Phage Display Affibodies Combined with AuNPs@Ru(bpy)32+ for Ultra-Sensitive Electrochemiluminescence Detection of Abrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Experimental Methods
2.2.1. Preparation of Magnetic Capture Probes
2.2.2. Preparation of Dual-Labeled Phage Display Affibodies
2.2.3. Preparation of AuNPs@Ru(bpy)32+-SA (Streptavidin)
2.2.4. Construction of ECL Biosensor and Detection of Abrin
2.2.5. Test of Simulated Samples
3. Results and Discussion
3.1. Optimization of Experimental Conditions
3.1.1. ECL Characterization of and Optimization of Labeling Ratio of Ru(bpy)32+ and Biotin
3.1.2. UV-Vis Characterization of the Formation of AuNPs@ Ru(bpy)32+ and Optimization of the Amount of Ru(bpy)32+
3.2. Characterization of Phage Display Affibodies
3.3. Characterization of AuNPs and Gold Nanocomposites
3.4. Characterization and Validation of the Coupling of Streptavidin and AuNPs@Ru(bpy)32+
3.5. Analysis of the Proposed ECL Biosensing Method
3.5.1. Characterization and Validation of the Coupling of Dual-Labeled Phage Display Affibodies and AuNPs@Ru(bpy)32+-SA
3.5.2. Quantification Range, Regression Equation and LOD
3.5.3. Reproducibility, Specificity and Stability
3.5.4. Test of Simulated Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patocka, J. Abrin and ricin-two dangerous poisonous proteins. ASA Newsl. 2001, 85, 205–208. [Google Scholar]
- Shih, S.F.; Wu, Y.H.; Hung, C.H.; Yang, H.Y.; Lin, J.Y. Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J. Biol. Chem. 2001, 276, 21870–21877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickers, K.J.; Bradberry, S.M.; Rice, P.; Griffiths, G.D.; Vale, J.A. Abrin poisoning. Toxicol. Rev. 2003, 22, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Rinner, G.R.; Watkins, S.A.; Shirazi, F.M.; Fernández, M.C.; Hess, G.; Mihalic, J.; Runcorn, S.; Waddell, V.; Ritter, J.; Reagan-Steiner, S. Fatal abrin poisoning by injection. Clin. Toxicol. 2021, 59, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Roxas-Duncan, V.; Smith, L. Of beans and beads: Ricin and abrin in bioterrorism and biocrime. J. Bioterrorism Biodefense 2014, 5, S2-002. [Google Scholar] [CrossRef]
- Liu, B.; Tong, Z.-Y.; Liu, W.; Hao, L.-Q.; Mu, X.-H.; Huang, Q.-B. Determination of Abrin by Electrochemiluminescence Immunosensor Based on Phage-displayed Antibody. Chin. J. Anal. Chem. 2013, 41, 1449–1453. [Google Scholar] [CrossRef]
- Liu, S.; Tong, Z.; Mu, X.; Liu, B.; Du, B.; Liu, Z.; Gao, C. Detection of Abrin by Electrochemiluminescence biosensor based on screen printed electrode. Sensors 2018, 18, 357. [Google Scholar] [CrossRef] [Green Version]
- Garber, E.A. Toxicity and detection of ricin and abrin in beverages. J. Food Prot. 2008, 71, 1875–1883. [Google Scholar] [CrossRef]
- Garber, E.A.; Walker, J.L.; O’BRIEN, T.W. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies. J. Food Prot. 2008, 71, 1868–1874. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, X.-L.; Li, Y.-S.; Pan, F.-G.; Zhang, Y.-Y.; Zhang, J.-H.; Wang, X.-R.; Ren, H.-L.; Lu, S.-Y.; Li, Z.-H. Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples. Food Chem. 2012, 135, 2661–2665. [Google Scholar] [CrossRef]
- Tang, J.; Yu, T.; Guo, L.; Xie, J.; Shao, N.; He, Z. In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. Biosens. Bioelectron. 2007, 22, 2456–2463. [Google Scholar] [CrossRef] [PubMed]
- Rasooly, R.; Do, P.; Hernlem, B. CCD based detector for detection of abrin toxin activity. Toxins 2020, 12, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Fei, R.; Zhang, L.; Huo, B.; Wang, Y.; Peng, Y.; Ning, B.; He, J.; Gao, Z.; Hu, Y. Bio–barcode triggered isothermal amplification in a fluorometric competitive immunoassay for the phytotoxin abrin. Microchim. Acta 2020, 187, 127. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Nie, C.; Wang, J.; Wang, J.; Kang, L.; Zhou, Y.; Wang, J.-L. Colloidal Gold–Based Immunochromatographic Test Strip for Rapid Detection of Abrin in Food Samples. J. Food Prot. 2012, 75, 112–117. [Google Scholar] [CrossRef]
- Mu, X.-H.; Zhou, Z.-Q.; Tong, Z.-Y.; Liu, B.; Hao, L.-Q. Detection of abrin by piezoelectric immunosensor based on biotin-avidin system. Chin. J. Anal. Chem. 2009, 37, 1499–1502. [Google Scholar]
- Yang, H.; Deng, M.; Ga, S.; Chen, S.; Kang, L.; Wang, J.; Xin, W.; Zhang, T.; You, Z.; An, Y. Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection. Nanoscale Res. Lett. 2014, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Hansbauer, E.-M.; Worbs, S.; Volland, H.; Simon, S.; Junot, C.; Fenaille, F.; Dorner, B.G.; Becher, F. Rapid detection of abrin toxin and its isoforms in complex matrices by immuno-extraction and quantitative high resolution targeted mass spectrometry. Anal. Chem. 2017, 89, 11719–11727. [Google Scholar] [CrossRef]
- Godal, A.; Olsnes, S.; Pihl, A. Radioimmunoassays of abrin and ricin in blood. J. Toxicol. Environ. Health 1981, 8, 409–417. [Google Scholar] [CrossRef]
- Nilsson, B.; Moks, T.; Jansson, B.; Abrahmsen, L.; Elmblad, A.; Holmgren, E.; Henrichson, C.; Jones, T.A.; Uhlen, M. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. Des. Sel. 1987, 1, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Braisted, A.C.; Wells, J.A. Minimizing a binding domain from protein A. Proc. Natl. Acad. Sci. USA 1996, 93, 5688–5692. [Google Scholar] [CrossRef] [Green Version]
- Tolmachev, V.; Orlova, A.; Nilsson, F.Y.; Feldwisch, J.; Wennborg, A.; Abrahmsen, L. Affibody molecules: Potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin. Biol. Ther. 2007, 7, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jin, Y.; Su, Y.; Li, W.; Xing, Y.; Wang, F.; Hong, Z. Anti-HER2 Affibody-Conjugated Photosensitizer for Tumor Targeting Photodynamic Therapy. Mol. Pharm. 2020, 17, 1546–1557. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, L.; Pan, D.; Yan, J.; Wang, X.; Yang, R.; Li, M.; Liu, Y.; Yang, M. Synthesis of a novel 89Zr-labeled HER2 affibody and its application study in tumor PET imaging. EJNMMI Res. 2020, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cui, D.; Jiang, Y.; Li, Y.; Liu, Z.; Tao, L.; Zhao, Q.; Diao, A. Selection and characterization of a novel affibody peptide and its application in a two-site ELISA for the detection of cancer biomarker alpha-fetoprotein. Int. J. Biol. Macromol. 2021, 166, 884–892. [Google Scholar] [CrossRef]
- Nord, K.; Nilsson, J.; Nilsson, B.; Uhlén, M.; Nygren, P.-Å. A combinatorial library of an α-helical bacterial receptor domain. Protein Eng. Des. Sel. 1995, 8, 601–608. [Google Scholar] [CrossRef]
- LI, S.; HAO, Z.-M. An Engineered Affinity Protein-affibody. Prog. Biochem. Biophys. 2012, 39, 137–141. [Google Scholar] [CrossRef]
- Liu, S.; Gao, C.; Tong, Z.Y.; Mu, X.H.; Liu, B.; Xu, J.J.; Du, B.; Wang, J.; Liu, Z.W. A highly sensitive electrochemiluminescence method for abrin detection by a portable biosensor based on a screen-printed electrode with a phage display affibody as specific labeled probe. Anal. Bioanal. Chem. 2022, 414, 1095–1104. [Google Scholar] [CrossRef]
- Tortolini, C.; Tasca, F.; Venneri, M.A.; Marchese, C.; Antiochia, R. Gold Nanoparticles/Carbon Nanotubes and Gold Nanoporous as Novel Electrochemical Platforms for L-Ascorbic Acid Detection: Comparative Performance and Application. Chemosensors 2021, 9, 229. [Google Scholar] [CrossRef]
- Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076. [Google Scholar] [CrossRef]
- Song, M.; Khan, I.M.; Wang, Z. Research Progress of Optical Aptasensors Based on AuNPs in Food Safety. Food Anal. Methods 2021, 14, 2136–2151. [Google Scholar] [CrossRef]
- Yazdian-Robati, R.; Hedayati, N.; Dehghani, S.; Ramezani, M.; Alibolandi, M.; Saeedi, M.; Abnous, K.; Taghdisi, S.M. Application of the catalytic activity of gold nanoparticles for development of optical aptasensors. Anal. Biochem. 2021, 629, 114307. [Google Scholar] [CrossRef] [PubMed]
- Dzantiev, B.B.; Byzova, N.A.; Urusov, A.E.; Zherdev, A.V. Immunochromatographic methods in food analysis. TrAC Trends Anal. Chem. 2014, 55, 81–93. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, S.; Nara, S. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem. 2015, 170, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.K.T.; Nguyen, H.P.U.; Huynh, T.P.; Tran, N.N.P.; Lam, Q.V.; Huynh, T.D. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157: H7. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 035015. [Google Scholar] [CrossRef]
- Foss Jr, C.A.; Hornyak, G.L.; Stockert, J.A.; Martin, C.R. Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape. J. Phys. Chem. 1994, 98, 2963–2971. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.; Aveyard, J.; Fernig, D.G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, L.; Zhang, X.Y.; Wang, X.H.; Zhou, J.; Sun, Z.; Li, N.B.; Luo, H.Q. Ratiometric fluorescence detection of dopamine based on effect of ligand on the emission of Ag nanoclusters and aggregation-induced emission enhancement. Sens. Actuators B Chem. 2020, 310, 127858. [Google Scholar] [CrossRef]
- Huang, W.; Liu, F.; Huang, Y.; Yang, W.; Zhong, H.; Peng, J. Facile one-pot synthesis of hollow-structured CuS/Cu2S hybrid for enhanced electrochemical determination of glucose. Electrochemistry 2021, 89, 340–347. [Google Scholar] [CrossRef]
Nanomaterials | Diameter (nm) | Zeta Potential (mV) |
---|---|---|
AuNPs | 19.1 ± 0.05 | −24.9 ± 1.5 |
AuNPs@ Ru(bpy)32+ | 89.6 ± 2.1 | −18.8 ± 0.3 |
AuNPs@Ru(bpy)32+-SA | 164.9 ± 1.8 | −12.0 ± 0.6 |
Substrate | Con. (pg/mL) | ECL Intensity (a.u.) |
---|---|---|
abrin | 1 | 8835 ± 340 |
BSA | 1000 | 3937 ± 129 |
β-BGT | 1000 | 3939 ± 229 |
Hu-IgG | 1000 | 4038 ± 147 |
mixture | 1 (abrin) | 8614 ± 193 |
PBS | -- | 3908 ± 67 |
Sample | Added (fg/mL) | Determined (fg/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|
plasma | 100 | 97.1 | 97.1 | 3.05 |
milk | 100 | 98.9 | 98.9 | 1.65 |
honey | 100 | 98.4 | 98.4 | 3.79 |
pollen | 100 | 104.0 | 104.0 | 2.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Tong, Z.; Jiang, C.; Gao, C.; Xu, J.; Mu, X.; Liu, B.; Du, B.; Liu, Z.; Zhang, P. Phage Display Affibodies Combined with AuNPs@Ru(bpy)32+ for Ultra-Sensitive Electrochemiluminescence Detection of Abrin. Chemosensors 2022, 10, 184. https://doi.org/10.3390/chemosensors10050184
Liu S, Tong Z, Jiang C, Gao C, Xu J, Mu X, Liu B, Du B, Liu Z, Zhang P. Phage Display Affibodies Combined with AuNPs@Ru(bpy)32+ for Ultra-Sensitive Electrochemiluminescence Detection of Abrin. Chemosensors. 2022; 10(5):184. https://doi.org/10.3390/chemosensors10050184
Chicago/Turabian StyleLiu, Shuai, Zhaoyang Tong, Chunying Jiang, Chuan Gao, Jianjie Xu, Xihui Mu, Bing Liu, Bin Du, Zhiwei Liu, and Pengjie Zhang. 2022. "Phage Display Affibodies Combined with AuNPs@Ru(bpy)32+ for Ultra-Sensitive Electrochemiluminescence Detection of Abrin" Chemosensors 10, no. 5: 184. https://doi.org/10.3390/chemosensors10050184
APA StyleLiu, S., Tong, Z., Jiang, C., Gao, C., Xu, J., Mu, X., Liu, B., Du, B., Liu, Z., & Zhang, P. (2022). Phage Display Affibodies Combined with AuNPs@Ru(bpy)32+ for Ultra-Sensitive Electrochemiluminescence Detection of Abrin. Chemosensors, 10(5), 184. https://doi.org/10.3390/chemosensors10050184