Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments
2.3. Synthesis of Bi2S3 Nanocrystals
2.4. Fabrication of Bi2S3 NCs-Modified Electrode
2.5. Electrochemical Characterization
3. Results
3.1. Electrochemical Characterization of Bi2S3 NCs-Modified Electrode
3.2. Characterization of Bi2S3 NCs and Bi2S3 NCs-Modified Electrode
3.3. Electrochemical Measurement of Cytokeratin 18 Antigen Protein
3.4. The Sensing Mechanism of the Electrochemical Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burger, M.; Catto, J.W.F.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vec-chia, C.; Shariat, S.; et al. Epidemiology and Risk Factors of Urothelial Bladder Cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Donato, F.; Boffetta, P.; Fazioli, R.; Aulenti, V.; Porru, G.S. Bladder cancer, tobacco smoking, coffee and alcohol drinking in Brescia, northern Italy. Eur. J. Haematol. 1997, 13, 795–800. [Google Scholar]
- Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder cancer. Lancet 2009, 374, 239–249. [Google Scholar] [CrossRef]
- Schmidbauer, J.; Witjes, F.; Schmeller, N.; Donat, R.; Susani, M.; Marberger, M. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy. J. Urol. 2004, 171, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Grossman, H.B.; Gomella, L.; Fradet, Y.; Morales, A.; Presti, J.; Ritenour, C.; Nseyo, U.; Droller, M.J.; PC B302/01 Study Group. A phase iii, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. J. Urol. 2007, 178, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Irie, A.; Satoh, T.; Kuruma, H.; Baba, S. Occupational bladder cancer: From cohort study to biologic molecular marker. Med. Sci. Monit. 2005, 11, RA311–RA315. [Google Scholar] [PubMed]
- Jordan, B.; Meeks, J.J. T1 bladder cancer: Current considerations for diagnosis and management. Nat. Rev. Urol. 2019, 16, 23–34. [Google Scholar] [CrossRef]
- Eissa, S.; Swellam, M.; Amin, A.; Balbaa, M.E.; Yacout, G.A.; El-Zayat, T.M. The clinical relevance of urine-based markers for diagnosis of bladder cancer. Med. Oncol. 2011, 28, 513–518. [Google Scholar] [CrossRef]
- Meo, A.D.; Bartlett, J.; Cheng, Y.; Pasic, M.D.; Yousef, G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer 2017, 16, 80. [Google Scholar] [CrossRef]
- Schroeder, G.L.; Lorenzo-Gomez, M.F.; Hautmann, S.H.; Friedrich, M.G.; Ekici, S.; Huland, H.; Lokeshwar, V. A side by side comparison of cytology and biomarker for bladder cancer detection. J. Urol. 2004, 172, 1123–1126. [Google Scholar] [CrossRef]
- Christoph, F.; Weikert, S.; Wolff, I.; Schostak, M.; Tabiti, K.; Müller, M.; Schrader, M. Urinary cytokeratin 20 mRNA expression has the potential to predict recurrence in superficial transitional cell carcinoma of the bladder. Cancer Lett. 2007, 245, 121–126. [Google Scholar] [CrossRef]
- Li, Y.P.; Jia, X.P.; Jiang, Y.Q.; Wang, W.; Wang, Y.L.; Wang, X.L.; Guo, Y.X. Differential expression of cytokeratin 14 and 18 in bladder cancer tumorigenesis. Exp. Biol. Med. 2018, 243, 344–349. [Google Scholar] [CrossRef]
- Gaston, K.E.; Grossman, H.B. Proteomic assays for the detection of urothelial cancer. Methods Mol. Biol. 2010, 641, 303–323. [Google Scholar]
- Wang, J.; Zhang, J.; Li, T.; Shen, R.; Li, G.; Ling, L. Strand displacement amplification-coupled dynamic light scattering method to detect urinary telomerase for non-invasive detection of bladder cancer. Biosens. Bioelectron. 2019, 131, 143–148. [Google Scholar] [CrossRef]
- Arya, S.K.; Estrela, P. Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine. Biosens. Bioelectron. 2018, 117, 620–627. [Google Scholar] [CrossRef]
- Dar, V.S.; Ghosh, S.; Broor, S. Rapid detection of rotavirus by using colloidal gold particles labeled with monoclonal antibody. J. Virol. Methods 1994, 47, 51–58. [Google Scholar] [CrossRef]
- Lei, Q.F.; Zhao, L.L.; Ye, S.X.; Sun, Y.; Xie, F.J.; Zhang, H.; Zhou, F.J.; Wu, S. Rapid and quantitative detection of urinary cyfra21-1 using fluorescent nanosphere-based immunochromatographic test strip for diagnosis and prognostic monitoring of bladder cancer. Artif. Cell. Nanomed. Biotechnol. 2019, 47, 4266–4272. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Dong, B.; Zhou, D.L.; Yin, Z.; Cui, S.B.; Xu, W.; Chen, B.J.; Song, H.W. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers. Sci. Rep. 2016, 6, 23406. [Google Scholar] [CrossRef] [Green Version]
- Azzouz, A.; Hejji, L.; Kim, K.-H.; Kukkar, D.; Souhail, B.; Bhardwaj, N.; Brown, R.; Zhang, W. Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection. Biosens. Bioelectron. 2022, 197, 113767. [Google Scholar] [CrossRef]
- Munge, B.S.; Coffey, A.L.; Doucette, J.M.; Somba, B.K.; Malhotra, R.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Nanostructured immunosensor for attomolar detection of cancer biomarker interleukin-8 using massively labeled superparamagnetic particles. Angew. Chem. Int. Ed. 2011, 50, 7915–7918. [Google Scholar] [CrossRef] [Green Version]
- Ricci, F.; Volpe, G.; Micheli, L.; Palleschi, G. A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta 2007, 605, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Sadik, O.A.; Emon, J. Applications of electrochemical immunosensors to environmental monitoring. Biosens. Bioelectron. 1996, 11, i–x. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, B.; Li, Y.; Liang, H.; Yuan, Q. Construction of MoS2 field effect transistor sensor array for the detection of bladder cancer biomarkers. Sci. China Chem. 2020, 63, 997–1003. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.Y.; Zhou, D.X.; Xia, Z.; Sargent, E.H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718–2724. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Sargent, E.H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.J.; Yeh, Y.C.; Tang, R.; Yan, B.; Tamayo, J.; Vachet, R.W.; Rotello, V.M. Stability of quantum dots in live cells. Nat. Chem. 2011, 3, 963–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.W.; Lee, J.; Kim, S.; Nguyen, G.H.; Kim, I.S. Electrochemical immunoassay using quantum dot/antibody probe for identification of cyanobacterial hepatotoxin microcystin-LR. Anal. Bioanal. Chem. 2009, 394, 2173–2181. [Google Scholar] [CrossRef]
- Kan, H.; Li, M.; Song, Z.L.; Liu, S.S.; Zhang, B.H.; Liu, J.Y.; Li, M.Y.; Zhang, G.Z.; Jiang, S.L.; Liu, H. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection. J. Colloid Interf. Sci. 2017, 506, 102–110. [Google Scholar] [CrossRef]
- Rudnicki, K.; Brycht, M.; Leniart, A.; Domagała, S.; Kaczmarek, K.; Kalcher, K.; Skrzypek, S. A sensitive sensor based on single-walled carbon nanotubes: Its preparation, characterization and application in the electrochemical determination of drug clorsulon in milk samples. Electroanalysis 2020, 32, 375–383. [Google Scholar] [CrossRef]
- Chen, X.J.; Wang, Y.Y.; Zhou, J.J.; Yan, W.; Li, X.H.; Zhu, J.J. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal. Chem. 2020, 80, 2133–2140. [Google Scholar] [CrossRef]
- Qu, C.L.; Li, H.; Zhou, S.; Li, G.D.; Wang, C.; Snyders, R.; Bittencourt, C.; Li, W.J. Bi2S3/rGO Composite Based Electrochemical Sensor for Ascorbic Acid Detection. Chemosensors 2021, 9, 190. [Google Scholar] [CrossRef]
- Cademartiri, L.; Scotognella, F.; O’Brien, P.G.; Lotsch, B.V.; Thomson, J.; Petrov, S.; Kheran, N.P.; Ozin, G.A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482–1486. [Google Scholar] [CrossRef]
- Bandekar, J. Amide modes and protein conformation. BBA-Proteins Proteom. 1992, 1120, 123–143. [Google Scholar] [CrossRef]
- Wang, Q.S.; Ye, F.Y.; Fang, T.T.; Niu, W.H.; Liu, P.; Min, X.M.; Li, X. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling. J. Colloid Interf. Sci. 2011, 355, 9–14. [Google Scholar] [CrossRef]
- Dudley, R.A.; Edwards, P.; Ekins, R.P.; Finney, D.J.; Mckenzie, I.G.; Raab, G.M.; Rodbard, D.; Rodgers, R.P. Guidelines for immunoassay data processing. Clin. Chem. 1985, 8, 1264–1271. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.G.; Zhang, Y.; Ma, H.M.; Yan, T.; Du, B.; Wei, Q. Sensitive electrochemical immunosensor for detection of nuclear matrix protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles. Sci. Rep. 2016, 6, 24551. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-H.; Thomas, J.; Chang, Y.-C.; Tsai, Y.-S.; Liu, B.-D.; Lin, H.-Y. Electrochemical sensing of nuclear matrix protein 22 in urine with molecularly imprinted poly(ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays for clinical studies of bladder cancer diagnosis. Biosens. Bioelectron. 2016, 79, 789–795. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.L.; Li, Y.Y.; Cao, W.; Ma, H.M.; Wu, D.; Du, B.; Wei, Q. A label-free electrochemical immunosensor based on Au@Pd/Ag yolk-bimetallic shell nanoparticles and amination graphene for detection of nuclear matrix protein 22. Sens. Actat.-B Chem. 2014, 202, 789–795. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Chen, J.J.; Hu, Z.X.; Chen, Y.; Tao, Y.B.; Wang, L.; Li, L.; Wang, P.; Li, H.-Y.; Zhang, J.B.; et al. All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens. Bioelectron. 2022, 202, 113974. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Tao, Y.; Huang, Q.; Huang, J.; Kuang, J.; Gu, R.; Zeng, P.; Li, H.-Y.; Liang, H.; Liu, H. Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection. Chemosensors 2022, 10, 48. https://doi.org/10.3390/chemosensors10020048
Zhao Y, Tao Y, Huang Q, Huang J, Kuang J, Gu R, Zeng P, Li H-Y, Liang H, Liu H. Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection. Chemosensors. 2022; 10(2):48. https://doi.org/10.3390/chemosensors10020048
Chicago/Turabian StyleZhao, Yunong, Yanbing Tao, Qing Huang, Jing Huang, Jiayu Kuang, Ruiqin Gu, Pei Zeng, Hua-Yao Li, Huageng Liang, and Huan Liu. 2022. "Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection" Chemosensors 10, no. 2: 48. https://doi.org/10.3390/chemosensors10020048
APA StyleZhao, Y., Tao, Y., Huang, Q., Huang, J., Kuang, J., Gu, R., Zeng, P., Li, H. -Y., Liang, H., & Liu, H. (2022). Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection. Chemosensors, 10(2), 48. https://doi.org/10.3390/chemosensors10020048