Spectroscopic Recognition of Metal Ions and Non-Linear Optical (NLO) Properties of Some Fluorinated Poly(1,3,4-Oxadiazole-Ether)s
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. UV–Visible Absorption and Steady-State Fluorescence Spectra Measurements
2.3. Methods of the Evaluation of NLO Properties
- m = mass of an electron (9.109 × 10−28 g);
- = absorption frequency (in cm−1);
- h = Planck’s constant (6.626 × 10−27 erg s);
- c = light velocity in vacuum (2.997 × 1010 cm s−1);
- e = charge on an electron (4.80 × 10−10 e.s.u.);
- f = oscillator strength for the charge transfer band (CT) determined using Equation (3).
- ε = molar absorption coefficient (L mol−1·cm−1);
- Δν1/2 = full frequency width at half the maximum of the absorption band (cm−1).
- h and c = similar constants as in Equation (2);
- = the transition dipole moment (the difference between the ground and excited states). Assuming (no excitation), then Equation (5) transforms into:
2.4. Generalized Mulliken–Hush Method (GMH) for the Study of ICT Characteristics
- = the electronic delocalization degree;
- = the electronic coupling matrix (strength of electronic coupling between the ground (S0) and the charge transfer excited states (S1));
- = the donor acceptor separation;
- = the vertical excitation energy;
- = the transition dipole moments;
- εmax = the molar extinction coefficient at maximum absorption (M−1·cm−1);
- = the width of the band at A = Amax/2 (cm−1).
3. Results and Discussion
3.1. Recognition of Metal Ions by Fluorinated 1,3,4-Oxadiazole Derivatives
3.2. Nonlinear Optical Properties (NLO) Using the Solvatochromic-Based Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salassa, G.; Terenzi, A. Metal complexes of oxadiazole ligands: An overview. Int. J. Mol. Sci. 2019, 20, 3483. [Google Scholar] [CrossRef] [Green Version]
- Puchkova, L.V.; Broggini, M.; Polishchuk, E.V.; Ilyechova, E.Y.; Polishchuk, R.S. Silver ions as a tool for understanding different aspects of copper metabolism. Nutrients 2019, 1, 1364. [Google Scholar] [CrossRef] [Green Version]
- Pandey, N.; Mehata, M.S.; Fatima, N.; Pant, S. Modulation of fluorescence properties of 5-aminoquinoline by Ag+ in aqueous media via charge transfer. J. Photochem. Photobiol. A 2020, 396, 112549. [Google Scholar] [CrossRef]
- Selvan, G.T.; Varadaraju, C.; Selvan, R.T.; Enoch, I.V.M.V.; Selvakumar, P.M. On/off fluorescent chemosensor for selective detection of divalent iron and copper ions molecular logic operation and protein binding. ACS Omega 2018, 3, 7985–7992. [Google Scholar] [CrossRef] [Green Version]
- Siczek, K.; Zatorski, H.; Fichna, J. Silver and other metals in the treatment of gastrointestinal diseases. Curr. Med. Chem. 2015, 22, 3695–3706. [Google Scholar] [CrossRef]
- Ojha, R.; Prasad, A.N. Menkes disease what a multidisciplinary approach can do. J. Multidiscip. Healthc. 2016, 9, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Członkowska, A.; Litwin, T.; Dusek, P.; Ferenci, P.; Lutsenko, S.; Medici, V.; Rybakowski, J.K.; Weiss, K.H.; Schilsky, M.L. Wilson disease. Nat. Rev. Dis. Primers 2018, 4, 21. [Google Scholar] [CrossRef]
- Lan, A.P.; Chen, J.; Chai, Z.F.; Hu, Y. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. BioMetals 2016, 29, 665–678. [Google Scholar] [CrossRef]
- Gorantla, N.V.; Landge, V.G.; Nagaraju, P.G.; Priyadarshini, P.; Balaraman, C.G.E.; Chinnathambi, S. Molecular cobalt (II) complexes for tau polymerization in alzheimer’s disease. ACS Omega 2019, 41, 6702–6714. [Google Scholar] [CrossRef] [Green Version]
- Kamnev, A.A.; Antonyuk, L.P.; Smirnova, V.E.; Serebrennikova, O.B.; Kulikov, L.A.; Perfiliev, Y. Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy. Anal. Bioanal. Chem. 2022, 372, 431–435. [Google Scholar] [CrossRef]
- Zhao, R.-X.; Liu, A.-Y.; Wen, Q.-L.; Wu, B.-C.; Wang, J.; Hu, Y.-L.; Pu, Z.F.; Ling, J.; Cao, Q. Glutathione stabilized green-emission gold nanoclusters for selective detection of cobalt ion. Spectrochim. Acta Part A Mol. Biomol. 2021, 254, 119628. [Google Scholar] [CrossRef]
- Wu, H.; Kong, D.; Ruan, Z.; Hsu, P.; Wang, S.; Yu, Z.; Carney, T.J.; Hu, L.; Fan, S.; Cui, Y. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 2013, 8, 421–425. [Google Scholar] [CrossRef]
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Yang, F.-Y.; Jiang, S.-J.; Sahayam, A.C. Combined use of HPLC-ICP-MS and microwave-assisted extraction for the determination of cobalt compounds in nutritive supplements. Food Chem. 2014, 147, 215–219. [Google Scholar] [CrossRef]
- Diniz, K.M.; Gorla, F.A.; Ribeiro, E.S.; do Nascimento, M.B.O.; Correa, R.J.; Teixeira Tarley, C.R.; Segatelli, M.G. Preparation of SiO2/Nb2O5/ZnO mixed oxide by sol-gel method and its application for adsorption studies and on-line preconcentration of cobalt ions from aqueous medium. Chem. Eng. J. 2014, 239, 233–241. [Google Scholar] [CrossRef]
- Mimendia, A.; Legin, A.; Merkoçi, A.; del Valle, M. Use of sequential injection analysis to construct a potentiometric electronic tongue: Application to the multidetermination of heavy metals. Sens. Actuators B 2010, 146, 420–426. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.-M.; Han, J. Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. J. Photochem. Photobiol. C Photochem. Rev. 2017, 32, 78–103. [Google Scholar] [CrossRef]
- Awad, F.S.; AbouZied, K.M.; Bakry, A.M.; Abou El-Maaty, W.M.; El-Wakil, A.M.; El-Shall, M.S. Highly fluorescent hematoporphyrin modified graphene oxide for selective detection of copper ions in aqueous solutions. Anal. Chim. Acta 2020, 1140, 111–121. [Google Scholar] [CrossRef]
- Bagheri, N.; Mazzaracchio, V.; Cinti, S.; Colozza, N.; Di Natale, C.; Netti, P.A.; Saraji, M.; Roggero, S.; Moscone, D.; Arduini, F. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum. Anal. Chem. 2021, 93, 5225–5233. [Google Scholar] [CrossRef]
- Shellaiah, M.; Wu, Y.-H.; Singh, A.; Raju, M.V.R.; Lin, H.-C. Novel pyrene- and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. J. Mater. Chem. A 2013, 113, 10–18. [Google Scholar] [CrossRef]
- Lium, Q.; Bianm, W.; Shim, H.; Fanm, L.; Shuangm, S.; Dongm, C.; Choi, M.M.F. A novel ratiometric emission probe for Ca2+ in living cells. Org. Biomol. Chem. 2013, 11, 503–508. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, L.; Yuan, C.; Zhang, L.; Shuang, S.; Dong, C.; Hu, Q.; Choi, M.M.F. A highly selective fluorescent probe for cadmium ions in aqueous solution and living cells. Chem. Commun. 2014, 502, 498–501. [Google Scholar] [CrossRef]
- Homocianu, M.; Ipate, A.M.; Homocianu, D.; Airinei, A.; Hamciuc, C. Metal ions sensing properties of some phenylquinoxaline derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 371–380. [Google Scholar] [CrossRef]
- Ambrosi, G.; Borgogelli, E.; Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M.; Rampazzo, E.; Sgarzi, M.; Zaccheroni, N.; Prodi, L. PluS Nanoparticles as a tool to control the metal complex stoichiometry of a new thio-aza macrocyclic chemosensor for Ag I, and Hg II, in water. Sens. Actuators B Chem. 2015, 207, 1035–1044. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Zhang, J. Study on a highly selective fluorescent chemosensor for Fe3+ based on 1,3,4-oxadiazole and phosphonic acid. Sens. Actuators B Chem. 2014, 200, 259–268. [Google Scholar] [CrossRef]
- Tang, L.; Zheng, Z.; Huang, Z.; Zhong, K.; Bian, Y.; Nandhakumar, R. Multi-analyte, ratiometric and relay recognition of a 2,5-diphenyl-1,3,4-oxadiazole-based fluorescent sensor through modulating ESIPT. RSC Adv. 2015, 510, 505–511. [Google Scholar] [CrossRef]
- Lin, L.; Wang, D.; Chen, S.-H.; Wang, D.-J.; Yin, G.-D. A highly sensitive fluorescent chemosensor for selective detection of zinc II, ion based on the oxadiazole derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 174, 272–278. [Google Scholar] [CrossRef]
- Zhu, L.; Gu, C.; He, Y.; Wang, G. Study on a highly selective fluorescent chemosensor for Cu2+ and its direct sensing for proton based on 1,3,4-oxadiazole. J. Lumin. 2014, 153, 439–445. [Google Scholar] [CrossRef]
- Liu, Y.; Fei, Q.; Shan, H.; Cui, M.; Liu, Q.; Feng, G.; Huan, Y. A novel fluorescent “off-on-off” probe for relay recognition of Zn2+ and Cu2+ derived from N,N-bis(2-pyridylmethyl)amine. Analyst 2014, 139, 1868. [Google Scholar] [CrossRef]
- Zheng, C.; Yuan, A.; Zhang, Z.; Shen, H.; Bai, S.; Wang, H. Synthesis of pyridine-based 1,3,4-oxadiazole derivative as fluorescence turn-on sensor for high selectivity of Ag+. J. Fluoresc. 2013, 23, 785–791. [Google Scholar] [CrossRef]
- Al-Omary, F.A.M.; Mary, Y.S.; Panicker, C.Y.; El-Emam, A.A.; Al-Swaidan, I.A.; Al-Saadi, A.A.; Van Alsenoye, C. Spectroscopic investigations, NBO, HOMO–LUMO, NLO analysis and molecular docking of 5- adamantan-1-yl;-3-anilinomethyl-2,3-dihydro-1,3,4-oxadiazole-2-thione, a potential bioactive agent. J. Mol. Struct. 2015, 1096, 1–14. [Google Scholar] [CrossRef]
- Li, Q.; Cui, L.-S.; Zhong, C.; Yuan, X.-D.; Dong, S.-C.; Jiang, Z.-Q.; Liao, L.S. Synthesis of new bipolar host materials based on 1,2,4-oxadiazole for blue phosphorescent OLEDs. Dye. Pigment. 2014, 101, 142–149. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Y.; Zhan, X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012, 41, 4245–4272. [Google Scholar] [CrossRef]
- Choi, M.-H.; Kim, H.Y.; Lee, E.J.; Moon, D.K. Control of molecular curvature and crystallinity of quinacridone-benzoxadiazole copolymers using different pi bridge for polymer solar cells. Polymer 2016, 91, 162–173. [Google Scholar] [CrossRef]
- Cristiano, R.; de Oliveira Santos, D.M.P.; Gallardo, H. Synthesis and characterization of low molecular mass luminescent liquid crystalline materials with 1,3,4-oxadiazole units. Liq. Cryst. 2005, 32, 7–14. [Google Scholar] [CrossRef]
- Homocianu, M.; Airinei, A. 1,3,4-Oxadiazole derivatives; Optical properties in pure and mixed solvents. J. Fluoresc. 2016, 26, 1617–1635. [Google Scholar] [CrossRef]
- Maidur, S.R.; Patil, P.S.; Rao, S.V.; Shkir, M.; Dharmaprakashd, S.M. Experimental and computational studies on second-and third-order nonlinear optical properties of a novel D-π-A type chalcone derivative 3-4-methoxyphenyl;-1- 4-nitrophenyl, prop-2-en-1-one. Opt. Laser Technol. 2017, 97, 219–228. [Google Scholar] [CrossRef]
- Anitha, P.; Pathrose, B.P.; Radhakrishnan, P.; Mujeeb, A. Nonlinear optical properties of neutral red dye: Enhancement using laser ablated gold nanoparticles. Opt. Laser Technol. 2020, 130, 106338. [Google Scholar] [CrossRef]
- Ipate, A.M.; Homocianu, M.; Hamciuc, C.; Airinei, A.; Bruma, M. Photophysical behavior of some aromatic poly1,3,4-oxadiazole-ethers derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 123, 167–175. [Google Scholar] [CrossRef]
- Chandrasekaran, Y.; Dutta, G.K.; Kanth, R.B.; Patil, S. Tetrahydroquinoxaline based squaraines: Synthesis and photophysical properties. Dye. Pigment. 2009, 83, 162–167. [Google Scholar] [CrossRef]
- Saleem, M.; Khang, C.H.; Kim, M.H.; Lee, K.H. Chromo/Fluorogenic detection of Co2+, Hg2+ and Cu2+ by the simple Schiff base sensor. J. Fluoresc. 2016, 26, 11–22. [Google Scholar] [CrossRef]
- Paley, M.S.; Harris, J.M.; Looser, H.; Baumert, J.C.; Bjorklund, G.C.; Jundt, D.; Twieg, R.J. A solvatochromic method for determining second-order polarizabilities of organic molecules. J. Org. Chem. 1989, 543, 774–3778. [Google Scholar] [CrossRef]
- Abbotto, A.; Beverina, L.; Bradamante, S.; Facchetti, A.; Klein, C.; Pagani, G.A.; Redi-Abshiro, M.; Wortmann, R. A distinctive example of the cooperative interplay of structure and environment in tuning of intramolecular charge transfer in second-order nonlinear optical chromophores. Chem. A Eur. J. 2003, 91, 991–2007. [Google Scholar] [CrossRef]
- Oudar, J.L.; Chemla, D.S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 1977, 66, 2664. [Google Scholar] [CrossRef]
- Mahajan, P.G.; Dige, N.C.; Desai, N.K.; Patil, S.R.; Kondalkar, V.V.; Hong, S.K.; Lee, K.H. Selective detection of Co2+ by fluorescent nano probe Diagnostic approach for analysis of environmental samples and biological activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 198, 136–144. [Google Scholar] [CrossRef]
- Şenkuytu, E.; Eçik, E.T. New hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates as highly selective and sensitive fluorescent chemosensor for Co2+ ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 198, 232–238. [Google Scholar] [CrossRef]
- Lippert, E.; Luder, W.; Boos, H. Advances in Molecular Spectroscopy; Pergamon: Oxford, UK, 1962. [Google Scholar]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Zheng, J.; Kang, Y.K.; Therien, M.J.; Beratan, D.N. Generalized Mulliken−Hush analysis of electronic coupling interactions in compressed π-Stacked porphyrin−bridge−quinone systems. J. Am. Chem. Soc. 2005, 127, 11303–11310. [Google Scholar] [CrossRef]
- Ryu, K.Y.; Lee, S.Y.; Park, D.Y.; Kim, S.Y.; Kim, C. A novel colorimetric chemosensor for detection of Co2+ and S2− in an aqueous environment. Sens. Actuators B Chem. 2017, 242, 792–800. [Google Scholar] [CrossRef]
- Tang, L.; Zheng, Z.; Bian, Y. N-2-hydroxyethylpiperazine dangled 2,5-diphenyl-1,3,4-oxadiazole-based fluorescent sensor for selective relay recognition of Cu2+ and sulfide in water. Luminescence 2016, 31, 1456–1460. [Google Scholar] [CrossRef]
- Wang, L.; Bing, Q.; Li, J.; Wang, G. A new “ON-OFF” fluorescent and colorimetric chemosensor based on 1,3,4-oxadiazole derivative for the detection of Cu2+ ions. J. Photochem. Photobiol. A Chem. 2018, 360, 86–94. [Google Scholar] [CrossRef]
- Cao, S.; Pei, Z.; Xu, Y.; Zhang, R.; Pei, Y. Polytriazole bridged with 2,5-diphenyl-1,3,4-oxadiazole moieties a highly sensitive and selective fluorescence chemosensor for Ag+. RSC Adv. 2015, 545, 888–45896. [Google Scholar] [CrossRef]
- Tekuri, V.; Sahoo, S.K.; Trivedi, D.R. Hg2+ induced hydrolysis of thiazole amine based Schiff base Colorimetric and fluorogenic chemodosimeter for Hg2+ ions in an aqueous medium. Spectrochim. Acta Part A Mol. Biomol. 2019, 218, 19–26. [Google Scholar] [CrossRef]
- Duan, J.; Ma, B.; Liu, F.; Zhang, S.; Wang, S.; Kong, Y.; Du, M.; Han, L.; Wang, J.; Sang, Y.; et al. Coordination ability determined transition metal ions substitution of Tb in Tb-Asp fluorescent nanocrystals and a facile ions-detection approach. Nanoscale 2018, 10, 7526–7535. [Google Scholar] [CrossRef]
- Ipate, A.; Hamciuc, C.; Homocianu, M.; Musteata, V.E.; Nicolescu, A.; Bruma, M.; Belomoina, N. Highly fluorinated poly 1,3,4-oxadiazole-ethers structural, optical and dielectric characteristics. J. Polym. Res. 2015, 22, 95. [Google Scholar] [CrossRef]
- Suppan, P. Excited-state dipole moments from absorption/fluorescence solvatochromic ratios. Chem. Phys. Lett. 1983, 94, 272–275. [Google Scholar] [CrossRef]
- Bicerano, J. Prediction of Polymer Properties; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Lou, A.J.-T.; Marks, T.J. A twist on nonlinear optics understanding the unique response of π-twisted chromophores. Acc. Chem. Res. 2019, 52, 1428–1438. [Google Scholar] [CrossRef]
- Erande, Y.; Kothavale, S.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Triphenylamine derived coumarin chalcones and their red emitting OBO difluoride complexes synthesis, photophysical and NLO property study. Dye. Pigment. 2018, 148, 474–491. [Google Scholar] [CrossRef]
Media a | ε b | n c | cm−1 e | cm−1 f | Δν, cm−1 g | |
---|---|---|---|---|---|---|
DIO | 2.25 | 1.4224 | 0.0245 | 33,333 | 28,169 | 5164 |
TOL | 2.38 | 1.4961 | 0.0135 | 33,112 | 28,089 | 5022 |
CHCl3 | 4.81 | 1.4459 | 0.1483 | 33,003 | 27,855 | 5148 |
THF | 7.47 | 1.4070 | 0.2084 | 33,333 | 28,169 | 5164 |
CH3OH | 33.00 | 1.3288 | 0.3086 | 35,088 | 27,778 | 5667 |
DMF | 38.25 | 1.4305 | 0.2752 | 33,333 | 27,933 | 5400 |
DMSO | 47.24 | 1.4770 | 0.2640 | 33,333 | 27,778 | 5555 |
Compounds | Absorption | Fluorescence | ||
---|---|---|---|---|
A0/A | F0/F | |||
BisFOx | 302 | - | 356.5 | - |
BisFOx/Mg2+ | 302 | 1.307 | 355 | 1.37 |
BisFOx/Mn2+ | 302 | 1.279 | 356.5 | 1.24 |
BisFOx/Ni2+ | 302 | - | 356.5 | 1.36 |
BisFOx/Cd2+ | 302 | 1.297 | 356.5 | 1.32 |
BisFOx/Zn2+ | 303 | 1.150 | 357 | 1.15 |
BisFOx/Co2+ | 302 (sh)/570 (sh)/674 | 0.437 | 355.5 | 2.70 |
BisFOx/Cu2+ | 291 | 0.495 | 357.5 | 2.98 |
BisFOx/Hg2+ | 302 | 1.381 | 356 | 1.24 |
BisFOx/Sn2+ | 301 | 1.156 | 356.5 | 1.28 |
BisFOx/Ag+ | 244/301 | 0.189 | 356.5 | 2.03 |
9FOx | 300 | - | 356 | - |
9FOx/Mg2+ | 302/364 (weak) | 0.9182 | 356 | 1.38 |
9FOx/Mn2+ | 301 | 1.1756 | 356.5 | 1.21 |
9FOx/Ni2+ | 265 (sh)/304 (sh) | 1.3492 | 356 | 1.28 |
9FOx/Cd2+ | 276/301 (sh) | 0.7374 | 357.0 | 1.23 |
9FOx/Zn2+ | 301 | 1.2989 | 357.0 | 1.16 |
9FOx/Co2+ | 302/375 (sh)/570 (sh)/674 | 0.6346 | - | - |
9FOx/Cu2+ | 273 (sh) | 0.3364 a | 356.5 | 2.90 |
9FOx/Hg2+ | 301 | 1.4025 | 357 | 1.25 |
9FOx/Sn2+ | 301 | 1.2176 | 356.5 | 1.24 |
9FOx/Ag+ | 243 (sh)/300 | 1.3303 | 356 | 2.26 |
Parameters | BisFOx | 9FOx | 6FOx |
---|---|---|---|
Ag+ | |||
LRE | A = 0.083 − 1953.388CAg+ (R2 = 0.997, SD = 0.0148) | A = 0.101 + 1989.96CAg+ (R2 = 0.999, SD = 0.0065) | A = 0.156 + 2096.73CAg+ (R2 = 0.998, SD = 0.0137) |
a LOD (μg L−1) | 2.287 × 10−5 | 9.784 × 10−6 | 1.973 × 10−5 |
b LOQ (μg L−1) | 7.63 × 10−5 | 3.261 × 10−5 | 6.577 × 10−5 |
Co2+ | |||
LRE | A = 0.249 + 667.87CCo2+ (R2 = 0.997, SD = 0.0063) | A = 0.210 + 369.20CCo2+ (R2 = 0.999, SD = 0.0018) | A = 0.0007 + 318.74CCo2+ (R2 = 0.999, SD = 0.0016) |
a LOD (μg L−1) | 2.834 × 10−5 | 1.463 × 10−5 | 1.544 × 10−4 |
b LOQ (μg L−1) | 9.448 × 10−5 | 4.875 × 10−5 | 5.145 × 10−4 |
Cu2+ | |||
LRE | A = 0.296 + 1794.53CCu2+ (R2 = 0.976, SD = 0.0379) | A = 0.184 + 2179.85CCu2+ (R2 = 0.999, SD = 0.0062) | A = 0.237 + 1994.80CCu2+ (R2 = 0.994, SD = 0.02373) |
a LOD (μg L−1) | 6.341 × 10−5 | 8.533 × 10−6 | 3.569 × 10−5 |
b LOQ (μg L−1) | 2.114 × 10−4 | 2.844 × 10−5 | 1.19 × 10−4 |
Materials | Metal Ions | LODs | Refs. |
---|---|---|---|
2,5-diphenyl-1,3,4-oxadiazole | Cu2+ | 4.8 × 10−7 M | [51] |
pyrazole-containing oxadiazole derivative | Cu2+ | 2.14 μM | [29] |
asymmetrical oxadiazole derivative | Co2+ | 3.92 × 10−6 mol/L | [52] |
polytriazoles derivative | Ag+ | 4.22 × 10−7 M | [53] |
BisFOx | Cu2+ | 1.013 × 10−7 M | This study |
BisFOx | Co2+ | 4.52 × 10−8 M | This study |
BisFOx | Ag+ | 4.52 × 10−8 M | This study |
9FOx | Cu2+ | 1.45 × 10−8 M | This study |
9FOx | Co2+ | 1.45 × 10−8 M | This study |
9FOx | Ag+ | 1.66 × 10−8 M | This study |
6FOx | Cu2+ | 6.426 × 10−8 M | This study |
6FOx | Co2+ | 2.78 × 10−7 M | This study |
6FOx | Ag+ | 3.55 × 10−8 M | This study |
Codes | Ag+ | Co2+ | Cu2+ |
---|---|---|---|
BisFOx | 50.92 | 54.33 | 66.62 |
9FOx | 55.88 | 54.11 | 65.67 |
6FOx | 72.73 | 35.83 | 65.24 |
Media | f a e.s.u. | 10−35 e.s.u. | 10−17 e.s.u. | αCT d 10−23 e.s.u. | βCT e 10−32 e.s.u. | γCT f 10−34 e.s.u. | cm−1 | Å | |
---|---|---|---|---|---|---|---|---|---|
DIO | 0.6671 | 4.26 | 6.54 | 0.128 | 9.525 | 0.56 | 0.196 | 13,220 | 3.50 |
TOL | 0.4339 | 2.79 | 6.54 | 0.084 | 6.320 | 0.39 | 0.120 | 10,745 | 3.46 |
CHCl3 | 0.5527 | 3.56 | 6.54 | 0.108 | 8.130 | 0.49 | 0.162 | 12,152 | 3.45 |
THF | 0.6173 | 3.94 | 6.54 | 0.119 | 8.814 | 0.53 | 0.180 | 12,824 | 3.47 |
CH3OH | 0.0495 | 0.30 | 6.54 | 0.086 | 6.05 | 0.03 | 0.001 | 1602 | 8.08 |
DMF | 0.5929 | 3.78 | 6.54 | 0.114 | 8.465 | 0.50 | 0.173 | 12,615 | 3.46 |
DMSO | 0.6983 | 4.46 | 6.54 | 0.134 | 0.010 | 0.58 | 0.204 | 13,440 | 3.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homocianu, M.; Airinei, A.; Ipate, A.M.; Hamciuc, C. Spectroscopic Recognition of Metal Ions and Non-Linear Optical (NLO) Properties of Some Fluorinated Poly(1,3,4-Oxadiazole-Ether)s. Chemosensors 2022, 10, 183. https://doi.org/10.3390/chemosensors10050183
Homocianu M, Airinei A, Ipate AM, Hamciuc C. Spectroscopic Recognition of Metal Ions and Non-Linear Optical (NLO) Properties of Some Fluorinated Poly(1,3,4-Oxadiazole-Ether)s. Chemosensors. 2022; 10(5):183. https://doi.org/10.3390/chemosensors10050183
Chicago/Turabian StyleHomocianu, Mihaela, Anton Airinei, Alina Mirela Ipate, and Corneliu Hamciuc. 2022. "Spectroscopic Recognition of Metal Ions and Non-Linear Optical (NLO) Properties of Some Fluorinated Poly(1,3,4-Oxadiazole-Ether)s" Chemosensors 10, no. 5: 183. https://doi.org/10.3390/chemosensors10050183
APA StyleHomocianu, M., Airinei, A., Ipate, A. M., & Hamciuc, C. (2022). Spectroscopic Recognition of Metal Ions and Non-Linear Optical (NLO) Properties of Some Fluorinated Poly(1,3,4-Oxadiazole-Ether)s. Chemosensors, 10(5), 183. https://doi.org/10.3390/chemosensors10050183