Optical Immunoassays Methods in Protein Analysis: An Overview
Abstract
:1. Introduction
2. Classification of Immunoassays
3. How to Perform Good Experiments in Immunoassay
- (1)
- Sensitivity;
- (2)
- Specificity;
- (3)
- Accuracy;
- (4)
- Precision.
4. Basic Principles of Methodologies Used in Protein Analysis
4.1. -) Radioimmunoassay (RIA)
4.2. -) Enzyme-Linked Immunosorbent Assay (ELISA)
4.3. -) Fluoroimmunoassay (FIA)
4.4. -) Surface-Enhanced Raman Scattering (SERS)
4.5. -) Surface Plasmon Resonanace (SPR) Analysis
4.6. -) Chemiluminescence Immunoassay (CLIA)
4.7. -) Electrochemiluminescence Immunoassay (ECLIA)
5. SARS-CoV-2 Detection: A Recent Example of Application of Immunoassays
6. Outlook and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zourob, M.; Elwary, S.; Turner, A. (Eds.) Principles of Bacteria Detection: Biosensors, Recognition Receptors and Microsystems; Springer: New York, NY, USA, 2008. [Google Scholar]
- Gosling, J.P. A decade of development in Immunoassay methodology. Clin. Chem. 1990, 36, 1406–1427. [Google Scholar] [CrossRef]
- Dobosz, P.; Puchades, R.; Morais, S.; Maquieira, A. Highly sensitive homogeneous-heterogeneous nanogold-based microimmunoassays for multi-residue screening of pesticides in drinking water. Case Stud. Chem. Environ. Eng. 2022, 5, 100199. [Google Scholar] [CrossRef]
- Darwish, I.A. Immunoassay methods and their application in pharmaceutical analysis: Basic methodology and recent advances. Int. J. Biomed. Sci. 2006, 2, 217–235. [Google Scholar] [PubMed]
- Zhang, C.; Liu, Z.; Bai, M.; Wang, Y.; Liao, X.; Zhang, Y.; Wang, P.; Wei, J.; Zhang, H.; Wang, J.; et al. An ultrasensitive sandwich chemiluminescent enzyme immunoassay based on phage-mediated double-nanobody for detection of Salmonella Typhimurium in food. Sens. Actuators B 2022, 352, 131058. [Google Scholar] [CrossRef]
- Yalow, R.S.; Berson, S.A. Assay of plasma Insulin in human subjects by immunological methods. Nature 1959, 184, 1648–1649. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.nobelprize.org (accessed on 1 June 2022).
- Felber, J.P. Radioimmunoassay of Polypeptide Hormones and Enzymes. In Methods of Biochemical Analysis; Glick, D., Ed.; John Wiley & Sons: New York, NY, USA, 1974; Volume 22, pp. 1–94. [Google Scholar]
- Ikeda, Y.; Fujii, M.; Yamazaki, M.; Fujii, Y. Measurement of serum digitoxin in patients by radioimmunoassay using specific antiserum. Clin. Chim. Acta 2001, 314, 245–247. [Google Scholar] [CrossRef]
- Vakkuri, O.; Arnason, S.S.; Pouta, A.; Vuolteenaho, O.; Leppäluoto, J. Radioimmunoassay of plasma ouabain in healthy and pregnant individuals. J. Endocrinol. 2000, 165, 669–677. [Google Scholar] [CrossRef]
- Mei, J.V.; Hannon, W.H.; Dobbs, T.L.; Bell, C.J.; Spruill, C.; Gwinn, M. Radioimmunoassay for monitoring zidovudine in dried blood spot specimens. Clin. Chem. 1998, 44, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Clive, D.R.; Sudhaker, D.; Giacherio, D.; Gupta, M.; Schreiber, M.J.; Sackrison, J.L.; MacFarlane, G.D. Analytical and clinical validation of a radioimmunoassay for the measurement of 1,25 dihydroxy vitamin D. Clin. Biochem. 2002, 35, 517–521. [Google Scholar] [CrossRef]
- De Clerck, I.; Daenens, P. Development of a Radioimmunoassay for the Determination of Zolpidem in Biological Samples. Analyst 1997, 122, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Tagliaro, F.; Camilot, M.; Valentini, R.; Mengarda, F.; Antoniazzi, F.; Tatò, L. Determination of thyroxine in the hair of newborns by radioimmunoassay with high-performance liquid chromatographic confirmation. J. Chromatogr. B Biomed. Sci. Appl. 1998, 716, 77–82. [Google Scholar] [CrossRef]
- Deberg, M.; Houssa, P.; Frank, B.H.; Sodoyez-Goffaux, F.; Sodoyez, J.-C. Highly specific radioimmunoassay for human insulin based on immune exclusion of all insulin precursors. Clin. Chem. 1998, 44, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-C.; Chatterton, R.T., Jr.; Vogelsong, K.M.; May, L.K. Direct Radioimmunoassay of Progesterone in Saliva. J. Immunoass. 1997, 18, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Giton, F.; Valleix, A.; Boudou, P.; Villette, J.M.; Bélanger, A.; Galons, H.; Fiet, J. Specific radioimmunoassay of estrone sulfate: Application to measurement in male plasma. J. Steroid. Biochem. Mol. Biol. 2002, 81, 85–94. [Google Scholar] [CrossRef]
- Tagliaro, F.; Valentini, R.; Manetto, G.; Crivellente, F.; Carli, G.; Marigo, M. Hair analysis by using radioimmunoassay, high-performance liquid chromatography and capillary electrophoresis to investigate chronic exposure to heroin, cocaine and/or ecstasy in applicants for driving licences. Forensic Sci. Int. 2000, 107, 121–128. [Google Scholar] [CrossRef]
- Mannaert, E.; Tytgat, J.; Daenens, P. Development of a stereospecific radioimmunoassay for the analysis of zopiclone and metabolites in urine. Clin. Chim. Acta 1996, 253, 103–115. [Google Scholar] [CrossRef]
- Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) Quantitative assay of immunoglobin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef]
- Li, J.; Ding, Y.; Chen, H.; Sun, W.; Huang, Y.; Liu, F.; Wang, M.; Hua, X. Development of an in-direct competitive enzyme-linked immunosorbent assay for propiconazole based on monoclonal antibody. Food Control 2022, 134, 108751. [Google Scholar] [CrossRef]
- Wild, D.G. (Ed.) The Immunoassay Handbook, 4th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Lavery, P.; Brown, M.J.; Pope, A.J. Simple absorbance-based assay for ultra-high throughput screening. J. Biomol. Screen. 2001, 6, 3–9. [Google Scholar] [CrossRef]
- Asthagiri, A.R.; Horwitz, A.F.; Lauffenburger, D.A. A rapid and sensitive quantitative kinase activity using a convenient 96-well format. Anal. Biochem. 1999, 269, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Hemmilä, I. Fluoroimmunoassays and immunofluorometric assays. Clin. Chem. 1985, 31, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH GmbH: Weinheim, Germany, 2001. [Google Scholar]
- Schlüter, F.; Riehemann, K.; Kehr, N.S.; Quici, S.; Daniliuc, C.G.; Rizzo, F. A highly fluorescent water soluble spirobifluorene dye with a large Stokes shift: Synthesis, characterization and bio-applications. Chem. Commun. 2018, 54, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Yemets, A.; Plokhovska, S.; Pushkarova, N.; Blume, Y. Quantum dot-antibody conjugates for immunofluorescence studies of biomolecules and subcellular structures. J. Fluoresc. 2022. [Google Scholar] [CrossRef]
- Pietryga, J.M.; Park, Y.-S.; Lim, J.; Fidler, A.F.; Bae, W.K.; Brovelli, S.; Klimov, V.I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622. [Google Scholar] [CrossRef]
- Kakabakos, S.E.; Georgiou, S.; Petrou, P.S.; Christofidis, I. Heterogeneous fluoroimmunoassay using fluorescein as label with measurement of the fluorescence signal directly onto the solid-phase. J. Immunol. Methods 1999, 222, 183–187. [Google Scholar] [CrossRef]
- Dandliker, W.B.; de Saussure, V.A. Fluorescence polarization in immunochemistry. Immunochemistry 1970, 7, 799–828. [Google Scholar] [CrossRef]
- Dandliker, W.B.; Kelly, R.J.; Dandliker, J.; Farquhar, J.; Levin, J. Fluorescence polarization immunoassay. Theory and experimental method. Immunochemistry 1973, 10, 219–227. [Google Scholar]
- Wang, Y.; Adeoye, D.I.; Wang, Y.J.; Roper, M.G. Increasing insulin measurement throughput by fluorescence anisotropy imaging immunoassays. Anal. Chim. Acta 2022, 1212, 339942. [Google Scholar] [CrossRef]
- Fukuyama, M.; Nakamura, A.; Nishiyama, K.; Imai, A.; Tokeshi, M.; Shigemura, K.; Hibara, A. Noncompetitive Fluorescence Polarization Immunoassay for Protein Determination. Anal. Chem. 2020, 92, 14393–14397. [Google Scholar] [CrossRef]
- Lövgren, T.; Meriö, L.; Mitrunen, K.; Mäkinen, M.-L.; Mäkelä, M.; Blomberg, K.; Palenius, T.; Petterson, K. One-step all-in-one dry reagent immunoassays with fluorescent europium chelate label and time-resolved fluorometry. Clin. Chem. 1996, 42, 1196–1201. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Piguet, C. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. Chem. Rev. 2002, 102, 1897–1928. [Google Scholar] [CrossRef] [PubMed]
- Bünzli, J.-C.G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanide: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018, 370, 42–54. [Google Scholar] [CrossRef]
- Barry, D.E.; Caffrey, D.F.; Gunnlaugsson, T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem. Soc. Rev. 2016, 45, 3244–3274. [Google Scholar] [CrossRef]
- Bottaro, G.; Rizzo, F.; Cavazzini, M.; Armelao, L.; Quici, S. Efficient luminescence from fluorene- and spirobifluorene-based lanthanide complexes upon near-visible irradiation. Chem. Eur. J. 2014, 20, 4598–4607. [Google Scholar] [CrossRef]
- Rizzo, F.; Meinardi, F.; Tubino, R.; Pagliarin, R.; Dellepiane, G.; Papagni, A. Synthesis of 8-hydroxyquinoline functionalised DO3A ligand and Eu(III) and Er(III) complexes: Luminescence properties. Synth. Metals 2009, 159, 356–360. [Google Scholar] [CrossRef]
- Ottonelli, M.; Musso, G.F.; Rizzo, F.; Dellepiane, G.; Porzio, W.; Destri, S. Quantum chemical prediction of antennae structures in lanthanide complexes. Mater. Sci. Eng. B 2008, 146, 50–53. [Google Scholar] [CrossRef]
- Destri, S.; Pasini, M.; Porzio, W.; Rizzo, F.; Dellepiane, G.; Ottonelli, M.; Musso, G.F.; Meinardi, F.; Veltri, L. New erbium complexes emitting in infrared region based on oligothiophene and thiophenefluorene carboxylate. J. Lumin. 2007, 127, 601–610. [Google Scholar] [CrossRef]
- Lama, M.; Mamula, O.; Kottas, G.S.; Rizzo, F.; De Cola, L.; Nakamura, A.; Kuroda, R.; Stoeckli-Evans, H. Lanthanide class of trinuclear enantiopure helical architecture containing chiral ligands: Synthesis, structure, and properties. Chem. Eur. J. 2007, 13, 7358–7373. [Google Scholar] [CrossRef]
- Gagliardo, M.; Rizzo, F.; Lutz, M.; Speck, A.L.; van Klink, G.P.M.; Merbach, A.E.; De Cola, L.; van Koten, G. A PCP-pincer RuII-terpyridine building block as a potential “antenna unit” for intramolecular sensitization. Eur. J. Inorg. Chem. 2007, 2007, 2853–2861. [Google Scholar] [CrossRef]
- De Paoli, G.; Džolic, Z.; Rizzo, F.; De Cola, L.; Vögtle, F.; Müller, W.M.; Richardt, G.; Žinic, M. Reversible luminescent gels containing metal complexes. Adv. Funct. Mater. 2007, 17, 821–828. [Google Scholar] [CrossRef]
- Ottonelli, M.; Izzo, G.M.M.; Rizzo, F.; Musso, G.F.; Dellepiane, G.; Tubino, R. Semiempirical study of the electronic and optical properties of the Er(8-hydroxyquinolinate)3 complex. J. Phys. Chem. B 2005, 109, 19249–19256. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, F.; Papagni, A.; Meinardi, F.; Tubino, R.; Ottonelli, M.; Musso, G.F.; Dellepiane, G. Novel lanthanide complexes for visible and IR emission. Synth. Metals 2004, 147, 143–147. [Google Scholar] [CrossRef]
- Parker, D.; Dickins, R.S.; Puschmann, H.; Crossland, C.; Howard, J.A.K. Being excited by lanthanide coordination complexes: Aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem. Rev. 2002, 102, 1977–2010. [Google Scholar] [CrossRef]
- Hewitt, S.H.; Butler, S.J. Application of lanthanide luminescence in probing enzyme activity. Chem. Commun. 2018, 54, 6635–6647. [Google Scholar] [CrossRef]
- Yuan, J.; Matsumoto, K.; Kimura, H. A new tetradentate β-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay. Anal. Chem. 1998, 70, 596–601. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-activated platforms for immunoassay: Probes, encoding methods, and applications. Chem. Rev. 2017, 117, 7910–7963. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Cheng, L.; Ding, S.; Wang, G.; Choo, J.; Chen, L. SERS-based test strips: Principles, designs and applications. Biosens. Bioelectron. 2021, 189, 113360. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, K.S. A new type of secondary radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Michota, A.; Bukowska, J. Suface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J. Raman Spectrosc. 2003, 34, 21–25. [Google Scholar] [CrossRef]
- Li, M.; Kang, J.W.; Sukumar, S.; Dasari, R.R.; Barman, I. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay. Chem. Sci. 2015, 6, 3906–3914. [Google Scholar] [CrossRef]
- Hong, W.; Seo, H.K.; Jung, Y.M. SERS immunoassay using microcontact printing for application of sensitive biosensors. Bull. Korean Chem. Soc. 2011, 32, 4281–4285. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, S.; Khan, A.; Ruttner, G.; Leigh, S.Y.; Murray, M.; Abeytunge, S.; Peterson, G.; Rajadhyaksha, M.; Dintzis, S.; et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci. Rep. 2016, 6, 21242. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.F.; de la Zerda, A.; Jokerst, J.V.; Zavaleta, C.L.; Kempen, P.J.; Mittra, E.; Pitter, K.; Huang, R.; Campos, C.; Habte, F.; et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 2012, 18, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Jana, D.; Mandal, A.; De, G. High Raman enhancing shape-tunable Ag nanoplates in alumina: A reliable and efficient SERS technique. ACS Appl. Mater. Interfaces 2012, 4, 3330–3334. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, Z.; Zong, S.; Huang, Z.; Zhang, P.; Cui, Y. A SERS-based immunoassay with highly increased sensitivity using gold/silver core–shell nanorods. Biosens. Bioelectron. 2012, 38, 94–99. [Google Scholar] [CrossRef]
- Kohout, C.; Santi, C.; Polito, L. Anisotropic gold nanoparticles in biomedical applications. Int. J. Mol. Sci. 2018, 19, 3385. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, A.; Lay, L.; Psaro, R.; Polito, L.; Evangelisti, C. Fluidic manufacture of star-shape gold nanoparticles. Chem. Eur. J. 2017, 23, 9732–9735. [Google Scholar] [CrossRef]
- Harmsen, S.; Huang, R.; Wall, M.A.; Karabeber, H.; Samii, J.M.; Spaliviero, M.; White, J.R.; Monette, S.; O’Connor, R.; Pitter, K.L.; et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 2015, 7, 271ra277. [Google Scholar] [CrossRef]
- Zeng, L.; Pan, Y.; Wang, S.; Wang, X.; Zhao, X.; Ren, W.; Lu, G.; Wu, A. Raman reporter-coupled Agcore@Aushell nanostars for in vivo improved surface enhanced Raman scattering imaging and near-infrared-triggered photothermal therapy in breast cancers. ACS Appl. Mater. Interfaces 2015, 7, 16781–16791. [Google Scholar] [CrossRef]
- Compostella, F.; Pitirollo, O.; Silvestri, A.; Polito, L. Glyco-gold nanoparticles: Synthesis and applications. Beilstein J. Org. Chem. 2017, 13, 1008–1021. [Google Scholar] [CrossRef]
- Potara, M.; Baia, M.; Farcau, C.; Astilean, S. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection. Nanotechnology 2012, 23, 055501. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, L.E.; Asiala, S.M.; Gracie, K.; Faulds, K.; Graham, D. Bioanalytical measurements enabled by surface-enhanced Raman scattering (SERS) probes. Annu. Rev. Anal. Chem. 2017, 10, 415–437. [Google Scholar] [CrossRef]
- McQueenie, R.; Stevenson, R.; Benson, R.; MacRitchie, N.; MacInnes, I.; Maffia, P.; Faulds, K.; Graham, D.; Brewer, J.; Garside, P. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem. 2012, 84, 5968–5975. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.; Jamieson, L.E.; Faulds, K.; Graham, D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 2017, 1, 0060. [Google Scholar] [CrossRef]
- Rohr, T.E.; Cotton, T.; Fan, N.; Tarcha, P.J. Immunoassay employing surface-enhanced Raman spectroscopy. Anal. Biochem. 1989, 182, 388–398. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Houck, K.; Stokes, D.L. Surface-enhanced Raman gene probes. Anal. Chem. 1994, 66, 3379–3383. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Mallinder, B.J.; Smith, W.E. Surface-enhanced resonance Raman scattering as a novel method of DNA discrimination. Angew. Chem. Int. Ed. 2000, 39, 1061–1063. [Google Scholar] [CrossRef]
- Stuart, D.A.; Yuen, J.M.; Shah, N.; Lyandres, O.; Yonzon, C.R.; Glucksberg, M.R.; Walsh, J.T.; van Duyne, R.P. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 2006, 78, 7211–7215. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Peng, X.-H.; Ansari, D.O.; Yin-Goen, Q.; Chen, G.Z.; Shin, D.M.; Yang, L.; Young, A.N.; Wang, M.D.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Keren, S.; Zavaleta, C.; Cheng, Z.; de la Zerda, A.; Gheysens, O.; Gambhir, S.S. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 5844–5849. [Google Scholar] [CrossRef] [PubMed]
- Von Maltzahn, G.; Centrone, A.; Park, J.-H.; Ramanathan, R.; Sailor, M.J.; Hatton, T.A.; Bhatia, S.N. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 2009, 21, 3175–3180. [Google Scholar] [CrossRef]
- Samanta, A.; Maiti, K.K.; Soh, K.-S.; Liao, X.; Vendrell, M.; Dinish, U.S.; Yun, S.-W.; Bhuvaneswari, R.; Kim, H.; Rautela, S.; et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. 2011, 50, 6089–6092. [Google Scholar] [CrossRef] [PubMed]
- Gracie, K.; Correa, E.; Mabbott, S.; Dougan, J.A.; Graham, D.; Goodacre, R.; Faulds, K. Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chem. Sci. 2014, 5, 1030–1040. [Google Scholar] [CrossRef]
- Indrasekara, A.S.D.S.; Meyers, S.; Shubeita, S.; Feldman, L.C.; Gustafsson, T.; Fabris, L. Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 2014, 6, 8891–8899. [Google Scholar] [CrossRef]
- Garai, E.; Sensarn, S.; Zavaleta, C.L.; Loewke, N.O.; Rogalla, S.; Mandella, M.J.; Felt, S.A.; Friedland, S.; Liu, J.T.C.; Gambhir, S.S.; et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS ONE 2015, 10, e0123185. [Google Scholar] [CrossRef]
- Harmsen, S.; Bedics, M.A.; Wall, M.A.; Huang, R.; Detty, M.R.; Kircher, M.F. Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat. Commun. 2015, 6, 6570. [Google Scholar] [CrossRef] [PubMed]
- Renishaw Launches RenDx® Multiplex Assay System and Fungiplex Assay. Available online: https://www.technologynetworks.com/diagnostics/product-news/renishaw-launches-rendx-multiplex-assay-system-and-fungiplex-assay-222450 (accessed on 1 June 2022).
- Lakowicz, J.R. Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal. Biochem. 2004, 324, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, E.; Raether, H. Radiative Decay of Nonradiative Surface Plasmons Excited by Light. Z. Naturforsch. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; González-Villa, A.; Loyez, M.; Caucheteur, C. Plasmonic Optical Fiber-Grating Immunosensing: A Review. Sensors 2017, 17, 2732. [Google Scholar] [CrossRef] [PubMed]
- Barnett, N.W.; Francis, P.S. Chemiluminescence-Overview. In Encyclopedia of Analytical Science, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; pp. 506–511. [Google Scholar]
- Roda, A.; Mirasoli, M.; Michelini, E.; di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in chemical luminescence-based biosensors: A critical review. Biosens. Bioelectron. 2016, 76, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lai, J.; Wu, K.; Huang, X.; Guo, S.; Zhang, L.; Liu, J. Peroxidase-catalyzed chemiluminescence system and its application in immunoassay. Talanta 2018, 180, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, T.P.; Thorpe, G.H.G.; Maxwell, S.R.J. Enhanced chemiluminescence assay for antioxidant capacity in biological fluids. Anal. Chim. Acta 1992, 266, 265–277. [Google Scholar] [CrossRef]
- Jansen, E.H.J.M.; van den Berg, R.H.; Bergman, J.J. Effect of iron chelates on luminol chemiluminescence in the presence of xanthine oxidase. Anal. Chim. Acta 1989, 227, 57–63. [Google Scholar] [CrossRef]
- Mandon, C.A.; Blum, L.J.; Marquette, C.A. Adding biomolecular recognition capability to 3D printed objects. Anal. Chem. 2016, 88, 10767–10772. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.; Zomer, G.; Laane, C.; Hilhorst, R. Comparative studies of the chemiluminescent horseradish peroxidase-catalyzed peroxidation of acridan (GZ-11) and luminol reactions: Effect of pH and scavengers of reactive oxygen species on the light intensity of these systems. Luminescence 2000, 15, 189–197. [Google Scholar] [CrossRef]
- Bruemmer, K.J.; Green, O.; Su, T.A.; Shabat, D.; Chang, C.J. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice. Angew. Chem. Int. Ed. 2018, 57, 7508–7512. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Li, C.-C.; Zhang, C.-Y. Development of quantum dot-based biosensors: Principles and applications. J. Mater. Chem. B 2018, 6, 6173–6190. [Google Scholar] [CrossRef]
- Roda, A.; Michelini, E.; Zangheri, M.; di Fusco, M.; Calabria, D.; Simoni, P. Smartphone-based biosensors: A critical review and perspectives. TrAC Trends Anal. Chem. 2016, 79, 317–325. [Google Scholar] [CrossRef]
- Chu, W.; Chen, Y.; Liu, W.; Zhao, M.; Li, H. Paper-based chemiluminescence immunodevice with temporal controls of reagent transport technique. Sens. Actuators B 2017, 250, 324–332. [Google Scholar] [CrossRef]
- Sciutto, G.; Zangheri, M.; Anfossi, L.; Guardigli, M.; Prati, S.; Mirasoli, M.; di Nardo, F.; Baggiani, C.; Mazzeo, R.; Roda, A. Miniaturized biosensors to preserve and monitor cultural heritage: From medical to conservation diagnosis. Angew. Chem. Int. Ed. 2018, 57, 7385–7389. [Google Scholar] [CrossRef]
- Roda, A.; Mirasoli, M.; Guardigli, M.; Zangheri, M.; Caliceti, C.; Calabria, D.; Simoni, P. Advanced biosensors for monitoring astronauts’ health during long duration space missions. Biosens. Bioelectron. 2018, 111, 18–26. [Google Scholar] [CrossRef]
- Hercules, D.M. Chemiluminescence resulting from electrochemically generated species. Science 1964, 145, 808–809. [Google Scholar] [CrossRef]
- Visco, R.E.; Chandross, E.A. Electroluminescence in solutions of aromatic hydrocarbons. J. Am. Chem. Soc. 1964, 86, 5350–5351. [Google Scholar] [CrossRef]
- Santhanam, K.S.V.; Bard, A.J. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J. Am. Chem. Soc. 1965, 87, 139–140. [Google Scholar] [CrossRef]
- Tokel, N.E.; Bard, A.J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2’-bipiridine)ruthenium(II) dichloride. J. Am. Chem. Soc. 1972, 94, 2862–2863. [Google Scholar] [CrossRef]
- Bard, A.J. (Ed.) Electrogenerated Chemiluminescence; Marcel Dekker Inc.: New York, NY, USA, 2004. [Google Scholar]
- White, H.S.; Bard, A.J. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2’-bpy)32+-S2O82− system in acetonitrile-water solutions. J. Am. Chem. Soc. 1982, 104, 6891–6895. [Google Scholar] [CrossRef]
- Rubinstein, I.; Bard, A.J. Electrogenerated chemiluminescence. 37. Aqueous ECL systems based on Ru(2,2’-bipydine)32+ and oxalate or organic acids. J. Am. Chem. Soc. 1981, 103, 512–516. [Google Scholar] [CrossRef]
- Rizzo, F.; Polo, F.; Bottaro, G.; Fantacci, S.; Antonello, S.; Armelao, L.; Quici, S.; Maran, F. From blue to green: Fine-tuning of photoluminescence and electrochemiluminescence in bifunctional organic dyes. J. Am. Chem. Soc. 2017, 139, 2060–2069. [Google Scholar] [CrossRef]
- Polo, F.; Rizzo, F.; Veiga-Gutierrez, M.; De Cola, L.; Quici, S. Efficient greenish blue electrochemiluminescence from fluorene and spirobifluorene derivatives. J. Am. Chem. Soc. 2012, 134, 15402–15409. [Google Scholar] [CrossRef]
- Shen, M.; Rodriguez-Lopez, J.; Huang, J.; Liu, Q.; Zhu, X.-H.; Bard, A.J. Electrochemistry and electrogenerated chemiluminescence of dithienylbenzothiadiazole derivative. Differential reactivity of donor and acceptor groups and simulations of radical cation-anion and dication-radical anion annihilation. J. Am. Chem. Soc. 2010, 132, 13453–13461. [Google Scholar] [CrossRef]
- Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and photophysics of coordination compound: Ruthenium. Top. Curr. Chem. 2007, 280, 117–214. [Google Scholar]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef]
- Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef] [PubMed]
- Namba, Y.; Usami, M.; Suzuki, O. Highly Sensitive Electrochemiluminescence Immunoassay Using the Ruthenium Chelate-Labeled Antibody Bound on the Magnetic Micro Beads. Anal. Sci. 1999, 15, 1087–1093. [Google Scholar] [CrossRef]
- Yilmaz, N.; Erbagci, A.B.; Aynacioglu, A.S. Cytochrome P4502C9 genotype in Southeast Anatolia and possible relation with some serum tumour markers and cytokines. Acta Biochim. Pol. 2001, 48, 775–782. [Google Scholar] [CrossRef]
- Khorkova, O.E.; Pate, K.; Heroux, J.; Sahasrabudhe, S. Modulation of amyloid precursor protein processing by compounds with various mechanisms of action: Detection by liquid phase electrochemiluminescent system. J. Neurosci. Methods 1998, 82, 159–166. [Google Scholar] [CrossRef]
- Sapin, R.; le Galudec, V.; Gasser, F.; Pinget, M.; Grucker, D. Elecsys Insulin Assay: Free Insulin Determination and the Absence of Cross-Reactivity with Insulin Lispro. Clin. Chem. 2001, 47, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Juzgado, A.; Soldà, A.; Ostric, A.; Criado, A.; Valenti, G.; Rapino, S.; Conti, G.; Fracasso, G.; Paolucci, F.; Prato, M. Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. J. Mater. Chem. B 2017, 5, 6681–6687. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Carbayo, M.; Mauri, M.; Alfayate, R.; Miralles, C.; Soria, F. Analytical and clinical evaluation of TSH and thyroid hormones by electrochemiluminescent immunoassays. Clin. Biochem. 1999, 32, 395–403. [Google Scholar] [CrossRef]
- Muzyka, K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens. Bioelectron. 2014, 54, 393–407. [Google Scholar] [CrossRef]
- Marquette, C.A.; Blum, L.J. Electro-chemiluminescent biosensing. Anal. Bioanal. Chem. 2008, 390, 155–168. [Google Scholar] [CrossRef] [PubMed]
- First instrument distributed by Igen International Inc., now part of Roche Diagnostics Corporation. Available online: www.roche.com (accessed on 1 June 2022).
- Meyers, M.B. Elecsys® immunoassay system, Ch. 7.17. In The Immunoassay Handbook, 4th ed.; Wild, D.G., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Kudruk, S.; Villani, E.; Polo, F.; Lamping, S.; Körsgen, M.; Arlinghaus, H.F.; Paolucci, F.; Ravoo, B.J.; Valenti, G.; Rizzo, F. Solid state electrochemiluminescence from homogenous and patterned monolayers of bifunctional spirobifluorene. Chem. Commun. 2018, 54, 4999–5002. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.; Stringer, B.D.; Shokouhi, A.; Ramkissoon, P.; Agugiaro, J.; Wilson, D.J.D.; Barnard, P.J.; Hogan, C.F. Unusually strong electrochemiluminescence from iridium-based redox polymer immobilized as thin layers or polymer nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 37251–37257. [Google Scholar] [CrossRef] [PubMed]
- Kapturkiewicz, A. Cyclometalated iridium(III) chelates-a new exceptional class of the electrochemilunescent luminophores. Anal. Bioanal. Chem. 2016, 408, 7013–7033. [Google Scholar] [CrossRef]
- Haghighatbin, M.A.; Laird, S.E.; Hogan, C.F. Electrochemiluminescence of cyclometalated iridium (III) complexes. Curr. Opin. Electrochem. 2018, 7, 216–223. [Google Scholar] [CrossRef]
- Kerr, E.; Doeven, E.H.; Barbante, G.J.; Hogan, C.F.; Bower, D.J.; Donnelly, P.S.; Connell, T.U.; Francis, P.S. Annihilation electrogenerated chemiluminescence of mixed metal chelates in solution: Modulating emission colour by manipulating the energetic. Chem. Sci. 2015, 6, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.; Alilprandi, A.; Hogan, C.F.; De Cola, L. Aggregation-induced electrochemiluminescence of platinum(II) complexes. J. Am. Chem. Soc. 2017, 139, 14605–14610. [Google Scholar] [CrossRef] [PubMed]
- Reid, E.F.; Cook, V.C.; Wilson, D.J.D.; Hogan, C.F. Facile tuning of luminescent platinum(II) Schiff base complexes from yellow to near-infrared: Photophysics, electrochemistry, electrochemiluminescence and theoretical calculations. Chem. Eur. J. 2013, 19, 15907–15917. [Google Scholar] [CrossRef]
- Bertoncello, P.; Ugo, P. Recent advances in electrochemiluminescence with quantum dots and arrays of nanoelectrodes. ChemElectroChem 2017, 4, 1663–1676. [Google Scholar] [CrossRef]
- Yao, J.; Li, L.; Li, P.; Yang, M. Quantum dots: From fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. Nanoscale 2017, 9, 13364–13383. [Google Scholar] [CrossRef] [PubMed]
- Kesakar, S.; Rampazzo, E.; Zanut, A.; Palomba, F.; Marcaccio, M.; Valenti, G.; Prodi, L.; Paolucci, F. Dye-doped nanomaterials: Strategic design and role in electrochemiluminescence. Curr. Opin. Electrochem. 2018, 7, 130–137. [Google Scholar] [CrossRef]
- Marquette, C.A.; Blum, L.J. Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal. Bioanal. Chem. 2006, 385, 546–554. [Google Scholar] [CrossRef]
- Li, H.; Voci, S.; Wallabregue, A.; Adam, C.; Labrador, G.M.; Duwald, R.; Delgado, I.H.; Pascal, S.; Bosson, J.; Lacour, J.; et al. Efficient annihilation electrochemiluminescence of cationic helicene luminophores. ChemElectroChem. 2017, 4, 1750–1756. [Google Scholar] [CrossRef]
- Li, H.; Daniel, J.; Verlhac, J.-B.; Blanchard-Desce, M.; Sojic, N. Bright electrogenerated chemiluminescence of a bis-donor quadrupolar spirofluorene dye and its nanoparticles. Chem. Eur. J. 2016, 22, 12702–12714. [Google Scholar] [CrossRef]
- Fiorani, A.; Difonzo, M.; Rizzo, F.; Valenti, G. Versatile electrochemiluminescent organic emitters. Curr. Opin. Electrochem. 2022, 34, 10098. [Google Scholar] [CrossRef]
- Chikkaveeraiah, B.V.; Bhirde, A.B.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 2012, 6, 6546–6561. [Google Scholar] [CrossRef]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar]
- Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci. 2020, 6, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Tena, N.; Asuero, A.G. Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view. Microchem. J. 2021, 167, 106305. [Google Scholar] [CrossRef]
- Lino, A.; Cardoso, M.A.; Gonçalves, H.M.R.; Martins-Lopes, P. SARS-CoV-2 Detection methods. Sensors 2022, 10, 221. [Google Scholar] [CrossRef]
- Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics 2020, 10, 319. [Google Scholar] [CrossRef]
- Mattiolli, I.A.; Hassan, A.; Crespilho, O.N.O.J.F.N. On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies. ACS Sens. 2020, 5, 3655–3677. [Google Scholar] [CrossRef]
- Mohit, E.; Rostami, Z.; Vahidi, H. A comparative review of immunoassays for COVID-19 detection. Expert. Rev. Clin. Immunol. 2021, 17, 573–599. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/medical-devices/emergency-use-authorizations-medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices (accessed on 1 June 2022).
- Lin, D.; Liu, L.; Zhang, M.; Hu, Y.; Yang, Q.; Guo, J.; Dai, Y.; Xu, Y.; Cai, Y.; Chen, X.; et al. Evaluations of the serological test in the diagnosis of 2019 novel coronavirus (SARS-CoV-2) infections during the COVID-19 outbreak. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2271–2277. [Google Scholar] [CrossRef]
- Cai, X.-F.; Chen, J.; Hu, J.-L.; Long, Q.-X.; Deng, H.-J.; Liu, P.; Fan, K.; Liao, P.; Liu, B.-Z.; Wu, G.-C.; et al. A Peptide-Based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Coronavirus Disease 2019. J. Infec. Dis. 2020, 222, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Schnurra, C.; Reiners, N.; Biemann, R.; Kaiser, T.; Trawinski, H.; Jassoy, C. Comparison of the diagnostic sensitivity of SARS-CoV-2 nucleoprotein and glycoprotein-based antibody tests. J. Clin. Virol. 2020, 129, 104544. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, P.; Tian, Y.; Wang, J.; Zeng, H.; Wang, J.; Liu, J.; Chen, Z.; Zhang, L.; He, H.; et al. Clinical Significance of an IgM and IgG Test for Diagnosis of Highly Suspected COVID-19. Front. Med. 2021, 8, 569266. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; An, T.; Situ, B.; Hu, Y.; Ou, Z.; Li, Q.; He, X.; Zhang, Y.; Tian, P.; Sun, D.; et al. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2. J. Clin. Lab. Anal. 2020, 34, e23411. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Song, K.; Cai, K.; Liu, L.; Tang, D.; Long, W.; Zhai, B.; Chen, J.; Tao, Y.; Zhao, Y.; et al. B-Cell-Epitope-Based Fluorescent Quantum Dot Biosensors for SARS-CoV-2 Enable Highly Sensitive COVID-19 Antibody Detection. Viruses 2022, 14, 1031. [Google Scholar] [CrossRef]
- Meschi, S.; Colavita, F.; Bordi, L.; Matusali, G.; Lapa, D.; Amendola, A.; Vairo, F.; Ippolito, G.; Capobianchi, M.R.; Castilletti, C. Performance evaluation of Abbott ARCHITECT SARS-CoV-2 IgG immunoassay in comparison with indirect immunofluorescence and virus microneutralization test. J. Clin. Virol. 2020, 129, 104539. [Google Scholar] [CrossRef]
- Jiang, C.; Mu, X.; Liu, S.; Liu, Z.; Du, B.; Wang, J.; Xu, J. A Study of the Detection of SARS-CoV-2 ORF1ab Gene by the Use of Electrochemiluminescent Biosensor Based on Dual-Probe Hybridization. Sensors 2022, 22, 2402. [Google Scholar] [CrossRef]
- Gutiérrez-Gálvez, L.; del Caño, R.; Menéndez-Luque, I.; García-Nieto, D.; Rodríguez-Peña, M.; Luna, M.; Pineda, T.; Pariente, F.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Talanta 2022, 240, 123203. [Google Scholar] [CrossRef]
- Favresse, J.; Eucher, C.; Elsen, M.; Tré-Hardy, M.; Dogné, J.-M.; Douxfils, J. Clinical Performance of the Elecsys Electrochemiluminescent Immunoassay for the Detection of SARS-CoV-2 Total Antibodies. Clin. Chem. 2020, 66, 1104–1106. [Google Scholar] [CrossRef]
- Liang, P.; Guo, Q.; Zhao, T.; Wen, C.-Y.; Tian, Z.; Shang, Y.; Xing, J.; Jiang, Y.; Zeng, J. Ag Nanoparticles with Ultrathin Au Shell-Based Lateral Flow Immunoassay for Colorimetric and SERS Dual-Mode Detection of SARS-CoV-2 IgG. Anal. Chem. 2022, 94, 8466–8473. [Google Scholar] [CrossRef]
- Yadav, S.; Sadique, M.A.; Ranjan, P.; Kumar, N.; Singhal, A.; Srivastava, A.K.; Khan, R. SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV-2 in Clinical Samples. ACS Appl. Bio Mater. 2021, 4, 2974–2995. [Google Scholar] [CrossRef]
Compound | Sample | Sensitivity | Ref. |
---|---|---|---|
Digitoxin | Serum | 5 ng/mL | [9] |
Oubain | Plasma | 5 pmol | [10] |
Zidovudine | Dried blood spot | 24 pg/mL | [11] |
1,25 dihydroxy vitamin D | Plasma | 0.2 pg/mL | [12] |
Zolpidem | Serum, urine | 0.1 ng/mL | [13] |
Thyroxine | Hair | 31.47 pg/mL | [14] |
Insulin | Serum | 11 pmol | [15] |
Progesterone | Saliva | 48 pmol | [16] |
Estrone sulfate | Plasma | 1.21 nmol | [17] |
Cocaine | Hair, urine | 0.1 ng/mL | [18] |
Zopiclone | Urine | 10 pg/mL | [19] |
Reagent | Analyte | Emission Max (nm) |
---|---|---|
Luminol (alkaline) | Transition metal ions, H2O2, peroxidase, reactive oxygen species | 425 |
Lucigerin (alkaline) | Transition metal ions, reactive oxygen species | 440 |
Tris(2,2′-bipyridine)ruthenium(II) (acidic) | Amines, amino acids, oxalate, NADH, some alkaloids | 610 |
Potassium permanganate (acidic with polyphosphates) | Catechols, catecholamines, indoles, ascorbid acid | 690 |
Peroxyoxalate | Fluorescent compounds and analytes derivatized with suitable fluorophores | Dependent on fluorophore |
Co-Reactant | Type of Mechanism | Electrochemical Step |
---|---|---|
Oxalate (C2O42−) | Oxidative-reduction | Oxidation |
Peroxydisulfate (persulfate, S2O82−) | Reductive-oxidation | Reduction |
Tri-n-propylamine (TPrA) | Oxidative-reduction | Oxidation |
2-(dibutylamino)ethanol (DBAE) | Oxidative-reduction | Oxidation |
Pyruvate/Ce(III) | Oxidative-reduction | Oxidation |
Benzoyl peroxide (BPO) | Reductive-oxidation | Reduction |
Analyte | Application | Detection Limit | Refs. |
---|---|---|---|
AFP, α-fetoprotein | Tumor, fertility | 5 pg/mL 2.4 U/mL | [116,117] |
β-Amyloid peptide | Alzheimer’s disease | 3 pg/mL | [118] |
CA (cancer antigen) 19-9 | Tumor marker | 17.4 U/mL | [116] |
Ferritin | Anemia | 23.5 U/mL | [116] |
Insulin | Diabetes mellitus | <0.2 pg/mL | [119] |
PSA (prostate specific antigen) | Tumor marker | 0.88 ng/mL | [120] |
T3, triiodothyronine TSH (thyroid stimulating hormone) | Thyroid function | <0.30 nmol/L <0.005 mU/L | [121] |
Type of Immunoassay | Advantages | Disadvantages |
---|---|---|
RIA | High sensitivity and specificity | Radioactive compounds, expensive laboratory setting and technicians |
ELISA | High sensitivity | Only one target detected, risk of cross-reactivity, needs a laboratory setting and technicians |
FIA | Very fast | Possible background fluorescence, sensitivity lower than other methods |
SERS | High sensitivity | Expensive instrumentation, need presence of Raman tag, suffers of reproducibility |
SPR | High sensitivity | Expensive instrumentation, only heterogeneous assay |
CLIA | Fast, high sensitivity, portable, easy instrumentation | Possible false data from contaminants, low intensity, short lifetime |
ECLIA | Fast, portable, high specificity and sensitivity | Need optimization, only heterogeneous assay |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, F. Optical Immunoassays Methods in Protein Analysis: An Overview. Chemosensors 2022, 10, 326. https://doi.org/10.3390/chemosensors10080326
Rizzo F. Optical Immunoassays Methods in Protein Analysis: An Overview. Chemosensors. 2022; 10(8):326. https://doi.org/10.3390/chemosensors10080326
Chicago/Turabian StyleRizzo, Fabio. 2022. "Optical Immunoassays Methods in Protein Analysis: An Overview" Chemosensors 10, no. 8: 326. https://doi.org/10.3390/chemosensors10080326
APA StyleRizzo, F. (2022). Optical Immunoassays Methods in Protein Analysis: An Overview. Chemosensors, 10(8), 326. https://doi.org/10.3390/chemosensors10080326