Review on Anti-Aggregation-Enabled Colorimetric Sensing Applications of Gold and Silver Nanoparticles
Abstract
:1. Introduction
2. Au NPs-Based Colorimetric Assay of Metal Ions via Anti-Aggregation
3. Au NPs-Based Colorimetric Quantification of Anions via Anti-Aggregation
4. Au NPs-Based Colorimetric Quantification of Bio-Analytes via Anti-Aggregation
5. Anti-Aggregation in Au NPs-Based Colorimetric Assay of Pesticides and Herbicides
6. Ag NPs-Based Colorimetric Assay of Diverse Analytes via Anti-Aggregation
7. Design/Sensory Requirements, Advantages, and Limitations
7.1. Probe Design and Sensory Requirements
- The selected label-free/modified Au NPs- or Ag NPs-based probes must possess dispersion stability in color and firm electrostatic charges to be able to interact with aggregation-inducing agents and to afford a certain degree of aggregation and a distinct colorimetric response.
- Selection of a suitable aggregation-inducing agent is essential to attain the primary colorimetric changes. An aggregation-inducing agent should have any of the following three characteristics: (i) analyte replaceable electrostatic interactions, (ii) analyte disposable interactive binding (such as Au-S, Ag-S, Au-N, Ag-N, etc.) over the NPs’ surface, and (iii) analyte coordinative units (such as thymine, -SH, -NH2, -COOH, -OCH3, and -OC2H5, etc.) that are able to form coordination complexes or undergo catalytic reactions to be released from the NPs’ surface. Moreover, it is essential to fix the concentration of the aggregation-inducing agent before taking further sensory interrogations.
- Optimizations of the effective pH conditions, suitable pH buffer solution, concentration, and maintenance circumstances are necessary for anti-aggregation-based colorimetric analyte detection.
- It is essential to fix the exact incubation time to achieve stable colorimetric response and to help to clarify the underlying mechanism and kinetics of the anti-aggregation.
- Though most of the anti-aggregation-enabled colorimetric sensory are conducted at room temperature, it is also important to fix the operative temperature toward real-time applications.
- To avoid complications in real water investigations, it is necessary to identify the interfering effect, allowed concentration, required masking agent, etc.
7.2. Advantages
- In general, anti-aggregation-enabled Au NPs- and Ag NPs-based analyte quantifications are conducted in an aqueous environment; therefore, they are tactics comparable to the available luminescent inorganic and organic nanomaterials-based sensors performed in diverse solvent conditions [122,123,124,125,126,127,128,129,130].
- In the anti-aggregation-enabled sensory studies, sequential colorimetric detection of the aggregation-inducing agent and analyte can be carried out with reliable linearity and LODs down to nano- and pico-molar levels. Thus, it can be regarded as an advantage over other methods.
- By using the anti-aggregation-enabled Au NPs- and Ag NPs-based colorimetric assay, diverse analytes can be detected with specificity under a fixed pH value, incubation time, and operative temperature.
- Anti-aggregation of Au NPs in the presence of certain peptide sequences can be employed to avoid amyloid β aggregation and Alzheimer’s disease occurrence.
- The anti-aggregation strategy in Au NPs- and Ag NPs-based colorimetric sensors can be effectively applied in real samples, such as water, soil, plasma, urine, etc.; thus, it can be noted as a great advantage toward development of the “state of the art” method.
7.3. Limitations
- Anti-aggregation-enabled Au NPs- and Ag NPs-based colorimetric sensory responses are aquatic environment-dependent; therefore, the detection of analytes in other solvent systems is not possible with this method.
- There are many optimization conditions (such as the aggregation-inducing agent, pH (buffer), NaCl effect, incubation time, temperature, etc.) required in order to attain the sensory responses, thereby limiting the frequent use of the anti-aggregation strategy.
- Due to the co-existence of the aggregation-inducing agent and analyte in the same mixture, the re-use of the mixture is not possible at all. Similarly, many reports used complicated assay protocols, which may have led to unknown human errors and restricted the use of this method.
- Elucidation of precise sensory mechanisms requires supportive evidence, such as FTIR, TEM, XPS, XRD, etc. Thus, this method was limited by available instruments and cost-effectiveness.
- The best result of anti-aggregation-enabled Au NPs- and Ag NPs-based colorimetric sensors can only be attained at a fixed interfering specie concentration, which is not possible with real samples (may contain large amounts of interference); therefore, real-time use of the strategy is still questionable.
- Real water/soil samples from different places contain various complicated matrixes. Thus, applying the anti-aggregation-enabled Au NPs- and Ag NPs-based colorimetric assay to all the real samples is not possible or may not deliver expected results.
8. Conclusions and Perspectives
- Most reports on anti-aggregation-enabled Au NPs- and Ag NPs-based colorimetric sensors used complicated assay protocols, which should be simplified toward “state of the art”.
- Performance of anti-aggregation-enabled Au NPs- and Ag NPs-based colorimetric sensors depends on the pH values and buffer used. The use of unified pH buffer solution must be justified in the future to achieve a unique anti-aggregation strategy.
- By means of anti-aggregation, numerous reports are available on Au NPs-based colorimetric assay of Hg2+; however, none of them were commercialized toward practicality. This requires more efforts in future.
- The majority of anti-aggregation-based colorimetric sensors by Au NPs and Ag NPs focused on single-analyte quantification so far, which must be upgraded to multi-analyte detection. For example, the aggregation-inducing agent Hg2+ also has the coordination tendency for biothiols and I−, hence it can be employed in the quantification of both analytes.
- In many reports, anti-aggregation due to coordination of aggregation agents with analytes was not supported by valid evidence, which requires further clarification.
- Currently, anti-aggregation-enabled Au NPs- and Ag NPs-based colorimetric sensors are only available for the detection of limited metal analytes (such as Hg2+, Cu2+, Ag+, Mn2+, and Sc3+), thereby requiring more attention toward developing discrimination of more metal ion species.
- Anti-aggregation proposed for oxidative catalytic reactions falls short of evidence, and it should be addressed with more experimental data.
- Concerning the social impact, anti-aggregation-enabled in vitro colorimetric assay of amyloid β peptide toward the inhibition of Alzheimer disease requires great attention in future research work.
- Reports on anti-aggregation-enabled Au-NPs colorimetric assay of anions, pesticides, and herbicides are insufficient to justify the effectiveness of the strategy toward those analytes. This issue should be addressed in future.
- Only a few reports are available on the anti-aggregation-stimulated Ag NPs-based colorimetric sensors toward diverse analytes detection. Therefore, research on anti-aggregation of Ag NPs toward the discrimination of distinct analytes requires great attention.
- Compositions of Au NPs and Ag NPs with other established luminescent nanomaterials can be the focus to afford anti-aggregation-based colorimetric and luminescent responses toward specific analytes.
- Many anti-aggregation-based sensory reports lack theoretical supports, which should be addressed using density functional theory (DFT) investigations in future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Gonçalves, A.R.P.; Paredes, X.; Cristino, A.F.; Santos, F.J.V.; Queirós, C.S.G.P. Ionic Liquids—A Review of Their Toxicity to Living Organisms. Int. J. Mol. Sci. 2021, 22, 5612. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Ma, J.; Li, D.; Wang, R. DNA-Based Biosensors for the Biochemical Analysis: A Review. Biosensors 2022, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Aktar, W.M.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdisc Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianessi, L.P. The Increasing Importance of Herbicides in Worldwide Crop Production. Pest Manag. Sci. 2013, 69, 1099–1105. [Google Scholar] [CrossRef]
- Alberti, G.; Zanoni, C.; Magnaghi, L.R.; Biesuz, R. Gold and Silver Nanoparticle-Based Colorimetric Sensors: New Trends and Applications. Chemosensors 2021, 9, 305. [Google Scholar] [CrossRef]
- Prosposito, P.; Burratti, L.; Venditti, I. Silver Nanoparticles as Colorimetric Sensors for Water Pollutants. Chemosensors 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Walekar, L.; Dutta, T.; Kumar, P.; Ok, Y.S.; Pawar, S.; Deep, A.; Kim, K.-H. Functionalized Fluorescent Nanomaterials for Sensing Pollutants in the Environment: A Critical Review. TrAC Trends Anal. Chem. 2017, 97, 458–467. [Google Scholar] [CrossRef]
- Bulska, E.; Ruszczyńska, A. Analytical Techniques for Trace Element Determination. Phys. Sci. Rev. 2017, 2, 20178002. [Google Scholar]
- Vervoort, N.; Goossens, K.; Baeten, M.; Chen, Q. Recent Advances in Analytical Techniques for High Throughput Experimentation. Anal. Sci. Adv. 2021, 2, 109–127. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W. Progress in Metal-Organic Frameworks Facilitated Mercury Detection and Removal. Chemosensors 2021, 9, 101. [Google Scholar] [CrossRef]
- Auwalu, M.A.; Cheng, S. Diketopyrrolopyrrole Fluorescent Probes, Photophysical and Biological Applications. Chemosensors 2021, 9, 44. [Google Scholar] [CrossRef]
- Shellaiah, M.; Chen, Y.-T.; Thirumalaivasan, N.; Aazaad, B.; Awasthi, K.; Sun, K.W.; Wu, S.-P.; Lin, M.-C.; Ohta, N. Pyrene-Based AIEE Active Nanoprobe for Zn2+ and Tyrosine Detection Demonstrated by DFT, Bioimaging, and Organic Thin-Film Transistor. ACS Appl. Mater. Interfaces 2021, 13, 28610–28626. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Zaborski, M. Polymer-Based Sensors: A Review. Poly. Test. 2018, 67, 342–348. [Google Scholar] [CrossRef]
- Shellaiah, M.; Simon, T.; Thirumalaivasan, N.; Sun, K.W.; Ko, F.-H.; Wu, S.-P. Cysteamine-Capped Gold-Copper Nanoclusters for Fluorometric Determination and Imaging of Chromium(VI) and Dopamine. Microchim. Acta 2019, 186, 788. [Google Scholar] [CrossRef]
- Terai, T.; Nagano, T. Fluorescent Probes for Bioimaging Applications. Curr. Opin. Chem. Biol. 2008, 12, 515–521. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Crisponi, G. Recent Advances on Iron(III) Selective Fluorescent Probes with Possible Applications in Bioimaging. Molecules 2019, 24, 3267. [Google Scholar] [CrossRef] [Green Version]
- Shellaiah, M.; Awasthi, K.; Chandran, S.; Aazaad, B.; Sun, K.W.; Ohta, N.; Wu, S.-P.; Lin, M.-C. Methylammonium Tin Tribromide Quantum Dots for Heavy Metal Ion Detection and Cellular Imaging. ACS Appl. Nano Mater. 2022, 5, 2859–2874. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. Biosensors 2022, 12, 550. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, C.-P.; Wu, T.-H.; Yang, C.-H.; Lin, C.-W.; Chen, C.-Y. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials 2019, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Nafady, A.; Sirajuddin; Avcı, A.; Pehlivan, E.; Nisar, J.; Sherazi, S.T.H.; Balouch, A.; Shah, M.R.; Almaghrabi, O.A.; et al. Biogenic Silver Nanoparticles for Trace Colorimetric Sensing of Enzyme Disrupter Fungicide Vinclozolin. Nanomaterials 2019, 9, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shellaiah, M.; Simon, T.; Sun, K.W.; Ko, F.-H. Simple Bare Gold Nanoparticles for Rapid Colorimetric Detection of Cr3+ Ions in Aqueous Medium with Real Sample Applications. Sens. Actuators B 2016, 226, 44–51. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, L.; Miao, Y.; Liu, C.; Zhang, C. A Colorimetric Sensor for the Highly Selective Detection of Sulfide and 1,4-Dithiothreitol Based on the In-Situ Formation of Silver Nanoparticles Using Dopamine. Sensors 2017, 17, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S.; Lamichhane, G.; Bhattarai, D.P.; Parajuli, N. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 2021, 6687290. [Google Scholar] [CrossRef]
- Shellaiah, M.; Simon, T.; Venkatesan, P.; Sun, K.W.; Ko, F.-H.; Wu, S.-P. Nanodiamonds Conjugated to Gold Nanoparticles for Colorimetric Detection of Clenbuterol and Chromium(III) in Urine. Microchim. Acta 2017, 185, 74. [Google Scholar] [CrossRef]
- Sanskriti, I.; Upadhyay, K.K. Twinning as a Guiding Factor in Morphological Anisotropy of Silver Nanoparticles Stabilized Over L–DOPA: A Colorimetric Probe for Sulfide in Aqueous Medium. ChemistrySelect 2019, 4, 3803–3810. [Google Scholar] [CrossRef]
- Shellaiah, M.; Thirumalaivasan, N.; Sun, K.W.; Wu, S.-P. A pH Cooperative Strategy for Enhanced Colorimetric Sensing of Cr(III) Ions Using Biocompatible L-Glutamic Acid Stabilized Gold Nanoparticles. Microchem. J. 2021, 160, 105754. [Google Scholar] [CrossRef]
- Singh, R.; Mehra, R.; Walia, A.; Gupta, S.; Chawla, P.; Kumar, H.; Thakur, A.; Kaushik, R.; Kumar, N. Colorimetric Sensing Approaches Based on Silver Nanoparticles Aggregation for Determination of Toxic Metal Ions in Water Sample: A Review. Inter. J. Environ. Anal. Chem. 2021, 1–16. [Google Scholar] [CrossRef]
- Sabela, M.; Balme, S.; Bechelany, M.; Janot, J.-M.; Bisetty, K. A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays. Adv. Eng. Mater. 2017, 19, 1700270. [Google Scholar] [CrossRef]
- Guo, L.; Xu, Y.; Ferhan, A.R.; Chen, G.; Kim, D.-H. Oriented Gold Nanoparticle Aggregation for Colorimetric Sensors with Surprisingly High Analytical Figures of Merit. J. Am. Chem. Soc. 2013, 135, 12338–12345. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, Y.; Wen, X.; Li, Y.; Cao, C.; Xiong, Q. A Coordination and Ligand Replacement Based Three-Input Colorimetric Logic Gate Sensing Platform for Melamine, Mercury Ions, and Cysteine. RSC Adv. 2015, 5, 59106–59113. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Yang, H.-F.; Zhu, X.; Zhang, R.; Wang, Y.; Huang, G.-F.; Zhang, Z.-R. Synthesis of Anti-aggregation Silver Nanoparticles Based on Inositol Hexakisphosphoric Micelles for A Stable Surface Enhanced Raman Scattering Substrate. Nanotechnology 2009, 20, 315603. [Google Scholar] [CrossRef]
- Yang, L.; Wang, N.; Zheng, G. Enhanced Effect of Combining Chlorogenic Acid on Selenium Nanoparticles in Inhibiting Amyloid β Aggregation and Reactive Oxygen Species Formation In Vitro. Nanoscale Res. Lett. 2018, 13, 303. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, W.; Chen, J.; Wang, N.; Zheng, G. A Comparative Study of Resveratrol and Resveratrol-Functional Selenium Nanoparticles: Inhibiting Amyloid β Aggregation and Reactive Oxygen Species Formation Properties. J. Biomed. Mater. Res. A 2018, 106, 3034–3041. [Google Scholar] [CrossRef]
- Li, M.; Shi, P.; Xu, C.; Ren, J.; Qu, X. Cerium Oxide Caged Metal Chelator: Anti-aggregation and Anti-oxidation Integrated H2O2-responsive Controlled Drug Release for Potential Alzheimer’s Disease Treatment. Chem. Sci. 2013, 4, 2536–2542. [Google Scholar] [CrossRef]
- Ishtikhar, M.; Rahisuddin; Khan, M.V.; Khan, R.H. Anti-aggregation Property of Thymoquinone Induced by Copper-Nanoparticles: A Biophysical Approach. Inter. J. Biol. Macromol. 2016, 93, 1174–1182. [Google Scholar] [CrossRef]
- Kong, L.; Zhou, X.; Shi, G.; Yu, Y. Molybdenum Disulfide Nanosheets-Based Fluorescent “Off-to-On” Probe for Targeted Monitoring and Inhibition of β-Amyloid Oligomers. Analyst 2020, 145, 6369–6377. [Google Scholar] [CrossRef]
- Duangdeewong, C.; Choengchan, N.; Wattanasin, P.; Teerasong, S. Direct Determination of Ethanol in Alcoholic Beverages Based on Its Anti-aggregation of Melamine-Silver Nanoparticle Assembly. Talanta 2022, 250, 123751. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Lechuga, M.; Fernández-Serrano, M.; Jurado, E.; Núñez-Olea, J.; Ríos, F. Acute Toxicity of Anionic and Non-ionic Surfactants to Aquatic Organisms. Ecotoxicol. Environ. Safety 2016, 125, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ramnarayanan, A.; Cheng, H. Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors 2018, 18, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Ma, C.; Zhang, P.; Fu, Y.; Shen, B. Recent Progress in the Development of Fuorescent Probes for Detection of Biothiols. Dyes Pig. 2020, 177, 108321. [Google Scholar] [CrossRef]
- Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of Formulants and Heavy Metals in Glyphosate-Based Herbicides and Other Pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef] [PubMed]
- DeLorenzo, M.E.; Scott, G.I.; Ross, P.E. Toxicity of Pesticides to Aquatic Microorganisms: A Review. Environ. Toxicol. Chem. 2001, 20, 84–98. [Google Scholar] [CrossRef]
- Najafzadeh, F.; Ghasemi, F.; Hormozi-Nezhad, M.R. Anti-aggregation of Gold Nanoparticles for Metal Ion Discrimination: A Promising Strategy to Design Colorimetric Sensor Arrays. Sens. Actuators B 2018, 270, 545–551. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Xu, H.; Zhang, Z.; Zhong, X. Highly Selective and Sensitive Visualizable Detection of Hg2+ Based on Anti-aggregation of Gold Nanoparticles. Talanta 2011, 84, 508–512. [Google Scholar] [CrossRef]
- Ding, N.; Zhao, H.; Peng, W.; He, Y.; Zhou, Y.; Yuan, L.; Zhang, Y. A Simple Colorimetric Sensor Based on Anti-aggregation of Gold Nanoparticles for Hg2+ Detection. Colloids Surf. A 2012, 395, 161–167. [Google Scholar] [CrossRef]
- Lou, T.; Chen, L.; Zhang, C.; Kang, Q.; You, H.; Shen, D.; Chen, L. A Simple and Sensitive Colorimetric Method for Detection of Mercury Ions Based on Anti-aggregation of Gold Nanoparticles. Anal. Methods 2012, 4, 488–491. [Google Scholar] [CrossRef]
- Li, Y.-L.; Leng, Y.-M.; Zhang, Y.-J.; Li, T.-H.; Shen, Z.-Y.; Wu, A.-G. A New Simple and Reliable Hg2+ Detection System Based on Anti-aggregation of Unmodified Gold Nanoparticles in the Presence of O-phenylenediamine. Sens. Actuators B 2014, 200, 140–146. [Google Scholar] [CrossRef]
- Huang, G.G.; Chen, Y.-T.; Lin, Y.-R. Development of A Gold Nanoparticle Based Anti-aggregation Method for Rapid Detection of Mercury(ii) in Aqueous Solutions. Anal. Methods 2014, 6, 5690–5696. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, H.; Liu, L.; Li, M.; Xiao, K.; Xu, M. Selective and Sensitive Colorimetric Sensor of Mercury (II) Based on Gold Nanoparticles and 4-Mercaptophenylboronic Acid. Sens. Actuators B 2014, 196, 106–111. [Google Scholar] [CrossRef]
- Tang, J.; Wu, P.; Hou, X.; Xu, K. Modification-free and N-Acetyl-L-cysteine-Induced Colorimetric Response of AuNPs: A Mechanistic Study and Sensitive Hg2+ Detection. Talanta 2016, 159, 87–92. [Google Scholar] [CrossRef]
- Jin, W.; Huang, P.; Wei, G.; Cao, Y.; Wu, F. Visualization and Quantification of Hg2+ Based on Anti-aggregation of Label-free Gold Nanoparticles in the Presence of 2-Mercaptobenzothiazole. Sens. Actuators B 2016, 233, 223–229. [Google Scholar] [CrossRef]
- Rajeshwari, A.; Karthiga, D.; Chandrasekaran, N.; Mukherjee, A. Anti-aggregation-Based Spectrometric Detection of Hg(II) at Physiological pH Using Gold Nanorods. Mater. Sci. Eng. C 2016, 67, 711–716. [Google Scholar] [CrossRef]
- Sun, X.; Liu, R.; Liu, Q.; Fei, Q.; Feng, G.; Shan, H.; Huan, Y. Colorimetric Sensing of Mercury (II) Ion Based on Anti-aggregation of Gold Nanoparticles in the Presence of Hexadecyl Trimethyl Ammonium Bromide. Sens. Actuators B 2018, 260, 998–1003. [Google Scholar] [CrossRef]
- Kataria, R.; Sethuraman, K.; Vashisht, D.; Vashisht, A.; Mehta, S.K.; Gupta, A. Colorimetric Detection of Mercury Ions Based on Anti-aggregation of Gold Nanoparticles Using 3, 5-Dimethyl-1-thiocarboxamidepyrazole. Microchem. J. 2019, 148, 299–305. [Google Scholar] [CrossRef]
- Mao, L.; Wang, Q.; Luo, Y.; Gao, Y. Detection of Ag+ Ions Via an Anti-aggregation Mechanism Using Unmodified Gold nanoparticles in the Presence of Thiamazole. Talanta 2021, 222, 121506. [Google Scholar] [CrossRef]
- Selva Sharma, A.; SasiKumar, T.; Ilanchelian, M. A Rapid and Sensitive Colorimetric Sensor for Detection of Silver Ions Based on the Non-aggregation of Gold Nanoparticles in the Presence of Ascorbic Acid. J. Cluster Sci. 2018, 29, 655–662. [Google Scholar] [CrossRef]
- Safavi, A.; Ahmadi, R.; Mohammadpour, Z. Colorimetric Sensing of Silver ion Based on Anti Aggregation of Gold Nanoparticles. Sens. Actuators B 2017, 242, 609–615. [Google Scholar] [CrossRef]
- Gao, Q.; Zheng, Y.; Song, C.; Lu, L.-Q.; Tian, X.-K.; Xu, A.-W. Selective and Sensitive Colorimetric Detection of Copper Ions Based on Anti-aggregation of the Glutathione-Induced Aggregated Gold Nanoparticles and Its Application for Determining Sulfide Anions. RSC Adv. 2013, 3, 21424–21430. [Google Scholar] [CrossRef]
- Hormozi-Nezhad, M.R.; Abbasi-Moayed, S. A Sensitive and Selective Colorimetric Method for Detection of Copper Ions Based on Anti-aggregation of Unmodified Gold Nanoparticles. Talanta 2014, 129, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.-H.; Huang, K.-Y.; Fang, Q.-H.; Lv, Y.-P.; He, S.-B.; Peng, H.-P.; Xia, X.-H.; Chen, W. Schiff Base and Lewis Acid-Base Interaction-Regulated Aggregation/Dispersion of Gold Nanoparticles for Colorimetric Recognition of Rare-Earth Sc3+ Ions. Sens. Actuators B 2020, 311, 127925. [Google Scholar] [CrossRef]
- Plaisen, S.; Cheewasedtham, W.; Rujiralai, T. Robust Colorimetric Detection Based on the Anti-aggregation of Gold Nanoparticles for Bromide in Rice Samples. RSC Adv. 2018, 8, 21566–21576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Lu, W.; Wang, X.; Chen, L. A Highly Selective and Sensitive Colorimetric Sensor for Iodide Detection Based on Anti-aggregation of Gold Nanoparticles. Sens. Actuators B 2013, 182, 482–488. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, C.; Pan, C.; Li, F. Highly Sensitive and Selective Colorimetric Detection of Iodide Based on Anti-Aggregation of Gold Nanoparticles. Anal. Methods 2013, 5, 2188–2192. [Google Scholar] [CrossRef]
- Rasouli, Z.; Ghavami, R. Colorimetric Sensing of Iodide by the Competitive Interactions in the Surface of Gold Nanoparticles with the Simultaneous Aggregation/ Anti-Aggregation Mechanisms in Edible Salts. Current Anal. Chem. 2018, 14, 539–547. [Google Scholar] [CrossRef]
- Peng, R.; He, H.; Wang, Q.; Yan, X.; Yu, Q.; Qin, H.; Lei, Y.; Luo, L.; Feng, Y. Cu(Ⅱ) Triggering Redox-regulated Anti-aggregation of Gold Nanoparticles for Ultrasensitive Visual Sensing of Iodide. Anal. Chim. Acta 2018, 1036, 147–152. [Google Scholar] [CrossRef]
- Pournaghi, A.; Keshvari, F.; Bahram, M. Colorimetric Determination of Iodine Based on Highly Selective and Sensitive Anti-aggregation Assay. J. Iran. Chem. Soc. 2019, 16, 143–149. [Google Scholar] [CrossRef]
- Deng, H.-H.; Wu, C.-L.; Liu, A.-L.; Li, G.-W.; Chen, W.; Lin, X.-H. Colorimetric Sensor for Thiocyanate Based on Anti-aggregation of Citrate-Capped Gold Nanoparticles. Sens. Actuators B 2014, 191, 479–484. [Google Scholar] [CrossRef]
- Song, J.; Huang, P.-C.; Wan, Y.-Q.; Wu, F.-Y. Colorimetric Detection of Thiocyanate Based on Anti-aggregation of Gold Nanoparticles in the Presence of Cetyltrimethyl Ammonium Bromide. Sens. Actuators B 2016, 222, 790–796. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, R.; Cui, X.; Fu, Q.; Yu, M.; Fei, Q.; Feng, G.; Shan, H.; Huan, Y. Colorimetric Sensor for Thiocyanate Based on Anti-aggregation of Gold Nanoparticles in the Presence of 2-Aminopyridine. Anal. Sci. 2020, 36, 1165–1169. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Zhang, J.; Yang, X. Simple and Selective Colorimetric Detection of Hypochlorite Based on Anti-aggregation of Gold Nanoparticles. Sens. Actuators B 2013, 184, 189–195. [Google Scholar] [CrossRef]
- Liu, W.; Du, Z.; Qian, Y.; Li, F. A Specific Colorimetric Probe for Phosphate Detection Based on Anti-aggregation of Gold Nanoparticles. Sens. Actuators B 2013, 176, 927–931. [Google Scholar] [CrossRef]
- Ye, Y.; Guo, Y.; Yue, Y.; Zhang, Y. Facile Colorimetric Detection of Nitrite Based on Anti-Aggregation of Gold Nanoparticles. Anal. Methods 2015, 7, 4090–4096. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Huang, X.; Li, Y.; Zhang, H.; Zhong, X. Hg2+-Mediated Aggregation of Gold Nanoparticles for Colorimetric Screening of Biothiols. Analyst 2012, 137, 924–931. [Google Scholar] [CrossRef]
- Li, Z.-J.; Zheng, X.-J.; Zhang, L.; Liang, R.-P.; Li, Z.-M.; Qiu, J.-D. Label-Free Colorimetric Detection of Biothiols Utilizing SAM and Unmodified Au Nanoparticles. Biosens. Bioelectron. 2015, 68, 668–674. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Xu, H.; Zhang, H.; Zhong, X. Anti-aggregation of Gold Nanoparticle-Based Colorimetric Sensor for Glutathione with Excellent Selectivity and Sensitivity. Analyst 2011, 136, 196–200. [Google Scholar] [CrossRef]
- Li, J.-F.; Huang, P.-C.; Wu, F.-Y. Specific pH Effect for Selective Colorimetric Assay of Glutathione Using Anti-aggregation of Label-Free Gold Nanoparticles. RSC Adv. 2017, 7, 13426–13432. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-F.; Huang, P.-C.; Wu, F.-Y. Highly Selective and Sensitive Detection of Glutathione Based on Anti-aggregation of Gold Nanoparticles via pH Regulation. Sens. Actuators B 2017, 240, 553–559. [Google Scholar] [CrossRef]
- Yuan, L.-F.; He, Y.-J.; Zhao, H.; Zhou, Y.; Gu, P. Colorimetric Detection of D-Amino Acids Based on Anti-aggregation of Gold Nanoparticles. Chinese Chem. Lett. 2014, 25, 995–1000. [Google Scholar] [CrossRef]
- Huang, P.-C.; Gao, N.; Li, J.-F.; Wu, F.-Y. Colorimetric Detection of Methionine Based on Anti-aggregation of Gold Nanoparticles in the Presence of Melamine. Sens. Actuators B 2018, 255, 2779–2784. [Google Scholar] [CrossRef]
- Keshvari, F.; Bahram, M.; Farhadi, K. A Selective, Sensitive and Label-Free Visual Assay of Fructose Using Anti-aggregation of Gold Nanoparticles as A Colorimetric Probe. Chinese Chem. Lett. 2016, 27, 847–851. [Google Scholar] [CrossRef]
- Kim, H.-M.; Kim, W.-J.; Kim, K.-O.; Park, J.-H.; Lee, S.-K. Performance Improvement of A Glucose Sensor Based on Fiber Optic Localized Surface Plasmon Resonance and Anti-aggregation of the Non-Enzymatic Receptor. J. Alloys Comp. 2021, 884, 161140. [Google Scholar] [CrossRef]
- Liu, S.; Du, Z.; Li, P.; Li, F. Sensitive Colorimetric Visualization of Dihydronicotinamide Adenine Dinucleotide Based on Anti-aggregation of Gold nanoparticles Via Boronic Acid–Diol Binding. Biosens. Bioelectron. 2012, 35, 443–446. [Google Scholar] [CrossRef]
- Sang, F.; Zhang, X.; Liu, J.; Yin, S.; Zhang, Z. A Label-Free Hairpin Aptamer Probe for Colorimetric Detection of Adenosine Triphosphate Based on the Anti-aggregation of Gold Nanoparticles. Spectrochim. Acta A 2019, 217, 122–127. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, X.; Liu, Q.; Hu, C.; Yun, J.; Liu, R.; Liu, Y. Colorimetric Nucleic Acid Detection Based on Gold Nanoparticles with Branched DNA. Nano 2020, 15, 2050110. [Google Scholar] [CrossRef]
- Khurana, S.; Kukreti, S.; Kaushik, M. Designing A Two-Stage Colorimetric Sensing Strategy Based on Citrate Reduced Gold Nanoparticles: Sequential Detection of Sanguinarine (Anticancer Drug) and Visual Sensing of DNA. Spectrochim. Acta A 2021, 246, 119039. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, X.; You, T.; Yang, N.; Gao, Y.; Yin, P. An Ultrasensitive “Turn-Off” SERS Sensor for Quantitatively Detecting Heparin Based on 4-Mercaptobenzoic Acid Functionalized Gold Nanoparticles. Anal. Methods 2017, 9, 2517–2522. [Google Scholar] [CrossRef]
- Ma, X.; Kou, X.; Xu, Y.; Yang, D.; Miao, P. Colorimetric Sensing Strategy for Heparin Assay Based on PDDA-Induced Aggregation of Gold Nanoparticles. Nanoscale Adv. 2019, 1, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Lee, D.; Ryu, K.-Y.; Choi, I. A Gold Nanoparticle-Mediated Rapid In Vitro Assay of Anti-aggregation Reagents for Amyloid β and Its Validation. Chem. Commun. 2017, 53, 4449–4452. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kwon, J.A.; Kang, T.; Choi, I. Rapid and High-Throughput Colorimetric Screening for Anti-aggregation Reagents of Protein Conformational Diseases by Using Gold Nanoplasmonic Particles. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1575–1585. [Google Scholar] [CrossRef]
- Pasieka, A.; Panek, D.; Szałaj, N.; Espargaró, A.; Więckowska, A.; Malawska, B.; Sabaté, R.; Bajda, M. Dual Inhibitors of Amyloid-β and Tau Aggregation with Amyloid-β Disaggregating Properties: Extended In Cellulo, In Silico, and Kinetic Studies of Multifunctional Anti-Alzheimer’s Agents. ACS Chem. Neurosci. 2021, 12, 2057–2068. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, C.-Y.; Chen, C.-P.; Lin, C.-W. Facile Colorimetric Detection of Human Chorionic Gonadotropin Based on the Peptide-Induced Aggregation of Gold Nanoparticles. Anal. Methods 2015, 7, 29–33. [Google Scholar] [CrossRef]
- Wang, S.-T.; Lin, Y.; Spicer, C.D.; Stevens, M.M. Bio-Inspired Maillard-Like Reactions Enable A Simple and Sensitive Assay for Colorimetric Detection of Methylglyoxal. Chem. Commun. 2015, 51, 11026–11029. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Xu, J.; Luo, Y.; Li, Y.; Liu, X.; Bie, J.; Sun, C. Highly Selective and Sensitive Visual Detection of Oxytetracycline Based on Aptamer Binding-Mediated the Anti-Aggregation of Positively Charged Gold Nanoparticles. Mater. Lett. 2016, 180, 31–34. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, L.; Lin, L.; Wu, Y.; Fu, F. A Colorimetric Sensor for the Visual Detection of Azodicarbonamide in Flour Based on Azodicarbonamide-Induced Anti-Aggregation of Gold Nanoparticles. ACS Sens. 2018, 3, 2145–2151. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, R.; Li, L.; Huang, X.; Li, T.; Lu, M.; Xu, D.; Wang, J. Anti-Agglomeration Behavior and Sensing Assay of Chlorsulfuron Based on Acetamiprid-Gold Nanoparticles. Nanomaterials 2018, 8, 499. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhang, R.; Huang, X.; Li, L.; Liu, N.; Wang, J.; Xu, D. Visual and Colorimetric Sensing of Metsulfuron-Methyl by Exploiting Hydrogen Bond-Induced Anti-Aggregation of Gold Nanoparticles in the Presence of Melamine. Sensors 2018, 18, 1595. [Google Scholar] [CrossRef] [Green Version]
- Keshvari, F.; Bahram, M. Selective, Sensitive and Reliable Colorimetric Sensor for Catechol Detection Based on Anti-aggregation of Unmodified Gold Nanoparticles Utilizing Boronic Acid–Diol Reaction: Optimization by Experimental Design Methodology. J. Iran. Chem. Soc. 2017, 14, 977–984. [Google Scholar] [CrossRef]
- Chen, N.; Liu, H.; Zhang, Y.; Zhou, Z.; Fan, W.; Yu, G.; Shen, Z.; Wu, A. A Colorimetric Sensor Based on Citrate-Stabilized AuNPs for Rapid Pesticide Residue Detection of Terbuthylazine and Dimethoate. Sens. Actuators B 2018, 255, 3093–3101. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; Wang, L.; Zhang, H.; Hu, J. A Simple Colorimetric Probe Based on Anti-aggregation of AuNPs for Rapid and Sensitive Detection of Malathion in Environmental Samples. Anal. Bioanal. Chem. 2019, 411, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Chungchai, W.; Amatatongchai, M.; Meelapsom, R.; Seebunrueng, K.; Suparsorn, S.; Jarujamrus, P. Development of A Novel Three-Dimensional Microfluidic Paper-Based Analytical Device (3D-μPAD) for Chlorpyrifos Detection Using Graphene Quantum-dot Capped Gold Nanocomposite for Colorimetric Assay. Inter. J. Environ. Anal. Chem. 2020, 100, 1160–1178. [Google Scholar] [CrossRef]
- Liu, K.; Jin, Y.; Wu, Y.; Liang, J. Simple and Rapid Colorimetric Visualization of Tetramethylthiuram Disulfide (Thiram) Sensing Based on Anti-aggregation of Gold Nanoparticles. Food Chem. 2022, 384, 132223. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, Y.; Kang, J.; Dong, C.; Chen, N.; Li, X.; Guo, Z.; Wu, A. Detection of Herbicide Glyphosates Based on An Anti-aggregation Mechanism by Using Unmodified Gold Nanoparticles in the Presence of Pb2+. Anal. Methods 2017, 9, 2890–2896. [Google Scholar] [CrossRef]
- Duan, J.; Yin, H.; Wei, R.; Wang, W. Facile Colorimetric Detection of Hg2+ Based on Anti-aggregation of Silver Nanoparticles. Biosens. Bioelectron. 2014, 57, 139–142. [Google Scholar] [CrossRef]
- Ye, Y.; Guo, Y.; Yue, Y.; Huang, H.; Zhao, L.; Gao, Y.; Zhang, Y. Colorimetric Sensing of Copper Ions Based on the Anti-aggregation of Unmodified Silver Nanoparticles in the Presence of 1,4-Dithiothreitol. Anal. Methods 2015, 7, 566–572. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X. Ultrasensitive Colorimetric Detection of Manganese(II) Ions Based on Anti-aggregation of Unmodified Silver Nanoparticles. Sens. Actuators B 2016, 222, 320–324. [Google Scholar] [CrossRef]
- Basiri, S.; Mehdinia, A.; Jabbari, A. Green Synthesis of Reduced Graphene Oxide-Ag Nanoparticles as A Dual-Responsive Colorimetric Platform for Detection of Dopamine and Cu2+. Sens. Actuators B 2018, 262, 499–507. [Google Scholar] [CrossRef]
- Bothra, S.; Kumar, R.; Pati, R.K.; Kuwar, A.; Choi, H.-J.; Sahoo, S.K. Virgin Silver Nanoparticles as Colorimetric Nanoprobe for Simultaneous Detection of Iodide and Bromide Ion in Aqueous Medium. Spectrochim. Acta A 2015, 149, 122–126. [Google Scholar] [CrossRef]
- Motahhari, A.; Abdolmohammad-Zadeh, H.; Farhadi, K. Development of A New Fluoride Colorimetric Sensor Based on Anti-aggregation of Modified Silver Nanoparticles. Anal. Bioanal. Chem. Res. 2021, 8, 79–89. [Google Scholar]
- Dong, C.; Ma, X.; Qiu, N.; Zhang, Y.; Wu, A. An Ultra-Sensitive Colorimetric Sensor Based on Smartphone for Pyrophosphate Determination. Sens. Actuators B 2021, 329, 129066. [Google Scholar] [CrossRef]
- Pinyorospathum, C.; Rattanarat, P.; Chaiyo, S.; Siangproh, W.; Chailapakul, O. Colorimetric Sensor for Determination of Phosphate Ions Using Anti-aggregation of 2-Mercaptoethanesulfonate-Modified Silver Nanoplates and Europium Ions. Sens. Actuators B 2019, 290, 226–232. [Google Scholar] [CrossRef]
- Chen, L.; Fu, X.; Li, J. Ultrasensitive Surface-Enhanced Raman Scattering Detection of Trypsin Based on Anti-aggregation of 4-Mercaptopyridine-Functionalized Silver Nnanoparticles: An Optical Sensing Platform Toward Proteases. Nanoscale 2013, 5, 5905–5911. [Google Scholar] [CrossRef]
- Trisaranakul, W.; Chompoosor, A.; Maneeprakorn, W.; Nacapricha, D.; Choengchan, N.; Teerasong, S. A Simple and Rapid Method Based on Anti-aggregation of Silver Nanoparticles for Detection of Poly(diallyldimethylammonium chloride) in Tap Water. Anal. Sci. 2016, 32, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Shellaiah, M.; Sun, K.W. Review on Nanomaterial-Based Melamine Detection. Chemosensors 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Lateef, M.A.; Almahri, A.; Alzahrani, E.; Pashameah, R.A.; Abu-Hassan, A.A.; El Hamd, M.A. Sustainable PVP-Capped Silver Nanoparticles as a Free-Standing Nanozyme Sensor for Visual and Spectrophotometric Detection of Hg2+ in Water Samples: A Green Analytical Method. Chemosensors 2022, 10, 358. [Google Scholar] [CrossRef]
- Mochi, F.; Burratti, L.; Fratoddi, I.; Venditti, I.; Battocchio, C.; Carlini, L.; Iucci, G.; Casalboni, M.; De Matteis, F.; Casciardi, S.; et al. Plasmonic Sensor Based on Interaction between Silver Nanoparticles and Ni2+ or Co2+ in Water. Nanomaterials 2018, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.; Zannotti, M.; Cuccioloni, M.; Minicucci, M.; Petetta, L.; Angeletti, M.; Giovannetti, R. Silver Nanoparticle-Based Sensor for the Selective Detection of Nickel Ions. Nanomaterials 2021, 11, 1733. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Wang, Y.; Huang, C.; Wang, Z.; Liu, L. In Situ Functionalization of Silver Nanoparticles by Gallic Acid as a Colorimetric Sensor for Simple Sensitive Determination of Melamine in Milk. ACS Omega 2021, 6, 23630–23635. [Google Scholar] [CrossRef]
- Sharma, R.; Dhillon, A.; Kumar, D. Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al(III) in Aqueous Systems. Sci. Rep. 2018, 8, 5189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omar, N.A.S.; Fen, Y.W.; Irmawati, R.; Hashim, H.S.; Ramdzan, N.S.M.; Fauzi, N.I.M. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. Nanomaterials 2022, 12, 2365. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Sun, K.W. Review on Sensing Applications of Perovskite Nanomaterials. Chemosensors 2020, 8, 55. [Google Scholar] [CrossRef]
- Anas, N.A.A.; Fen, Y.W.; Omar, N.A.S.; Daniyal, W.M.E.M.M.; Ramdzan, N.S.M.; Saleviter, S. Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors 2019, 19, 3850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shellaiah, M.; Sun, K.W. Luminescent Metal Nanoclusters for Potential Chemosensor Applications. Chemosensors 2017, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Shellaiah, M.; Thirumalaivasan, N.; Aazaad, B.; Awasthi, K.; Sun, K.W.; Wu, S.-P.; Lin, M.-C.; Ohta, N. An AIEE Active Anthracene-Based Nanoprobe for Zn2+ and Tyrosine Detection Validated by Bioimaging Studies. Chemosensors 2022, 10, 381. [Google Scholar] [CrossRef]
- Shellaiah, M.; Simon, T.; Srinivasadesikan, V.; Lin, C.-M.; Sun, K.W.; Ko, F.-H.; Lin, M.-C.; Lin, H.-C. Novel Pyrene Containing Monomeric and Dimeric Supramolecular AIEE Active Nano-Probes Utilized in Sselective “Off–On” Trivalent Metal and Highly Acidic pH Sensing with Live Cell Applications. J. Mater. Chem. C 2016, 4, 2056–2071. [Google Scholar] [CrossRef]
- Olean-Oliveira, A.; Oliveira Brito, G.A.; Cardoso, C.X.; Teixeira, M.F.S. Nanocomposite Materials Based on Electrochemically Synthesized Graphene Polymers: Molecular Architecture Strategies for Sensor Applications. Chemosensors 2021, 9, 149. [Google Scholar] [CrossRef]
- Shellaiah, M.; Simon, T.; Venkatesan, P.; Sun, K.W.; Ko, F.-H.; Wu, S.-P. Cysteamine-Modified Diamond Nanoparticles Applied in Cellular Imaging and Hg2+ Ions Detection. Appl. Surf. Sci. 2019, 465, 340–350. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Conjugation of cysteamine functionalized nanodiamond to gold nanoparticles for pH enhanced colorimetric detection of Cr3+ ions demonstrated by real water sample analysis. Spectrochim. Acta A 2022, 286, 121962. [Google Scholar] [CrossRef]
- Nguyen, V.-N.; Ha, J.; Cho, M.; Li, H.; Swamy, K.M.K.; Yoon, J. Recent Developments of BODIPY-Based Colorimetric and Fluorescent Probes for the Detection of Reactive Oxygen/Nitrogen Species and Cancer diagnosis. Coord. Chem. Rev. 2021, 439, 213936. [Google Scholar] [CrossRef]
- Arumugaperumal, R.; Srinivasadesikan, V.; Lin, M.-C.; Shellaiah, M.; Shukla, T.; Lin, H.-C. Facile Rhodamine-Based Colorimetric Sensors for Sequential Detections of Cu(ii) Ions and Pyrophosphate (P2O74−) Anions. RSC Adv. 2016, 6, 106631–106640. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent Advances in the Design of Colorimetric Sensors for Environmental Monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Fang, H.-P.; Shellaiah, M.; Singh, A.; Raju, M.V.R.; Wu, Y.-H.; Lin, H.-C. Naked Eye and Fluorescent Detections of Hg2+ Ions and Cysteine via J-Aggregation and Deaggregation of a Perylene Bisimide Derivative. Sens. Actuators B 2014, 194, 229–237. [Google Scholar] [CrossRef]
- Shellaiah, M.; Thirumalaivasan, N.; Aazaad, B.; Awasthi, K.; Sun, K.W.; Wu, S.-P.; Lin, M.-C.; Ohta, N. Novel Rhodamine Probe for Colorimetric and Fluorescent Detection of Fe3+ Ions in Aqueous Media with Cellular Imaging. Spectrochim. Acta A 2020, 242, 118757. [Google Scholar] [CrossRef]
- Chen, S.; Xue, Z.; Gao, N.; Yang, X.; Zang, L. Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection. Sensors 2020, 20, 917. [Google Scholar] [CrossRef] [Green Version]
- Ericson, M.N.; Shankar, S.K.; Chahine, L.M.; Omary, M.A.; Herbing, I.H.v.; Marpu, S.B. Development of Neutral Red as a pH/pCO2 Luminescent Sensor for Biological Systems. Chemosensors 2021, 9, 210. [Google Scholar] [CrossRef]
Probe | Aggregation-Inducing Agent; Optimum Conc. | Sensing Analyte | pH (Buffer); Incubation Time | Linear Range | Limit of Detection (LOD) | Applications | Ref. |
---|---|---|---|---|---|---|---|
CI-Au NPs | 4,4′-Dipyridyl (DPy); 2.5 µM | Hg2+ | pH 7 (10 mM Tris–HCl); 30 min | 0.04–1.1 µM | 15 nM | Real water analysis | [47] |
PDDA-Au NPs | Cysteine (Cys); 7 µg/mL in 0.1 M Na Cl | Hg2+ | pH 5 (HAc-NaAc); NA | 0.05–10 µM | 25 nM | Real water analysis | [48] |
CI-Au NPs | Thymine; 0.2 mM | Hg2+ | pH 8 (1 mM Tris-HCl); 30 min | 2–12 µM | 2 nM | Real water analysis | [49] |
CI-Au NPs | O-Phenylene-diamine (OPD); 3.1 µM | Hg2+ | pH 6.5 (NA); 20 min | 0.01–2 µM | 5 nM | Real water analysis | [50] |
CI-Au NPs | L-Penicillamine (Pen); 3.5 µM | Hg2+ | pH 2.4 (5 mM citric acid–sodium citrate); 2 min | 50–400 nM | 25 nM | Real water analysis | [51] |
CI-Au NPs | 4-Mercapto-phenylboronic acid (MPBA); 10 µM | Hg2+ | pH 4(10 mM (5 mM citric acid–sodium citrate); 20 min | 0.01–5 µM | 8 nM | Real water analysis | [52] |
CI-Au NPs | N-Acetyl-L-cysteine (NAC); 10 µM | Hg2+ | pH 7 (PBS); 30 min | 0.02–1 µM | 9.9 nM | Real water analysis | [53] |
CI-Au NPs | 2-Mercapto-benzothiazole (MBT); 2.2 µM | Hg2+ | pH 5.8 (PBS); 5 min | 0.05–1 µM | 6 nM | Real water and milk powder analysis | [54] |
Tween 20 modified Au NRs | Dithiothreitol (DTT); 1.5 µM | Hg2+ | pH 7.4 (Tris–HCl); NA | 1–100 pM | 0.42 pM | Body fluid analysis | [55] |
CI-Au NPs | Hexadecyl trimethyl ammonium bromide (CTAB); 0.44 µM | Hg2+ | pH 7 (Tris–HCl); 30 min | 0–0.68 µM | 11.9 nM | Real water analysis | [56] |
CI-Au NPs | 3, 5-Dimethyl-1-thiocarboxamidepyrazole (Pzl); 1.5 µM | Hg2+ | Ph 5.6–8 (PBS); 3–4 min | 0.01–1.5 µM | 7.7 nM | Real water analysis | [57] |
CI-Au NPs | Thiamazole; 2 µM | Ag+ | pH 7.5 (BR); 15 min | 0.1 nM–90 μM | 0.042 nM | Real water analysis | [58] |
CI-Au NPs | Tris-(hydroxymethyl) aminomethane (Tris); 9 mM | Ag+ | pH 7.5 (Tris–HCl); 20 min | 1–9 µM | 0.41 µM | Real water analysis | [60] |
CI-Au NPs | Glutathione (GSH); 5 µM | Cu2+ | pH 3.4 (4 mM BR); 15 min | 20–500 nM | 20 nM | Real water analysis | [61] |
CI-Au NPs | D-Penicillamine (D-PC); at 25 mM NaCl | Cu2+ | pH 7 (1 M NaCl-10 mM NaOH); 12 min | 0.05–1.85 µM | 30 nM | Real water analysis | [62] |
cysteamine-protected Au NPs | Pyridoxal phosphate (PLP); 5 µM | Sc3+ | pH 6 (HAc-NaAc); 1 min | 0.1–3 µM | 20 nM | Real water analysis | [63] |
Probe | Aggregation-Inducing Agent; Optimum Conc. | Sensing Analyte | pH (Buffer); Incubation Time | Linear Range | Limit of Detection (LOD) | Applications | Ref. |
---|---|---|---|---|---|---|---|
CI-Au NPs | Cr3+; 4.81 µM | Br− | pH 6.5 (10 mM Na3PO4); 10 min | 0.31–3.75 µM | 40 nM | Rice samples analysis | [64] |
N-1-(2-mercaptoethyl) thymine-capped Au NPs | Hg2+; 300 nM | I− | pH 7.4 (PBS); 5 min | 10–600 nM | 10 nM | Real water analysis | [65] |
T-rich single-stranded DNA–capped Au NPs | Hg2+; 2 µM | I− | pH 7.4 (10 mM Tris-HCl); 10 min | 40 nM–4 µM | 13 nM | Real water analysis | [66] |
2-hydroxyethyldithiocarbamate-capped Au NPs | Hg2+; 2 µM | I− | pH 5 (50 mM PBS); 7 min | 0.1–4 µM | 20 nM | Edible salt analysis | [67] |
Arginine-capped Au NPs | Cu2+; 70 µM | I− | pH 7.4 (PBS); 5 min | 0.01–4 µM | 10 nM | Real water analysis | [68] |
CI-Au NPs | S2O32−; 5.94 mM | I2 (Iodine) | pH 7 (NA); 16 min | 3–80 nM | 1.36 nM | Real water and plasma analysis | [69] |
CI-Au NPs | H2SO4; 8 mM | SCN− | NA; 5 min | 0.25–2 µM | 0.14 µM | Real water analysis | [70] |
CI-Au NPs | Cetyltrimethyl ammonium bromide (CTAB); 0.5 µM | SCN− | pH 7 (10 mM PBS); 15 min | 0.1–1.5 µM | 6.5 nM | Milk samples analysis | [71] |
CI-Au NPs | 2-Aminopyridine; 50 µM | SCN− | pH 7 (40 mM Tris-HCl); NA | 0.4–1.2 μM | 0.37 µM | Real water analysis | [72] |
CI-Au NPs | Dithiothreitol (DTT); 4 µM | OCl− | pH 7.17 (45 mM PBS); 2 min | 0–7 µM | 2 µM (by naked eyes) | Real water analysis | [73] |
Mercapto–acetic acid–capped Au NPs | Eu3+; 20 µM | PO43− (Pi) | pH 7.4 (25 mM Tris-HCl); 5 min | 0.5–30 µM | 76 nM | NA | [74] |
CI-Au NPs | 4-Amino-thiophenol (4-ATP); 25 µM | NO2− | pH 9.5 (Na2CO3–NaHCO3); 15 min | 1–25 µM | 1 µM | Real water analysis | [75] |
Probe | Aggregation-Inducing Agent; Optimum Conc. | Sensing Analyte | pH (Buffer); Incubation Time | Linear Range | Limit of Detection (LOD) | Applications | Ref. |
---|---|---|---|---|---|---|---|
CI-Au NPs | S-adenosyl-L-methionine (SAM); 0.8 µM | Glutothione (GSH), cysteine (Cys), and homo-cysteine (HCys) | pH 7 (10 mM BBS); 5 min | 0.2–0.9 µM, 0.4–1.2 µM, and 0.6–3.0 µM, respectively | 35.8 nM, 21.7 nM, and 62.4 nM, respectively | Biological fluid analysis | [77] |
CI-Au NPs | Sodium piperazinebisdithiocarbamate (ppzdtc); 1.5 µM | Glutothione (GSH) | pH 7.4 (10 mM HEPES); 30 min | 8–250 nM | 8 nM | NA | [78] |
CI-Au NPs | Cysteine (Cys); 4 µM | Glutothione (GSH) | pH 5.8 (PBS); 5 min | 0.1–1 µM | 20.3 nM | Human urine analysis | [79] |
CI-Au NPs | 2-Mercapto-1-methylimidazole (MMI); 2 µM | Glutothione (GSH) | pH 5.8 (PBS); 5 min | 0.1–1 µM | 12 nM | Human serum and urine analysis | [80] |
CI-Au NPs | 4-mercapto-benzoic acid (4-MBA); 5.2 µM and CuCl2 (400 µM) | D-alanine (D-Ala) in presence of D-amino acid oxidase (DAAO) | pH 7 (HAc-NaAc); 15 min | 0.15–30 µM | 75 nM | Biological sample analysis | [81] |
CI-Au NPs | Melamine (Mel) | Methionine (Met) | pH 7.4 (PBS); 5 min | 0–1 µM | 24.5 nM | Human serum and urine analysis | [82] |
CI-Au NPs | 4-Mercaptophenylboronic acid (MPBA); 1.34 µM | Fructose | pH 7 (NA); 10 min | 32–960 μM | 10 µM | Human plasma analysis | [83] |
CI-Au NPs | 4-Mercaptophenylboronic acid (MPBA); 10 µM | Dihydro-nicotinamide adenine dinucleotide (NADH) | pH 10.5 (18 mM NaOH); 12 min | 0.008–8 µM | 2 nM | NA | [85] |
CI-Au NPs | Poly-(diallyldimethylammonium chloride) (PDDA); 0.5 µM | adenosine triphosphate (ATP) | NA; 5 min | 20–100 nM | 1.7 nM | Human serum analysis | [86] |
CI-Au NPs | sodium chloride (NaCl); 30 mM | Target Deoxyribonucleic Acid (T-DNA) | pH 3–11 (NA); 5 min | 5–100 nM | 5 nM | NA | [87] |
CI-Au NPs | Sanguinarine (SNG); 1 µM | Calf Thymus DNA (Ct-DNA) | pH 7.4 (Tris-EDTA); 10 min | 0–5 μM | 0.36 µM | Biological fluid analysis | [88] |
4-mercaptobenzoic acid–stabilized Au NPs | Protamine; 0.6 µg/mL | Heparin | pH 7.4 (10 mM HEPES); NA | 0.05–20 ng/mL | 0.03 ng/mL | Fetal bovine serum analysis | [89] |
CI-Au NPs | Poly-(diallyldimethylammonium chloride) (PDDA); 0.02 µM | Heparin | NA; 3 min | 0–0.4 mg/mL | 0.02 µg/mL | Human blood serum analysis | [90] |
CI-Au NPs | Peptide; 0.5 µM | Human chorionicgonadotropin (HCG) | pH 7.4 (PBS in 18.8 mM NaCl); 16 min | 50–1000 mIU/mL | 25 mIU/mL | Biological fluid analysis | [94] |
CI-Au NPs | o-phenylenediamine (OPD); 0.5 µM | Methylglyoxal (MGO) | pH 7.5 (30 mM sodium phosphate); 30 min | 0.01–10 µM | 0.05 µM | NA | [95] |
Cysteamine-stabilized Au NPs | Aptamer (OBA); 3 nM | Oxytetracycline (OTC) | NA; 22 min | 4.34–60.81 µM | 493 nM | Milk analysis | [96] |
CI-Au NPs | Glutothione (GSH); 2.5 µM | Azodicarbonamide (ADA) | pH 3.3 (3.3 mM BR); 60 min | 0.12–1.00 μM | 70 nM | Flour samples analysis | [97] |
Probe | Aggregation-Inducing Agent; Optimum Conc. | Sensing Analyte | pH (Buffer); Incubation Time | Linear Range | Limit of Detection (LOD) | Applications | Ref. |
---|---|---|---|---|---|---|---|
PDDA-Au NPs | Acetamiprid; 90 µM | Chlorsulfuron | pH 4.5 (10 mM NAc-HAc); 30 min | 0.28–279 µM | 0.14 µM | Real water analysis | [98] |
CI-Au NPs | Melamine; 15.86 µM | Metsulfuron-methyl | pH 4.5 (10 mM NAc-HAc); 30 min | 0.26–262 µM | 131 nM | Real water analysis | [99] |
CI-Au NPs | 4-Mercapto-phenyl boronic acid (MPBA); 0.4 µM | Catechol | pH 7.6 (NA); 5 min | 0.87–56 µM | 0.41 µM | Real water analysis | [100] |
CI-Au NPs | 40 mM NaOH | Dimethoate (DMT) | pH > 9 (40 mM NaOH); 10 min | 1–40 nM | 6.2 nM | Real water, tea, and apple juice analysis | [101] |
CI-Au NPs | 40 mM NaOH | Malathion | pH > 9 (40 mM NaOH); 20 min | 0.05–0.8 μM | 11.8 nM | Real water, vegetable and apple juice analysis | [102] |
GQDs-Au NPs | Acetylthio-choline chloride (ATCh); 50 µM in presence of Acetylcholinesterase (AChE) | Chlorpyrifos | pH 7 (PBS); 15 min | 0.29–143 µM | 131 nM | Vegetable analysis | [103] |
Au NPs@4-ABT | Ag+; 1 µM | Thiram | pH 7.5 (10 mM PBS); 12 min | 0.05–2.0 µM | 40 nM | Apple and soil analysis | [104] |
CI-Au NPs | Pb2+; 35 µM | Gly-phosate (GPS) | pH 7 (NA); 10 min | 0–0.8 µM | 2.38 nM | Real water analysis | [105] |
Probe | Aggregation-Inducing Agent; Optimum Conc. | Sensing Analyte | pH (Buffer); Incubation Time | Linear Range | Limit of Detection (LOD) | Applications | Ref. |
---|---|---|---|---|---|---|---|
CI-Ag NPs | 6-Thioguanine; 0.83 µM | Hg2+ | pH 4 (100 mM HAc-NaAc); 30 min | 0–333 nM | 4 nM | Real water analysis | [106] |
CI-Ag NPs | 1,4-Dithiothreitol (DTT); 10 µM | Cu2+ | pH 2–10 (HCl-NaOH); 20 min | 0.1–2 µM | 0.1 µM | Real water analysis | [107] |
CI-Ag NPs | L-Arginine (L-Arg); 0.7 mM | Mn2+ | pH 9.4 (BR); 40 min | 0–700 nM and 5–70 µM | 20 nM | Real water analysis | [108] |
rGO@Ag NPs | Dopamine (DA); 25 µM | Cu2+ | pH 7 (10 mM PBS); 15 min | 0.02–1.5 µM | 9.8 nM | Human urine and tomato samples analysis | [109] |
CI-Ag NPs | Cr3+: 125 µM | Br− and I− | NA | 0.99–5.66 µM (Br−), 0.99–4.16 µM (I−), respectively | 1.67 µM (Br−) and 1.32 µM (I−), respectively | NA | [110] |
SA-CAT-Ag NPs | Sulfanilic acid and catechol | F− | pH 4–9 (NA); >1 min | 1–40 µM | 0.2 µM | Real water analysis | [111] |
PVP-Ag NPs | Pb2+; 5 µM | Pyrophosphate (P2O74−; PPi) | pH 5–9 (NA); 30 min | 0.2–2.0 μM and 2.0–10.0 μM | 0.2 µM | Real water analysis | [112] |
2-Mercapto-ethane sulfonate–modified silver nanoplates (MS-AgNPls) | Eu3+; 65.81 µM | PO43−(Pi) on PADs | pH 7 (25 mM Tris); 3 min | 10.42–313 µM | 3.44 µM | Real water and soil analysis | [113] |
4-MPY-Ag NPs | Protamine; 0.3 µg/mL | Trypsin | pH 7.4 (10 mM HEPES); <1 min | 0.14 nM–13.8 μM | 0.14 nM | NA | [114] |
CI-Ag NPs | 0.2 M Phosphate buffer | Poly (diallyl-dimemethyl-ammonium chloride) (PDADMAC) | pH 7.4 (0.2 M PBS); 3 min | 1–100 mg. L−1 | 0.7 mg. L−1 | Real water analysis | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shellaiah, M.; Sun, K.-W. Review on Anti-Aggregation-Enabled Colorimetric Sensing Applications of Gold and Silver Nanoparticles. Chemosensors 2022, 10, 536. https://doi.org/10.3390/chemosensors10120536
Shellaiah M, Sun K-W. Review on Anti-Aggregation-Enabled Colorimetric Sensing Applications of Gold and Silver Nanoparticles. Chemosensors. 2022; 10(12):536. https://doi.org/10.3390/chemosensors10120536
Chicago/Turabian StyleShellaiah, Muthaiah, and Kien-Wen Sun. 2022. "Review on Anti-Aggregation-Enabled Colorimetric Sensing Applications of Gold and Silver Nanoparticles" Chemosensors 10, no. 12: 536. https://doi.org/10.3390/chemosensors10120536
APA StyleShellaiah, M., & Sun, K. -W. (2022). Review on Anti-Aggregation-Enabled Colorimetric Sensing Applications of Gold and Silver Nanoparticles. Chemosensors, 10(12), 536. https://doi.org/10.3390/chemosensors10120536