, G.; Sathe, V.G.; Mouli, V.C. Raman spectroscopic characterization of tellurite glasses containing heavy metal oxides. Phys. B 2010, 405, 1269–1273. [Google Scholar] [CrossRef]
- Sekiya, T.; Mochida, N.; Ohtsuka, A.; Tonokawa, M. Normal vibrations of two polymorphic forms of TeO2 crystals and assignments of Raman peaks of pure TeO2 glass. J. Ceram. Soc. Jpn. 1989, 97, 1435–1440. [Google Scholar] [CrossRef]
Implant Energy [MeV] | Thlower [nm] | An1 | Bn1 | Cn1 | Ak1 | Bk1 | Thupper [nm] | An2 | Bn2 | Cn2 | Ak2 | Bk2 | Thsr [nm] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 79 ± 6 | 2.005 ± 0.01 | 0.016 ± 0.007 | 0.0011 ± 0.001 | 3.9 ± 1.4 | 2.1 ± 0.3 | 1620 ± 3 | 2.00 ± 0.003 | 0.0056 ± 0.001 | 0.002 ± 0.0001 | 0.31 ± 0.04 | 1.5 ± 0.15 | 7.6 ± 0.1 |
3.5 | 489 ± 10 | 1.931 ± 0.001 | 0.078 ± 0.001 | −0.0041 ± 0.0002 | 0.4 ± 0.01 | 1.36 ± 0.04 | 2381 ± 6 | 1.926 ± 0.008 | 0.09 ± 0.02 | −0.023 ± 0.007 | 0.019 ± 0.018 | 0 ± 0.4 | 0 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bányász, I.; Rajta, I.; Nagy, G.U.L.; Khanh, N.Q.; Havránek, V.; Vosecek, V.; Fried, M.; Szabó, Z.; Veres, M.; Holomb, R.; et al. Characterisation of Channel Waveguides Fabricated in an Er3+-Doped Tellurite Glass Using Two Ion Beam Techniques. Chemosensors 2022, 10, 337. https://doi.org/10.3390/chemosensors10080337
Bányász I, Rajta I, Nagy GUL, Khanh NQ, Havránek V, Vosecek V, Fried M, Szabó Z, Veres M, Holomb R, et al. Characterisation of Channel Waveguides Fabricated in an Er3+-Doped Tellurite Glass Using Two Ion Beam Techniques. Chemosensors. 2022; 10(8):337. https://doi.org/10.3390/chemosensors10080337
Chicago/Turabian StyleBányász, István, Istvan Rajta, Gyula U. L. Nagy, Nguyen Q. Khanh, Vladimír Havránek, Vaclav Vosecek, Miklós Fried, Zoltán Szabó, Miklós Veres, Roman Holomb, and et al. 2022. "Characterisation of Channel Waveguides Fabricated in an Er3+-Doped Tellurite Glass Using Two Ion Beam Techniques" Chemosensors 10, no. 8: 337. https://doi.org/10.3390/chemosensors10080337
APA StyleBányász, I., Rajta, I., Nagy, G. U. L., Khanh, N. Q., Havránek, V., Vosecek, V., Fried, M., Szabó, Z., Veres, M., Holomb, R., Himics, L., & Tichy-Rács, É. (2022). Characterisation of Channel Waveguides Fabricated in an Er3+-Doped Tellurite Glass Using Two Ion Beam Techniques. Chemosensors, 10(8), 337. https://doi.org/10.3390/chemosensors10080337