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Abstract: Illegal adulteration of milk products by melamine and its analogs has become a threat to
the world. In 2008, the misuse of melamine with infant formula caused serious effects on babies
of China. Thereafter, the government of China and the US Food and Drug Administration (FDA)
limited the use of melamine of 1 mg/kg for infant formula and 2.5 mg/kg for other dairy products.
Similarly, the World Health Organization (WHO) has also limited the daily intake of melamine of
0.2 mg/kg body weight per day. Many sensory schemes have been proposed by the scientists for
carrying out screening on melamine poisoning. Among them, nanomaterial-based sensing techniques
are very promising in terms of real-time applicability. These materials uncover and quantify
the melamine by means of diverse mechanisms, such as fluorescence resonance energy transfer
(FRET), aggregation, inner filter effect, surface-enhanced Raman scattering (SERS), and self-assembly,
etc. Nanomaterials used for the melamine determination include carbon dots, quantum dots,
nanocomposites, nanocrystals, nanoclusters, nanoparticles, nanorods, nanowires, and nanotubes.
In this review, we summarize and comment on the melamine sensing abilities of these nanomaterials
for their suitability and future research directions.
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1. Introduction

Recently, food safety has become a major issue due to the increase of occurrences of food
poisoning [1–3]. For example, illegal adulteration of toxic materials, such as clenbuterol in meat
and melamine in dairy product, leads to food poisoning and severe health problems [4–10]. In this
light, melamine has been a well-known additive—with 66% nitrogen content—and is still utilized in the
production of many plastics, adhesives, glues, fertilizers, plywoods, cements, cleansers, and retardant
paints [11–15]. It has been illegally consumed in many dairy products due to its low toxicity,
and hence leads to many health problems. Even though melamine is a low-toxic material, with a
high concentration it may cause renal pathology and death of infants. Moreover, melamine can be
hydrolysed to cyanuric acid in vitro, which forms an insoluble melamine–cyanurate complex and
causes the formation of kidney stones and renal failure by obstruction [16–18].

On this track, several food poisoning incidents have signalled the need for control over illegal
use of melamine. For instance, incidence of illness and death of pet animals was reported in North
America in 2007 due to the formation of melamine–cyanurate crystals in the kidneys [19]. Similarly,
nearly 300,000 infants were affected by an infant formula—contaminated with melamine—resulting in
six deaths in 2008 [20]. The government of China limited the use of melamine of 1 mg/kg for infant
formula and 2.5 mg/kg for other dairy products since then [21]. Subsequently, the World Health
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Organization (WHO) also fixed the daily intake limit of melamine to 0.2 mg/kg body weight per
day [22], whereas the US Food and Drug Administration (FDA) promulgated the allowed limit of
melamine of 1 mg/kg in infant formula and 2.5 mg/kg for other dairy products [23].

To rectify the harmful effects of melamine, diverse analytical tactics have been developed towards
its detection in dairy and food items. Among them, the chromatographic techniques, such as
high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography/tandem
mass spectrometry (UPLC/MS/MS), and gas chromatography/mass spectrometry (GC/MS) [24–33],
produced convincing results and proved their suitability for melamine determination. However, apart
from exceptional sensitivity and precision, these chromatographic and mass spectral methods are time
consuming with high operating cost and requires skilled operators. Moreover, sample preparations for these
chromatographic techniques are difficult, therefore they do not meet the requirement of on-site applicability.
Hence, the development of profitable and easily synthesizable/fabricable melamine recognition probes
with real-time applicability becomes essential. Such demand has been witnessed by the publications on the
melamine detecting probes as presented in Figure 1. The rapid increase in publication numbers from 2009
to 2018 demonstrates the importance of melamine identification in dairy products worldwide. Among
these probes, nanomaterial-based melamine sensors are highly regarded due to their potential in food and
related products. Hence, an overall review on nanomaterial-based melamine sensors is required to direct
upcoming novel designs towards a highly efficient determination of melamine.
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Figure 1. Numbers of publications on melamine sensors from 2009 to 2018 (adopted from Institute for
Scientific Information (ISI) Web of Knowledge).

In this review, we survey and assess the nanomaterials-based melamine assays, especially
covering reports on carbon dots, semiconductor quantum dots, nano-assemblies, nanoclusters, diverse
nanocomposites, nanocrystals, nanoparticles, nanorods, and nanotubes, as well as other nanostructures,
as illustrated in Figure 2.

Figure 2. Schematic illustration of nanomaterial-based melamine determination.
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2. Carbon and Quantum Dots for Melamine Detection

Due to their nano size (usually less than 10 nm), carbon dots (C-dots) have been utilized in
numerous research fields. The unique properties in luminescence, biocompatibility, and low toxicity of
C-dots allow them to be applied in a variety of analyte detections [34]. For example, Lei et al. utilized
C-dots for the fluorescent “turn-on” determination of melamine via anti-quenching ability of Hg2+ to
C-dots [35]. Wherein, the melamine tends to coordinate with Hg2+ through multi-nitrogen heterocyclic
ring, which further leads to the anti-quenching and results to the fluorescence recovery of C-dots. Their
work demonstrated a linear range from 1 to 20 µM (µM = micromole) and exhibited a detection limit
(LOD) of 0.3 µM. Moreover, the obtained analytical recoveries in milk samples support reliability for
real-time applications. Similar to the C-dot studies, Zhu and co-workers employed graphene quantum
dots (GQDs) towards the selective assay of melamine in the presence of Hg2+ ions [36]. In contrast to
the C-dots, the melamine addition to GQDs in the presence of Hg2+ ions showed emission quenching
rather than enhancement via charge transfer mechanism as shown in Figure 3. The above work was
authenticated by recoveries in milk samples with linear regression range between 0.15 to 20 µM and a
LOD of 0.12 µM. Therefore, this method can be applied for melamine detection in real samples.
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Figure 3. (a) Schematic illustration of melamine detection based on Fluorescence (FL) quenching of
graphene quantum dots (GQDs) through charge transfer. (b) Optical photos of solutions of GQDs
(Vial 1) and GQDs in the presence of melamine (Vial 2) or Hg2+ (Vial 3), and of GQDs-Hg2+ in the
presence of 0.2, 0.8, 2.0 ppm melamine for Vials 4, 5, 6, respectively, taken under a 365 nm UV lamp
(reproduced with permission from Reference [36]).

In this light, CdTe quantum dots were employed in the assay of melamine as noted next. In 2012,
Zhang et al. publicized the use of thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs)
towards melamine detection [37]. The quantum dots were synthesized via microwave-assisted method,
which discriminate the melamine via fluorescence quenching response. From the calibration plots,
the linear regression of melamine detection was recognized as 79.2–793 µM with a LOD of 317 nM
(nM = nanomole). This method shows high precision and accuracy during the melamine recognition
in raw milk. Following the above work, Li and co-workers evaluated the TGA-CdTe QDs further
towards the determination of melamine [38]. The estimated linearity of melamine ranged from 10 pM
to 10 µM (pM = picomole) with a LOD of 5 pM. This method can be used to distinguish the melamine
in alkaline aqueous solution as well.

Beside the aforementioned reports, molecularly-imprinted polymer (MIP) -capped CdTe quantum
dots (MIP-CdTe QDs) were employed in the sensing of clenbuterol and melamine by Huy and
co-workers [39]. The MIP-CdTe QDs were synthesized by radical polymerization process, which
showed the luminescence quenching during the discovery of melamine. The linearity of melamine
assay lies between 2.0–35 µM with a LOD of 0.6 µM. Notably, melamine in milk samples displayed
more than 90% recovery. In a similar fashion, Xu and co-workers reported the molecularly-imprinted
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CdTe QDs for ratiometric discrimination of melamine [40]. As shown in Figure 4, these MIP@CdTe
QDs were synthesized in a single step and then utilized in ratiometric identification of melamine.
The linear regression of melamine assay ranged from 100 to 800 nM with a LOD of 38 nM was reported.
The luminescence recoveries in milk samples were established as 92~101%. This work can be used as a
convenient, rapid, reliable and practical method for sensitive and selective fluorescence-based assay of
melamine. However, the practicality of this study still needs to be further enhanced either by suitable
modification or with combinations of other instruments
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fluorescence of molecularly-imprinted polymers (MIPs) probe (reproduced with permission from
Reference [40]).

At a later time, Zhang et al. presented a ratiometric fluorescent probe for visual detection of
melamine (MEL) in milk samples [41]. The CdTe QDs with red emission were embedded within
silica microspheres, and then the green emitting QDs were coated over silica microsphere surface
as a shell. In addition, a molecularly-imprinted polymer (MIP) with binding site was placed on the
shell for melamine recognition. During the melamine sensing the red-green fluorescence transformed
into purely red via quenching of green emission due to the hydrogen bond interaction. The probe
demonstrated a linearity between 396 nM–7.93 µM with a LOD of 103 nM. It also demonstrates the
real-time applicability in milk samples and reveals the recoveries between 94.1~98.7% with 3.6–5.1%
relative standard deviations (RSDs).

Cadmium and zinc sulfide quantum dots (CdS QDs and ZnS QDs) have also been used for
melamine determination as described below. In 2012, Wang et al. established the fluorescent “turn-on”
assay of melamine by thioglycolic acid-capped CdS quantum dots (TGA-CdS QDs) as illustrated in
Figure 5 [42].
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cadmium sulfide quantum dots (CdS QDs) (reproduced with permission from Reference [42]).

Melamine was linearly identified between 2 nM–50 µM with an LOD of 1 nM under optimum
conditions. This method is proposed as a highly sensitive and low-cost technique for melamine
recognition in milk samples. Similar to the above proposal, the inner filter effect of gold
nanoparticles on the fluorescence of CdS QDs was addressed in the detection of melamine in raw milk
samples [43]. For this evaluation, the L-Cysteine-capped CdS QDs (L-Cys-CdS QDs) in the presence of
citrate-stabilized Au NPs were utilized by Cao and co-workers to exhibit a linear regression between
396 nM–2.8 µM with a LOD of 135 nM. Apart from mild complications, this method can be employed
towards rapid screening of melamine in milk products.

The water soluble europium (Eu3+) doped ZnS quantum dots towards the detection of melamine
in milk samples and infant formula at room temperature were exploited by Gong et al. [44]. The room
temperature phosphorescence (RTP) of Eu(III)-ZnS QDs was quenched during the recognition process.
The phosphorescence intensity at λex = 290 nm diminished linearly between 39.6 nM–3.96 µM with a
LOD of 9.67 nM at pH 7.4. This technique was later applied in milk samples and displayed recoveries
between 96~103% with a RSD of 1.2%. Demirhan and co-workers also proposed the RTP-based
determination of melamine by means of L-cysteine-capped Mn-doped zinc sulfide (ZnS) quantum
dots [45]. The RTP of this probe decreased linearly between 396 nM–3.96 µM of melamine with a LOD
of 47 nM in 10 mM phosphate buffer (at pH 7.4). In dairy products, the recovery range of melamine
was estimated as 96.3–104.7% with a RSD of 0.15%. These RTP-based melamine assay tactics can
be effectively tuned to quantify melamine in infant formula, raw milk, cheese, yogurt and coffee
creamer, etc.

Other quantum dots and its conjugates, such as CuInS2 QDs, hapten-quantum dots bioconjugates
(small molecules that stimulate an immune response while conjugated with a large carrier such
as a protein are defined as haptens; in this case hapten = melamine) and secondary antibody
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(Ab2)-conjugated quantum dots (QDs) were also applied to melamine detection. A fluorescent
“turn-on” based assay of melamine was demonstrated with CuInS2 QDs [46]. Liu et al. described
the recognition of melamine by CuInS2 QDs, which had the initial fluorescence quenched by H2O2

oxidation. Only upon the addition of melamine, the fluorescence began to recover. This work displayed
a linear concentration range of melamine from 10 nM to 10 µM with a LOD of 5 nM. This satisfactory
recovery result on milk samples supports the real-time utility of this probe. However, the fluorescence
quenching by oxidative step still makes the probe a complicated one.

Sanz-Medel’s group developed the melamine–BSA-CdSe/ZnS QDs (BSA = Bovine Serum
Albumin) conjugates and demonstrated their use in melamine detection via complementary optical
spectroscopy and molecular mass spectrometry procedures [47]. In this work, a competitive
immunoassay tactic was engaged for detection of melamine, where the melamine and the
immunoprobe [QDs:Mel-BSA:EDC (conjugation buffer) at 2:1:1500 ratio] compete for the binding
sites of the immobilized antibody. The Mel-BSA conjugates were developed by mixing Mel:BSA:EDC
at 525:1:1700 ratio, which covered all the binding sites of BSA. Hence, melamine uses one of its
NH2 group and leaves other two NH2 groups free to participate in the competitive immunoassay.
This simple approach was also validated in melamine contaminated milk infant formula, which
was in good agreement with other analytical methods. Without any sample pretreatment, a LOD
0.15 mg/kg was achieved, and hence can be applied for real-time monitoring of melamine
contamination. An indirect fluorescence-linked immunosorbent assay (icFLISA) method based on
secondary antibody (Ab2)-conjugated quantum dots (QDs) was proposed for melamine detection
by Wu and co-workers [48]. A LOD of melamine of 3.88 ng/mL was achieved, which was better
than that of previous reports. Moreover, this method displayed recoveries between 80.85–110.54%
with 2.82~8.82% RSDs in milk samples. The above QD-antibody-based immunoassay can be applied
for rapid real-time screening of melamine in dairy products. However, these antibody-based QDs
approaches still require sophisticated and costly biological instruments. The existence of other nitrogen
enriched enzymes may considerably affect the selectivity of antibody-based QDs in melamine detection,
which also extend the response time due to transport barrier.

3. Metal Nanoclusters Towards Melamine Determination

Similar to the carbon and quantum dots, luminescent metal nanoclusters were also applied in
the screening of melamine contamination in milk products and infant formula. For instance, Dai et al.
demonstrated BSA-stabilized gold nanoclusters (BSA-Au NCs) for the potential assay of melamine
in raw milk and milk powder with good recoveries [49]. In this study, they proposed the fluorescent
“turn-on” strategy for melamine recognition using anti-quenching capability of Hg2+ to BSA-Au NCs.
The emission from the Au NCs was quenched by Hg2+ ions, then restored in the presence of melamine.
Hence, this method can be applied for the identification of melamine adulteration in dairy products.
This assay technique displayed linearity between 0.5–10 µM with a LOD of 0.15 µM. Moreover, its
recovery range was between 93~102.5% with 2.69~4.52% RSDs in raw and powder milk samples.
In this track, Yang and Liao’s research groups developed the tiopronin-stabilized gold nanoclusters
(TPN-Au NCs) for the discrimination of melamine by means of fluorescence quenching as shown in
Figure 6 [50]. The probe displayed a linearity between 0.09–100 µM with a LOD of 32 nM. Potentiality
in melamine detection of the probe was authenticated by its recoveries in spiked infant formulas,
which was estimated as 92~102.2% and 1.14~2.80% RSDs.
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Figure 6. Scheme of the synthetic strategy for tiopronin-stabilized gold nanoclusters (TPN-AuNCs)
and the principle of melamine sensing (reproduced with permission from Reference [50]).

On the other hand, Wang’s research described the colorimetric recognition of melamine through
reversing the inhibition of Hg(II) mediated light-triggered activity of horse-radish peroxidase (HRP)
functionalized gold nanoclusters (HRP-Au NCs) [51]. In fact, the catalytic activity of HRP-Au NCs
was restored by triazole ring of melamine via inhibition of the metallophilic interaction as mentioned
in Reference [49]. It led to linear colorimetric “turn-on” assay of melamine between 0.2–15 µM with a
LOD of 72 nM. Recoveries of this study in raw milk and milk powder were at the range from 98.5 to
101.5%. The above Hg(II) mediated sensing approach was further modified by Lin and co-workers [52].
They synthesized the BSA-Au NCs by microwave-assisted synthetic path and then applied in melamine
detection as reported earlier. The melamine detection limit proposed in this work is 2.94 µM. However,
apart from the synthetic route, this work describes the similar notion reported by Dai et al. Hence it
cannot be attested as a suitable method for melamine recognition in dairy nutrients.

Melamine determination using glutathione-protected gold nanoclusters (GSH-Au NCs) was
presented by Kalaiyarasan et al. through the fluorescence-based ratiometric assay [53]. Upon the
addition of melamine, the photoluminescence (PL) intensity at 610 nm decreased along with enhanced
ratiometric PL at 430 nm. The results were attributed to the hydrogen-bonding interaction between
the melamine and AuNCs, which led to the aggregation of Au NCs. The proposed method applied
in cow milk and infant formulas demonstrated recoveries between 94~97.1% with 1.24~3.95% RSDs.
Furthermore, these GSH-Au NCs recognized the melamine with a LOD of 28.2 µM, hence can be
applied in real-time screening of melamine. More recently, Lin and co-workers established the efficiency
of egg-white protected gold nanoclusters (ew-Au NCs) through microwave technique [54]. However,
the melamine detection by ew-Au NCs displayed the similar Hg(II) mediated approaches as described
earlier [49,52]. The reported melamine detection has an LOD of 0.46 µM and recovery percentile range
from 92.9 to 106% with RSD of 2.9%. Even though the author claimed the method innovative, however,
their approach has already been established by earlier reports.

In 2012, Xu and co-workers reported the oligonucleotide-stabilized fluorescent silver nanoclusters
(DNA-Ag NCs) towards “turn-on” recognition of melamine [55]. In that study, the linear melamine
concentration fixed at 50 nM to 7 µM with a LOD of 10 nM was reported. The probe also identified the
melamine in raw milk samples with recoveries from 100.4 to 107%. Similar to the functionalized Au
NCs, hyper-branched polyethyleneimine-capped silver nanoclusters (PEI-Ag NCs) were employed
in Hg(II) mediated melamine assay [56]. Qu and You’s research groups developed the PEI-Ag NCs
for Hg(II) induced melamine determination via “turn-on” fluorescent recovery. The linear detection
range of melamine determination and LOD were estimated as 0.1 to 30 µM and 30 nM, respectively.
Interestingly, recoveries from 96 to 101% were observed in food products. However, the idea and the
approach of this work is the same as those of the Au NCs, except for the metallic cluster part. Hence
its real-time applicability is questionable.

As an addition to the Ag NCs-based melamine sensors, Ren et al., discussed the utility of
chromotropic acid and layered double hydroxides functionalized silver nanoclusters (CTA-Ag
NCs/LDH) directed for fluorescence turn-on assay of melamine [57]. Ultrathin film consisting of
CTA-Ag NCs and layered double hydroxide nanosheets (LDH) was fabricated via layer-by-layer (LBL)
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assembly and was demonstrated successfully in the discrimination of melamine. In the presence of
melamine, the fluorescence of ultrathin film displayed the “turn-on” response among other competitive
species. Linearity of melamine quantification was observed from 0.03 to 0.1 µM with a LOD of 4 nM.
This work uses the novel strategy of immobilization of metal nanoclusters into an inorganic matrix,
which may enhance the upcoming research towards chemical and biosensing. As presented earlier [56],
Hg(II) mediated melamine detection was conducted by Xie and co-workers [58]. In that study they
also used the DNA-Ag NCs to expose the strong fluorescence recovery with melamine as shown in
Figure 7. Linear melamine assay range was demonstrated between 0.2 to 4 µM with a LOD of 0.1 µM.
This work is a duplication of earlier reports, hence cannot be considered as a suitable technique for
real-time monitoring of melamine in dairy and food products.
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Studies on the metallic-interaction-induced quantification of melamine were further stimulated
by the recent reports from Li and Luo’s research groups [59]. They employed the lipoic acid-stabilized
silver nanoclusters (LA-Ag NCs), which emitted red fluorescence with Cu(II) and then facilitated
melamine detection. The LA-Ag NCs displayed the aggregation-induced emission, which was
then quenched with the addition of Cu(II) ions due to dispersion. Upon reaction with melamine,
the emission restored to its original stage via formation of melamine-Cu(II) complex and then led to
aggregation again. The LOD of melamine recognition was estimated as 174 nM; the recoveries and
RSDs were oscillated from 98 to 113.3% and 3.12~5.30%, respectively. Although the work seems to
be impressive, it can only be considered as a regular metallic-interaction-mediated melamine assay.
On this path, Hou et al. presented silver nanocluster arrays over large-area silica nanosphere template
for surface-enhanced Raman spectroscopy (SERS)-based assay of melamine with a lowered LOD of
100 nM [60]. Such a template-based assay approach can be directed toward real-time screening of
melamine dairy and food products.

Luminescent copper nanoclusters were also engaged in melamine sensing as described next.
Polythymine-stabilized copper nanoclusters were utilized for melamine recognition via enhanced
fluorescence of Cu NCs [61] as seen in Figure 8. The linear melamine assay concentration was fixed
between 0.1 and 6 µM with a LOD of 95 nM and the recoveries of spiked milk samples were established
at 92 to 110% with 2~9.8% RSDs
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Figure 8. A scheme illustrating the melamine sensing based on the fluorescence enhancement of copper
nanoclusters (reproduced with permission from Reference [61]).

4. Melamine Assay by Nanocomposites

Many nanocomposites have been reported as proficient candidates for melamine quantification,
as described in this section. In 2011, Chen and co-workers presented the silver nanoparticle-decorated
silver/carbon nanospheres (Ag/C/AgNps) as a composite candidate for SERS-based assay of
melamine [62]. The effect of heavy metal ions on the determination of melamine was described
in this report. The LOD of melamine was calculated to be as low as 50 nM, hence confirmed the good
SERS activity of Ag/C/AgNps nanosphere composite. This is a unique technique and can be employed
for real-time melamine screening in the presence of metal ions. Next, composites consisting of silver
nanoparticles and glutathione capped zinc selenide quantum dots (GSH-ZnSe QDs) were exploited for
melamine sensing in Cao’s work [63]. As shown in Figure 9, the inner filter effect property (IFE) of Ag
NPs is influenced by the fluorescence of GSH-ZnSe QDs and plays a vital role in the sensing process,
wherein the initial non-aggregated Ag NPs are transformed to aggregated state in the presence of
melamine, which provide the strong emission with GSH-ZnSe QDs. On the other hand, the mixture of
Ag NPs and GSH-ZnSe QDs shows weak emission. The linear regression for melamine is observed
between 7.93 to 285 nM with a LOD of 872 pM. This IFE-based sensing strategy is satisfactorily applied
for melamine assay in raw milk and egg samples and has recoveries between 97.2 to 102.1% with
corresponding RSDs among 0.7 to 3.7%. The above IFE-based tactic can be a suitable method for
real-time scrutinizing of melamine in milk and food.

Regarding the composite nanomaterial-based analytical approach, a sandwich-type composite
assembly is described as follows. Sarkar et al. presented the para-phenylenediamine (PDA)
sandwiched between a nanostructured silver nanoparticle film and gold core−silver shell nanoparticles,
which was further applied in SERS-based detection of melamine at femtomolar (10−15 M) level [64].
These tailored sandwich-based approaches provide the innovative ways towards the development of
SERS substrates which can be utilized in bio- and chemical sensors. However, the complications and
the requirement of costly instruments to fabricate such substrates need to be overcome.

Towards the development of cost-effective SERS composite substrates for melamine recognition,
Wu and Roy’s research group developed the screen printed silver nanoparticles (Ag NPs) over a
polyethylene terephthalate (PET) substrate [65]. Here the SERS-based melamine assay was established
in liquid milk, but the clear linear ranges and limits were absent. Moreover, these substrates were
also engaged to detect Rhodamine 6G (R6G) and Malachite green (MG) etc. Hence, more efforts are
required in order to use these substrates towards melamine detection. A microfluidic chip consisting
of an indium tin oxide (ITO) support modified with silver-gold nanocomposite (Ag–Au NCs) was
demonstrated in the SERS-based determination of melamine by Wang and co-workers [66]. The results
predicted a linear detection range of melamine from 10 nM to 0.1 mM with a LOD of 10 nM. On the
other hand, this chip also shows sensitivity to 4-mercaptobenzoic acid (4-MBA) with a LOD of 0.1 nM.
Therefore, it can act as an effective tool for melamine and biochemical analysis.
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Subsequently, Han et al. applied silver nanocontacts onto silica nanospheres (SiO2@Ag) for
SERS-based sensory studies [67]. The above composite substrate was employed in the SERS-based
assays of various environment pollutants, such as thiram, melamine, and ethyl-parathion. Moreover,
the estimated LOD for melamine assay was 1 nM. The SiO2@Ag can be considered as one of the
best SERS probes for multiple analyte detection. In 2011, Wang’s research group demonstrated the
SERS-based melamine assay using silver nanoparticle coated poly(styrene-co-acrylic acid) nanospheres
(PSA/Ag NPs) [68]. Wherein, the composite [PSA/Ag-NPs/polyvinylpyrrolidone (PVP)] displayed a
lower LOD on melamine detection near 1 mM in the presence of PVP. However, upon the removal of
PVP, the LOD was enhanced to 100 nM. This work is also included the SERS-based sensing studies
and can be further directed towards in vivo diagnostics and multimodal imaging [69].

An ultrasensitive colorimetric assay of melamine was delivered by Wang and co-workers through
in situ reduction to form the carbon quantum dots (CQDs)-silver nanocomposite [70]. As shown in
Figure 10, the solution in the presence of melamine changes its color. Under optimum conditions,
the linearity of melamine assays was from 793 pM to 79.3 nM and 198 nM to 3.96 µM with a LOD of
62.6 pM. Furthermore, the work described the melamine recoveries in cow milk and milk powder,
which were between 87.6~116% with 1.6~3.9% RSDs. This colorimetric detection approach can be
used for real-time screening of melamine in food stuffs. In addition, polydopamine-glutathione
nanoparticles and silver nanoparticles were employed to melamine discrimination based on the
fluorescence resonance energy transfer (FRET) effect as demonstrated in Figure 11 [71]. In the presence
of melamine, the Ag(I)−melamine complex was formed, which prevented the generation of Ag NPs
to show the fluorescence “turn-on” response. In contrast, in the absence of melamine, Ag NPs were
formed and hence no fluorescence was observed. The linear response to the concentration of melamine
was from 0.1 to 40 µM with a LOD of 23 nM. The recoveries of melamine in milk, yogurt and infant
formula stretched from 99.4 to 104.2% with 2.46~4.83% RSDs. Due to its simplicity in operation, this
method can be directed towards real-time screening of melamine.
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Manzoori et al. presented a beneficial effect of gold/silver alloy nanoparticles (Au/Ag NPs) on
the chemiluminescence of permanganate-formaldehyde system in the presence of sodium dodecyl
sulfate micelles [72]. Wherein, the trace of melamine inhibited the reaction of nanoparticles, which
promoted the generation of Mn(II)* and enhanced the chemiluminescence intensity. Therefore,
chemiluminescence of the above composite system was quenched considerably with melamine.
The linear determination range for melamine was projected from 79.3 pM to 277.5 nM with a LOD of
63.4 pM. In powdered milk samples, the melamine recoveries were between 93.7~104.5% with 0.3~3.5%
RSDs. Even though this work is considered as a good analytical approach, additional authentication
is still required to enhance its real-time reliability. In this light, Sun and Zhang’s report described
the IFE of gold nanoparticles on the fluorescence of CdTe quantum dots, which led to fluorescence
“turn-on” response [73]. Under optimized condition the detection limit of melamine was calculated to
be 158.6 nM.

Yue and co-workers established the ability of gold nanoparticles deposited β-FeOOH nanorods
(Au/β-FeOOH nanocomposites) in composite-based melamine recognition due to the promotion of
symmetry-forbidden bands (n − µ*) of melamine [74]. Apart from detection mechanism, the assay
of melamine in this work is insufficient, hence the reliability of this work is still questionable. Next,
an electrode modified with gold nanoparticles and reduced graphene oxide (AuNPs/rGO) was
demonstrated by Chen et al. towards the discrimination of melamine in food contact materials [75].
They used the hexacyanoferrate as a reporter in this electrochemical sensing. Its response was affected
by the increase in the concentration of melamine. The linear regression of melamine assay was from
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5 to 50 nM with a LOD of 1 nM and the sensing was also validated in food articles. The above
electrochemical assay method can be effectively directed towards melamine detection in food and
dairy objects.

Yang’s research group engaged the studies on the functionalized Au-Fe3O4 nanocomposites
for magnetic and colorimetric bimodal recognition of melamine [76]. They modified the Au-Fe3O4

nanocomposites with l-(2-mercaptoethyl)-1,2,3,4,5,6-hexanhydro-s-triazine-2,4,6-trione (MTT) and
used them in bimodal sensing of melamine. In the presence of melamine, the color of the
Au-Fe3O4@MTT NPs changes from red to completely colorless, hence can be used for naked-eye
and on-site qualitative determination of melamine. Besides, the composite shows a linear response
between 6 to 22 µM of melamine concentrations. However, this result still needs more work towards
electrochemical sensors. Following this path, gold nanoparticles deposited on a graphene doped
carbon paste was employed as an electrode for electrochemical sensing of melamine [77]. Melamine
interacts with gold nanoparticles to supress the peak current. From 0.2 to 800 nM and 800 nM to 8 mM
concentrations of melamine, the peak current displayed a good linear relationship with a LOD of
18 pM. The above quantitative melamine determination was validated by its recoveries in spiked milk
samples, which were between 95.00~101.75% with 0.09~3.16% RSDs. Although this work is impressive,
it requires a complicated fabrication processes.

Other than the earlier extensive works on the SERS-based discrimination [65–69], Neng’s
report also detailed the SERS-based discrimination of melamine by using Fe3O4/Au magnetic
nanoparticles coated with 5-aminoorotic acid (AOA) as a substrate [78]. In their studies,
the SERS substrate (Fe3O4/Au–AOA) and Rhodamine B (RhB) binded AOA (AOA–RhB) were
engaged as a Raman reporter, which forms the supramolecular complex with melamine
[Fe3O4/Au–AOA•••melamine•••AOA–RhB] via H-bonding as illustrated in Figure 12. From 19.8 to
119 µM, the linear regression of melamine was observed with a LOD of 19.8 µM.
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Although this method possesses the complicated fabrication processes for Raman substrates,
it avoids the sample pre-treatment steps, and hence is important in real-time monitoring of melamine.
Rao et al. presented a novel electrochemical sensors by means of surface modified Glassy carbon
electrode (GCE) with Au and polyaniline composites in the melamine screening, which enhanced
the electrode sensitivity and sensor signal amplification [79]. During sensing processes, melamine
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assembled on the Au@PANI via hydrogen bonds, which led to diverse electrochemical signal. LOD of
melamine assay was estimated to be 1.39 µM. In spiked milk samples the recoveries were between
90.8~98.3% and 89.5~91.3%. This electrochemical method can be employed for on-site inspection of
melamine in dairy and food products.

Niu and co-workers invented a novel dual-emission ratiometric fluorescence probe to determine
melamine by combining the organic nanoparticles with aggregation-induced emission (AIE)
characteristics and gold nanoclusters (Au NCs) through electrostatic interaction [80]. The above
composite system (AIE-OFNs/Au NCs) with quenched emission at 625 nm detects the melamine
through anti-quenching ability of Au NCs-Hg(II). Upon the addition of melamine, the fluorescence
recovered back to its original state via Hg(II)-melamine link. The melamine recoveries in spiked
powder milk samples were from 90 to 96.4% with 1.84~4.40% RSDs. The above record is an inclusion
to the metal mediated melamine recognition. In the electrochemical-based determination of melamine,
Dey et al. used a reduced graphene oxide–gold nanoparticle composite carbon paste as an electrode
to recognize melamine by spotting the decrease in the oxidation of ferrocyanide [81]. This work also
demonstrated good recoveries for melamine detection in milk powder and tap water. This work
displayed a linear dynamic range from 5 to 160 µM with a LOD of 2.23 µM.

As an inclusion to SERS-based melamine discovery, a substrate containing curved-edge gold
nanocubes (CENCs) and Au nanospheres (Au NSs) were demonstrated by Lv and co-workers [82].
The SERS substrate showed sensitivity to melamine with a LOD of 1 nM due to a tip–gap mesh structure.
Mixture of carbon dots (C-dots) and gold nanoparticles (Au NPs) was reported towards fluorescence
resonance energy transfer (FRET) based assay of melamine by Li’s group [83]. The fluorescence of
C-dots, which was quenched by Au NPs via FRET, recovered during the sensing process. The melamine
recognition expressed the linearity from 50 nM to 500 nM with a LOD of 36 nM. These FRET-based
melamine detection was also demonstrated through good recoveries in raw milk and milk powders,
which were between 90.45~111.35% with 0.72~2.05% RSDs, and hence can be proficient in real-time
monitoring of melamine.

On this track, Qu and co-workers presented a new ratiometric fluorescence probe via
self-assembly of carbon nanodots and glutathione-stabilized gold nanoclusters (CNDs/GSH@Au
NCs) for the selective discrimination of melamine [84]. Similar to their previous report [56],
this study also demonstrated the anti-quenching ability of melamine to CNDs/GSH@Au
NCs–Hg2+, and hence can be considered as an addition to the metal mediated melamine
assay. The linear melamine detection concentration was from 0.1 to 30 µM with a LOD of
29.3 nM. Rovina et al. described an electrochemical sensor composed of ionic liquid/zinc
oxide nanoparticles/chitosan/gold electrode for melamine identification [85]. The authors
used the (1-ethyl-3-methylimidazolium tri-fluoromethanesulfonate ([EMIM][Otf])) as ionic liquid,
ZnO nanoparticles, chitosan nanocomposite membranes and gold electrode for melamine assay.
The dynamic melamine detection concentration was from 0.96 pM to 0.96 µM with a LOD of 96 fM.
The proposed method showed the melamine recoveries between 95.4~97.5% with 0.41~0.81% RSDs.
Although this work shows the lowest LOD on melamine sensing, steps for fabrication of electrodes
involve many complications, and hence much effort is still required.

Fluorescence energy transfer among CdTe-doped silica nanoparticles (CdTe@SiO2) and gold
nanoparticles (Au NPs) towards melamine determination was proposed by Gao and co-workers [86].
Wherein, upon the addition of Au NPs to CdTe@SiO2, the fluorescence was quenched and then
recovered in the presence of melamine. The melamine assay showed linearity between 7.5 to 350 nM
with a LOD of 0.89 nM. This method also applied in raw milk and milk powder samples with
exceptional recoveries between 97.4~104.1%, and hence can be utilized towards the screening of
melamine in dairy products. On this path, a FRET-based melamine detection was discussed in Su’s
research report [87] which proposed the FRET between 3-Mercaptopropionic acid-capped CdTe QDs
and Rhodamine B for the quantification of melamine. A linear quenching by melamine was achieved
between 0.05~4.0 µM with an LOD of 0.01 µM. The above method was validated with melamine
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recoveries in spiked milk samples, which were from 99.2 to 104% with 2.9~3.5% RSDs. However,
continuing efforts are still required to improve the potential of this work.

A composite comprised of CdTe/CdS QDs and Au NPs was engaged in the assay of melamine by
Zhao and collaborators as described in Reference [88], in which FRET between CdTe/CdS QDs and Au
NPs led to the “turn-on” detection of melamine. Upon addition of melamine to the above composite
(CdTe/CdS QDs and Au NPs), the fluorescence was enhanced linearly between 50 nM to 1 µM with a
LOD of 30 nM. This method displays good recoveries for the melamine recognition in raw milk and
milk products, which are from 90 to 101%. However, this tactic is only an inclusion to the FRET-based
composite sensors for melamine. Next, an IFE-based melamine determination was demonstrated by
Zhu et al. through a CdTe QDs and Au NPs composite system [89] which showed the emission quench
at 525 nm by the addition of Au NPs to CdTe QDs via IFE and then visualized the enhancement of
fluorescence in the presence of melamine. On the other hand, the emission at 620 nm was not affected
with the existence of Au NPs, but the addition of melamine led to complete quenching of emission.
Hence, this probe can be used as a dual-mode fluorescent probe for melamine detection as illustrated
in Figure 13. The linear melamine concentration determined by this method was from 158.6 to 793 nM
with a LOD of 87 nM. Moreover, melamine recoveries in milk samples were between 97.7~104.9% with
2.7~4.0% RSDs. Due to the dual “turn-on” and “turn-off” responses, the probe can be effective towards
melamine assay in dairy samples.
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Figure 13. Schematic illustration of the dual-mode fluorescent probe for melamine detection
(reproduced with the permission of Reference [89]).

A solid-state electrochemiluminescent sensor based on C60/graphite-like carbon nitride nanosheet
(C60/g-C3N4 NS) hybrids was developed to quantify the melamine by Fu and co-workers [90].
The linear concentrations of melamine assay were between 0.5 to 27 pM and 27 pM to 19 nM with a
LOD of 0.13 pM. This method can be considered as a suitable electrochemiluminescent (ECL) method
for melamine discrimination due to its picomolar level detection ability. Moreover, the accuracy of this
method is reliable to well established HPLC-MS analytical methods.

Similar to the above report, electrochemiluminescence property of the silica nanoparticles doped
with [Ru(bpy)3]2+ and molecularly-imprinted polymer (MIP) were utilized to modify the glassy carbon
electrode for selective sensing of melamine by Lian and co-workers [91]. Here, MIP was used as a
recognition source towards melamine, which resulted in ECL signal enhancement of [Ru(bpy)3]2+.
The linear regression was observed between 1 pM~100 nM with a LOD of 5 × 10−13 mol/L. Moreover,
the recoveries were from 90.0 to 104.0% with 4.2 to 5.3% RSDs in milk samples. Due to the lower
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detection limits, this method can be used as an effective detection technique for melamine detection in
real samples.

Metal-organic frameworks mediated nafion nanohybrid (MOFs@XC-72) composite was employed
by Zhang et al. to modify the glassy carbon electrode towards the detection of melamine [92].
This hybrid system comprises of XC-72, MOFs-MIL-53 and Nafion which discriminates the melamine
as represented in Figure 14. The linear correlation for melamine assay was between 0.04 to 10 µM with
a LOD of 0.005 µM. In spiked milk samples, recoveries were from 98~103.5% with 3.1~4.8% RSDs.
Due to the complication in electrode fabrication, this work can be only considered as an addition to
electrode-based melamine sensors.
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Gelatin-coated cerium oxide (Gel-CeO2) nanospheres were reported in Jin’s research work [93],
in which he conveyed the peroxidase-like activity by means of H-bonding. The Gel-CeO2 catalysed
the oxidation of ABTS(2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) by
H2O2 which resulted in the formation of blue color product. However, the above process was affected
by the presence of melamine, which reacted with H2O2 via H-bonding and changed the color of the
solution to pale. The detected concentration range of melamine was from 50 nM to 5.0 mM with a
LOD of 5.5 nM. Melamine recoveries in spiked milk samples were from 98.6 to 104.0% with 4.2%
RSD. Due the simplicity and the naked-eye detecting ability, this method can be used in real-time
monitoring of melamine. Notably, all of the aforementioned composite-based research approaches
enhance the contaminant detection such as melamine, clenbuterol, and other poisonous produces in
food packaging industries [94].

5. Nanocrystals in Melamine Recognition

Nanocrystals are one of the modern candidates utilized in various analytical studies. For example,
rare earth phosphate crystal decorated with Au NPs was reported by Chen et al. as a probe for
the detection of biological aminothiols [95]. Mahalingam and co-workers presented the melamine
sensing ability of 3,5-dinitrobenzoic acid (DNB)-capped up-conversion nanocrystals as described in
Reference [96]. Wherein, DNB capped Er/Yb-NaYF4 nanocrystals were investigated in melamine assay
via quenching of emission as illustrated in Figure 15. The emission was restored upon the addition of
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dilute acid. The detection limit by this method is remarkable and is estimated to be 2.5 nM. Hence it can
be applied in real-time screening of melamine. Towards this exceptional efficient nanocrystals-based
sensing approach, much contributions are required from other researchers.
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6. Nanoparticles in Melamine Quantification

Nanoparticles-based sensing approaches have become the modern research towards diverse
analyte determination. Studies on the Ag NPs and Au NPs colorimetric sensors are particularly
impressive [97]. For example, Cao’s report described the Au NPs-based melamine assay as a suitable
kit in various milk products [98]. They engaged the 5 nm Au NPs which were fabricated through
sodium borohydride reduction and applied them towards the effective assay of melamine. Notably,
this kit operated between the melamine concentrations of 7.93 µM to 0.95 mM with a LOD of 7.93 µM.
The detection work can be completed within 10 min. However, various Au NPs-based rapid detection
probes were also reported as described next. Li’s group demonstrated the naked-eye visual detection
process towards melamine recognition via peroxidase-like activity of bare Au NPs with the support of
3,3’,5,5’-tetramethlybenzidine (TMB)–H2O2 [99]. In this approach, the LOD of melamine by naked eye
was established as 0.5 µM and the LOD was fixed to be 0.2 nM through standard deviation. The above
method displays excellent recoveries and RSDs in spiked samples with the linearity ranged from 1 to
800 nM.

Chen et al. reported the bare gold nanoparticles as a probe for colorimetric discovery of
melamine [100]. Similar to the above method, various label free or citrate-stabilized Au NPs with
diverse sizes were reported in melamine discrimination [101–116]. Similarly, many capped or stabilized
Au NPs were testified in melamine identification. Table 1 summarizes the detection methods,
instruments employed, optimization status, time required for analyses, linear ranges, LODs, recoveries
in spiked samples, and RSDs of those probes utilized so far in melamine analysis [98–166]. Information
on instruments, optimization status, and time will determine the effectiveness and probable cost
of the projected tactics, which provides helps for the future research. Surprisingly, most of these
Au NPs-based probes detect the melamine adulteration via colorimetric responses. Only a few of
them detect the melamine adulteration through SERS, fluorescence, light scattering, mass/ionization,
peroxidase activity, and sonoluminescence techniques, etc. The majority of the label-free, unmodified
or citrate-stabilized Au NPs detect melamine via aggregation of particles as shown in Figure 16.
However, the LODs can be improved by changing the size of the Au NPs [105,115].

On the other end of the spectrum, Lu et al. presented the Au NPs-based fluorescent
“turn-on” detection of melamine via mixing Au NPs with an organic probe [114]. Following
this direction, diverse functional units stabilized Au NPs have been developed and exploited
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in melamine discovery through colorimetric, SERS, FRET, CRET, U-Vis, light scattering, test
strip, capillary electrophoresis, and fluorescence studies [98–166]. The mainstream of melamine
sensing by functionalized Au NPs was attributed to H-bonding between stabilized Au NPs and
melamine [117,118,120,124,126–130]. For example, Ai et al. developed the thiol containing cysteamine
derivative “1-(2-mercaptoethyl)-1,3,5-triazinane-2,4,6-trione (MTT)” functionalized Au NPs which
displayed the H-bonding mediated sensing of melamine [117] as illustrated in Figure 17. So far, many
H-bond facilitated assays of melamine have been reported, which has led to saturation of this research
strategy. Therefore, to further extend the Au NPs-based on-site melamine assay, collaboration from
other research fields—such as opto-electronic techniques—is required.

Figure 16. Schematic representation of the GNPs colorimetric mechanism for melamine detection.
The insert is photographs of solution of (1) 400 µL GNPs + 20 µL H2O, (2) 400 µL GNPs + 20 µL
melamine (5 × 10−3g/L), and (3) 400 µL GNPs + 20 µL melamine (20 × 10−3 g/L). Experimental
condition: GNPs, 1.4 µM; incubation time, 1 min; reaction temperature, room temperature (~20 ◦C).
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(B) Colorimetric detection of melamine using the 1-(2-mercaptoethyl)-1,3,5-triazinane-2,4,6-trione
(MTT)-stabilized gold nanoparticles (reproduced with permission from Reference [117]).
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Table 1. Summary of methods, instruments, optimization status, time, linear ranges, detection limits (LODs), recoveries and relative standard deviations (RSDs) of Au
NPs-based probes in melamine detection.

Au NPs-Based
Probe

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

Bare Au NPs Colorimetric Naked eyes and UV-Vis
spectrometer Complicated and 10 min 7.93 µM–0.95 mM 7.93 µM NA NA [98]

Bare Au NPs
Colorimetric

(peroxidase-like
activity)

Naked eyes and UV-Vis
spectrometer Complicated and 30 min 1–800 nM 0.2 nM 94.55–120.50% 0.07–0.99% [99]

Bare Au NPs Colorimetric Naked eyes and UV-Vis
spectrometer Moderate and 7 min 39.64 nM–1.59 µM 1.59 nM 97.6–107% 0.8–2.4% [100]

Citrate-stabilized
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 20 min 0–634 µM 19.8 µM NA NA [101]

Citrate-stabilized
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 2 min 0–1.9 µM 198 nM NA NA [102]

Label free Au NPs Colorimetric Naked eyes and UV-Vis
spectrometer Moderate and 12 min 1.59–79.3 µM 3.2 µM 97–105% 0–2% [103]

Citrate-stabilized
Au NPs Fluorescent UV-Vis and PL

spectrometer Moderate and NA 0.8–80 nM 0.61 nM 97.92–98.54% NA [104]

Citrate-stabilized
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 1 min NA 39.64 nM NA NA [105]

Citrate-stabilized
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 10 min 0.79–15.9 µM 0.4 µM 95–105% 1.28–10.53% [106]

Citrate-stabilized
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 15 min 1.6–159 µM 15.86 µM 105–116% NA [107]

Citrate-stabilized
Au NPs Colorimetric Naked eyes, DLS and

UV-Vis spectrometer Complicated and NA 1–100 µM 33 nM, 23.7 nM
and 89 nM 91–104% 0.23–4.43% [108]

Unmodified Au
NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and >15 min 0.95–3.9 µM 317 nM NA NA [110]

Unmodified Au
NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and NA 0.79–79 µM >3.2 µM NA NA [111]

Unmodified Au
NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 20 min 0–2 µM 555 nM 90–120 % NA [112]

Unmodified Au
NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and NA 0.198–2.4 µM &
0.792–7.13 µM

182 nM and 729
nM 97.5–101.1% NA [113]

Citrate-stabilizedAu
NPs Fluorescent PL spectrometer Moderate and >30 min 10 nM–4 µM 3 nM 92–108% 0.80–4.21% [114]

Citrate-stabilized-Au
NPs Fluorescent DLS and PL

spectrometer Complicated and 5 min 40–700 nM 0.35 nM 97–100% 2.1–4.28% [115]

Citrate and
DNA-Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 5 min NA 41.7 nM amd
46.5 nM 82.9–102.6% 0.80–2.06% [116]
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Table 1. Cont.

Au NPs-Based
Probe

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

1-(2-mercaptoethyl)-
1,3,5-triazinane-

2,4,6-trione (MTT)-
stabilizedAu NPs

Colorimetric Naked eyes and UV-Vis
spectrometer Mild and 5 min 7.93–39.64 µM 19.82 nM NA NA [117]

Hexadecy
ltrimethyl

ammonium
chloride

(CTAC)-stabilized
Au NPs

Colorimetric Naked eyes and UV-Vis
spectrometer Moderate and 50 min 1 nM–10 µM 0.8 nM NA NA [118]

11-Mercapto-
undecanoic acid

(MUA)-stabilized
Au NPs

Capillary
electrophoresis-UV

Naked eyes and UV
absorbance detector

Complicated and 90 min 1–1000 nM 77 pM 97–101% and
95–99%

NA [119]

Polythymine (Poly
Tn)-stabilized Au

NPs

Colorimetric Naked eyes, DLS and
UV-Vis spectrometer

Moderate and 30 min 80–1000 nM 20 nM NA NA [120]

18-crown-6Ether-
functionalized Au

NPs

Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate and >1 min 79.3 nM–3.96 µM 47.57 nM 98.4–105.6 % 1.7–5.8% [121]

Cysteamine-modified
Au NPs

Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate and >30 min 7.92 µM–1.59 mM 7.92 µM NA NA [122]

Citrate-stabilized
Au NPs with
Fluorescein

FRET PL spectrometer Moderate and >12 min 0.1 µM–4 µM 1 nM NA NA [123]

3-mercapto-1-propane
-sulfonate-modifiedAu

NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 30 min 10–150 nM &
150–600 nM 8 nM 98.0–104.5%

93.6–101.6%

1.6–3.7%
and

3.9–5.9%
[124]

4-mercaptopyridine-
modified Au NPs SERS UV-Vis and Raman

spectrometer Moderate and >0.5 min 3.96–793 nM 793 pM 88.5–119.2% NA [125]

pyrocatechol-3,5-
disodiumsulfonate-
stabilized Au NPs

Colorimetric Naked eyes and UV-Vis
spectrometer Moderate and 80 min 4.8 nM–1.6 µM 0.64 nM 93–107 % NA [126]

ssDNA-stabilized
Au NPs

Resonance
Rayleigh

Scattering (RRS)
and Cat RRS

Eclipse fluorescence
spectro-photometer Moderate and >30 min 15–650 nM and

5–38 pM 7.8 and 3 pM 99.2–100% 0.8–1.7% [128]

Thioglycolic-Acid-
Modified Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and >15 min 0–19.66 µM NA 101.1–102% 1.6–2.3% [129]
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Table 1. Cont.

Au NPs-Based
Probe

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

2,4,6-trinitrobenzene-
sulfonic acid (TNBS)

tailored Au NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and >10 min 0–634 nM 39.64 nM NA NA [130]

Citrate-stabilized
Au NPs Strip method immuno-chromatographic

strip analyzer Complicated and NA 23.8–99 nM 35.4 nM NA NA [131]

Pyridine-3-Boronic
Acid-modified Au

NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and >20 min 60 nM–1.6 µM 30 nM 95–102% NA [132]

Bare Au NPs SERS Raman spectrometer Complicated and >15 min 1.6–159 µM 3.1 µM 95–109% 0.77–4.21% [133]
3-amino-5-mercapto-
1,2,4-triazole-capped

Au NPs

Colorimetric &
Fluorimetry

Naked eyes, UV-Vis
and PL spectrometer Moderate and NA 0.1–1 nM 10 fM NA NA [134]

ssDNA-modified
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 40 min 0.1–1.0 µM 34 nM 94–120% NA [135]

Cysteamine-modified
Au NPsdified Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 45 min 0.08–1.6 µM 80 nM 98–102% 1.7–2.6% [136]

Au NPs synthesized
by ellagic acid (EA) Colorimetric Naked eyes and UV-Vis

spectrometer Mild and 30 min 16 nM–160 µM 1.6 nM 93–106% NA [137]

Aptamer-modified
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 30 min 1.2–2.4 µM and
2.4–20.62 µM 793 nM 95–105 % 3.9% [138]

Citrate-stabilized
Au NPs

Chemiluminescence
resonance

energy transfer
(CRET)

Chemiluminescence
analyzer, PL and

UV-Vis spectrometer
Mild and 45 min 3.2 pM–0.32 µM 0.3 pM 94.1–104.2% 1.5–4.5% [139]

p-DNA-modified
Au NPs

Colorimetric
and Dynamic

Light Scattering
(DLS)

Naked eyes, DLS and
UV-Vis spectrometer Moderate and >3 min 39.64 nM–2.54 µM 15.9 nM NA NA [140]

Citrate and
dodecasodium salt

of phytic acid
functionalized Au

NPs

SERS Raman spectrometer Moderate & 90 min 10–100 µM 5 µM 93.6% NA [141]

3-Mercapto-propionic
acid functionalized

Au NPs

Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate & 10 min 4.8–333 nM 3.2 nM 96–105% NA [142]

Citrate stabilized
Au NPs with
Rhodamine B

FRET PL and UV-Vis
spectrometer

Moderate & >40 min 39.64 nM–7.93 µM 1.43 nM 95.9–102.2% 0.8–3.0% [143]

Acetylated
chitosan-stabilized

Au NPs

Colorimetric Naked eyes, CV and
UV-Vis spectrometer

Moderate & NA 396 nM–7.93 µM 389 nM 94–111% NA [144]
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Table 1. Cont.

Au NPs-Based
Probe

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

1,4-dithiothreitol
-modified (DTT) Au

NPs

Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate and 5 min 80 nM–1.5 µM 24 nM 96–103% NA [145]

Au NPs synthesized
by Methanobactin

(Mb)

Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate and 50 min 0.39–3.97 µM 0.238 µM 97.5–103.1% 0.8% [146]

Thymine derivative-
functionalized Au

NPs

Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate and 10 min 0.75–5.00 µM 3.5 nM 96.5–102.0% 4.0–11.8% [147]

H2O2–Au NPs Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate and 35 min 0.4–160 µM 0.078 µM 90–113.7% NA [148]

Up-conversion
nanoparticles

(UCNPs) and Au
NPs

FRET PL spectrometer Moderate and 12 min 32–500 nM 18 nM 98.8–102% 2.32–4.44% [149]

Citrate-stabilized
Au NPs

Fluorescent and
UV-Vis

UV-Vis and PL
spectrometer

Complicated and 60 min 0.4–2 µM 0.88 µM NA NA [150]

Polythymine (T)
aptamer -modified

Au NPs

SERS Raman spectrometer Complicated and NA 0–31.7 fM 7.9 fM 97.3–109.53% NA [151]

p-chlorobenzenesulfonic
acid-modified Au

NPs

Colorimetric Naked eyes and UV-Vis
spectrometer

Moderate and 15 min 0.6–1.5 µM 2.3 nM 97.9–103% 0.1–6.5% [152]

BSA conjugated Au
NPs Colorimetric Signal amplified lateral

flow strip Complicated and NA 7.93 nM–1.59 µM 11.1 nM NA NA [153]

Unmodified Au
NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 30 min 0–0.9 µM 33 nM 99.2–111% 0.56–1.91% [154]

Cysteamine-stabilized
Au NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 6 min 1–24 nM 0.389 nM 92.8–112.2% NA [155]

amine-ended dual
thiol ligand

functionalized
Au NPs

Colorimetric Naked eyes and UV-Vis
spectrometer Complicated and NA NA NA NA NA [156]

Cellulose-coated Au
NPs SERS Raman spectrometer Moderate and 15 min 0–79.3 µM 7.93 µM 87.6–92.3% NA [157]

Triton
X-100-modifiedAu

NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and NA 0.75–1.75 µM 5.1 nM 99–111% 0.73–2.91% [158]

uracil
5’-triphosphate

sodium-modified
Au NPs

Colorimetric
and light
scattering

Naked eyes, DLS and
UV-Vis spectrometer Moderate and 30 min 300–900 nM and

200–950 nM NA 98.5–104% 3.6–4.6% [159]
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Table 1. Cont.

Au NPs-Based
Probe

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

Citrate-stabilized
Au NPs SERS UV-Vis and Raman

spectrometer Moderate and 10 min 0–1.59 µM 793 nM NA NA [160]

Unmodified Au
NPs SERS Raman spectrometer NA 0–79.3 µM 793 nM NA NA [161]

Citrate stabilized
Au NPs

SERS Raman spectrometer Moderate and >30 min 2.5–39.64 µM 1.35 µM 96.3–99.9% 3.8–9.6% [162]

Citrate stabilized
Au NPs

Colorimetric &
SERS

Naked eyes and Raman
spectrometer

Moderate and 20 min 0–1.98 µM NA NA NA [163]

Citrate stabilized
Au NPs

Mass Analysis surface-assisted laser
desorption/ionization

mass spectrometer

Complicated and
>0.5 min

NA NA NA NA [164]

Citrate stabilized
Au NPs

Sonoluminescence Sonoluminescence
analyzer

Moderate and >12 min 10–240 nM 3 nM 95% NA [165]

SiO2 shell-isolated
Au NPs SERS UV-Vis and Raman

spectrometer Moderate and >6 min 3.96–39.64 µM 7.93 µM 94.6–102.5% 5.4–9.5% [166]

NA = Not available; mM = millimole; µM = micromole; nM = nanomole; pM = picomole; fM = femtomole; min = minutes.
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Chang and co-workers presented the assay of melamine through UV-Vis followed by capillary
electrophoresis [119]. They demonstrated the 11-mercaptoundecanoic acid-capped gold nanoparticles
(MUA–AuNPs) which recognized melamine via aggregation of Au NPs. The dithiothreitol (DTT) was
used to extract the melamine from the supernatant through capillary electrophoresis. This method
can be validated as a suitable detection and extraction technique for melamine present in dairy
products and food products. However, optimization of the above technique is most likely to be
complicated, and hence real-time reliability is still in question. Likewise, a complex, which performs
melamine recognition, is realized by 18-crown-6-ether-functionalized Au NPs and methanobactin
mediated Au NPs synthesize [121,146]. The effective melamine detection is demonstrated by
18-crown-6-ether-functionalized Au NPs via complex formation as illustrated in Figure 18.
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of 18-crown-6-thiol-modified GNPs (reproduced with permission from Reference [121]).

Aggregation and electrostatic forces involved tactics were also described by a few
reports [122,134,144,154,158]. However, these methodologies still require more attention. On the
other hand, a few researchers have attempted to utilize the Au NPs-based probes towards melamine
quantification by fluorescence resonance energy transfer (FRET) and chemiluminescence resonance
energy transfer (CRET), which may possibly demonstrate the effective assay of melamine in the
near future [123,139,143,149]. Besides, SERS-based detection of melamine has also been authenticated
as a more efficient tactic. Many researchers reported the functionalized or label free or bare Au
NPs towards the discrimination of melamine through SERS studies [125,133,141,151,157,160–163,166].
Many of them revealed great applicability with exceptional LODs. Hence such Au NPs probes for
SERS-based melamine identification in milk stuffs is highly appreciated.

In this track, melamine recognition was demonstrated by Wang and co-workers through SERS
spectra and in filter paper strip [141]. Tri-sodium citrate and dodecasodium of phytic acid (IP6)
dual-functionalized Au NPs (IP6-TC@Au NPs) were applied in the screening process. The above
tactic permits the on-site broadcast of melamine in food products. In a similar fashion, Dong et al.
developed an aptamer-modified SERS nanosensor and oligonucleotide chip to quantify the melamine
via multi-hydrogen-bond formation between thymine and melamine [151]. This method showed a
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LOD at picogram level, and hence such design is highly desirable. The BSA conjugated Au NPs were
utilized by Sun and collaborators [131]. Therein, they evaluated the effectiveness of their method in
50 raw milk samples and the results agreed well with chromatographic and mass data. Hence, such
strip method can be authenticated as a rapid screening procedure for real-time monitoring of melamine.

BSA-Au NPs-based lateral flow immunoassay was proposed by Zhong and co-workers For
rapid discrimination of melamine [153]. This method was also legalised as an effective procedure for
melamine detection, but still much focus is required to improve its applicability and detection limits.
Subsequently, the catalytic property of antibody conjugated Au NPs was exploited towards melamine
determination by Knopp’s group [150]. Surface-assisted laser desorption/ionization mass spectrometry
(SALDI-MS) was engaged in the quantification of melamine in infant formula and grain powder by
Hsieh and co-workers [164]. The melamine (MEL), ammeline (AMN), and ammelide (AMD) were
determined by SALDI-MS using Au NPs. This SALDI-MS quantified MEL, AMN, and AMD via mass
peaks at m/z 127.07, 128.05, and 129.04 were correlated to [MEL + H]+, [AMN+H]+, and [AMD + H]+

ions. Moreover, LODs of MEL, AMN, and AMD were estimated as 5, 10, and 300 nM, respectively.
Hence, the above tactics of combining SALDI-MS with Au NPs can be validated for rapid screening
of melamine. Next, a sonoluminescence-based approach was proposed for melamine discrimination
by Liu and collaborators [165], in which the engaged Au NPs were aggregated in the presence of
melamine. Therefore, it belongs to the category of the aggregation-induced sensors. Moreover, such
sonoluminescence-based analyte sensing still requires more research for on-site inspection of melamine.

Similar to the Au NPs, the Ag NPs mediated discovery of melamine in dairy milk and food
products are also well established in modern science [167]. These Ag NPs facilitated melamine assays
were operated through colorimetric, SERS, resonance scattering, and fluorescence responses [168–189].
However, the main working principles of Ag NPs assisted melamine sensors were mainly by means
of colorimetric responses, initialized through H-bonding, self-assemblies, and electrostatic forces
supported aggregation of nanoparticles [16–173,176–178,180–182,185–187]. An example of electrostatic
forces induced nanoparticles aggregation by melamine is illustrated in Figure 19. Kumar et al.
demonstrated the unmodified Ag NPs towards the detection of melamine via colorimetric response
from yellow to red [170]. On the other hand, Ag NPs were also employed in SERS-based quantification
of melamine [175,179,184,188,189]. Table 2 summarizes the detection methods, instruments employed,
optimization status, time required for analyses, linear ranges, LODs, recoveries in spiked samples, and
RSDs of Ag NPs-based probes exploited in melamine recognition.

Figure 19. Schematic illustration of melamine detection and visual color change of Ag NPs after
addition of melamine. The insert is a photograph of visual color change of Ag NPs upon addition of
1 mg/L of melamine (reproduced with permission from Reference [170]).
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Table 2. Summary of methods, instruments, optimization status, time, linear ranges, detection limits (LODs), recoveries and relative standard deviations (RSDs) of Ag
NPs-based probes in melamine detection.

Ag NPs-Based
Probe

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

Label-free Ag NPs Colorimetric Naked eyes and UV-Vis
spectrometer Moderate and 50 min 2–250 µM 2.32 µM 88.83–114. 29% 2.04–3.10% [168]

Bare Ag NPs Colorimetric Naked eyes and UV-Vis
spectrometer Moderate and30 min 40–880 nM 10 nM 97.5–105% 2.98–4.83% [169]

Unmodified Ag
NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 20 min 0–15.86 µM 0.32 pM 92.5–99.4% 5.26–8.18% [170]

Bare Ag NPs Colorimetric Naked eyes and UV-Vis
spectrometer Moderate and 30 min 0.26 pM–11.89 µM 71.4 nM 61.9–96.3% NA [171]

p-nitroaniline-modified
Ag NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 10 min 0.79 µM–79.3 mM 0.79 µM NA NA [172]

Dopamine-stabilized
Ag NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 60 min 0.08–10.0 µM 79.3 nM 92–105% NA [173]

ssDNA-stabilizedAg
NPs

Resonance
scattering

PL and CD
spectrometers etc . . . Complicated and 90 min 0.05–3 µM 23.8 nM 98.7–100.9% 0.8–3.6% [174]

Oleylamine capped
Ag NPs SERS Raman spectrometer Complicated and

>0.5 min 0.1–100 µM 100 nM NA NA [175]

β-cyclodextrin-
functionalized Ag

NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 30 min 1 mM–50 µM 4.98 µM 80.5–109.02% 2.27–3.03% [176]

Chromotropic acid
(CTA)-modified Ag

NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 6 min 0.10–1.5 µM 36 nM 91–105 % NA [177]

Sulfanilic
acid-modified Ag

NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 5 min 0.1–3.1 µM 10.6 nM 97–109% 0.9–1.9% [178]

Starch-coated Ag
NPs SERS UV-Vis and Raman

spectrometers Complicated and NA 15.9 µM–0.4 mM 4.8 nM 94–104% 2.39–4.53% [179]

Bio-functionalized
Ag NPs Colorimetric Naked eyes and UV-Vis

spectrometer Complicated and 20 min 0.015–1 mM 2 µM 96–122% 0.44–2.22% [180]

Sodium
D-gluconate-stabilized

Ag NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and NA 0.5–500 µM 476 nM 90–98% NA [181]

Polyelectrolyte-
stabilized Ag NPs

Colorimetric
and

Fluorescence

Naked eyes, UV-Vis
and PL spectrometers Complicated and 20 min 1 nM–1.5 µM and

1.5 nM–150 µM 0.1 and 0.45 nM 99–114% 1.66–4.37% [182]
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Table 2. Cont.

Ag NPs-Based
Probe

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

Citrate and
Borohydride

stabilized Ag NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and NA NA NA NA NA [183]

Ag NPs monolayer
film SERS Raman spectrometer Complicated and >15 min 0.79 pM–39.6 µM 0.32 pM 90–95.4% 3.7–6.9% [184]

Tannic
acid-stabilized

Ag NPs
Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and 20 min 0.05–1.4 µM 0.01 µM 98.5–106.5% 1.04–3.19% [185]

Bio-functionalized
Ag NPs Colorimetric UV-Vis and Raman

spectrometers Moderate and >1 min 0.79–40 µM 0.79 and
3.96 µM 96% NA [186]

Green synthesized
Ag NPs Colorimetric Naked eyes and UV-Vis

spectrometer Moderate and NA 0.79–79.3 µM 793 nM NA NA [187]

Acid-directed
synthesis of Ag NPs SERS Raman spectrometer Complicated and NA 0–0.396 mM 39.64 µM NA NA [188]

Chitosan-modified
Ag NPs SERS Chromatography and

Raman spectrometer Complicated and >1 min 0–79.3 µM 7.93 µM NA NA [189]

NA = Not available; mM = millimole; µM = micromole; nM = nanomole; min = minutes.



Chemosensors 2019, 7, 9 27 of 47

Next, as displayed in Figure 20, the chromotropic acid (CTA)-capped AgNPs towards H-bonding
facilitated the sensing of melamine [177]. The –NH2 group of melamine H-bonded with –SO3 group
of chromotropic acid. Hence, such functionalized Ag NPs can be applied towards the determination
of melamine and other analytes. Zhu et al. presented the polyelectrolyte functionalized Ag NPs
for selective assay of melamine through colorimetric and fluorescence responses [182], in which the
aggregation of particles led to sensor responses in the presence of melamine. The values of effective
recovery, linear ranges, and LODs (see Table 2) demonstrated the suitability for real-time screening
of melamine in food stuffs. Therefore, designing such probes with dual responses are much desired.
Identification of melamine in dairy products was meritoriously carried out by Ag NPs via SERS and
resonance scattering studies. As shown in Table 2, the Ag NPs-based SERS sensors have competitive
linear ranges, recoveries, and LODs. Therefore, such designs are much anticipated for real-time
examination of melamine. A resonance scattering-based detection procedure was described by Liang
and co-workers [174]. The linear recovery ranges and LOD reported by this technique were found to
be decent, and hence can be engaged in future analytical practicalities.

Figure 20. Schematic illustration of possible mechanism for sensing melamine based on CTA-AgNPs
(reproduced with permission from Reference [177]).

Other than the Au NPs and the Ag NPs, Au-Ag bi-metallic nanoparticles (CSP NPs)
were also employed in the sensing of melamine. For example, Li et al. described the
bifunctional chitosan-modified popcorn-like Au-Ag nanoparticles for the colorimetric and SERS-based
determination of melamine in milk powder samples [190]. The colorimetric response of CSP NPs
were attributed to the peroxidase-like catalytic activity (in presence of melamine) in the oxidation
of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2. Wherein, the linear range of detection was from
10 nM to 50 µM with a LOD of 8.51 nM. Moreover, the recoveries were between 90.86~106.29% with
1.66~4.29% RSDs. Therefore, such bi-metallic NPs can be utilized towards real-time examination of
melamine in dairy products. On this path, sodium polystyrene sulfonate capped Cu2-xSe nanoparticles
(Cu2-xSe@PSS) were reported for melamine recognition by means of aggregation-induced superior
peroxidase-like activity [191]. Huang’s research unit explained the peroxidase-like activity of
Cu2-xSe@PSS in the presence of melamine, which helped the oxidation of 3,3′,5,5′-tetramethylbenzidine
(TMB-colorless) by H2O2 to blue-colored oxidized TMB. The NPs displayed the linearity for melamine
with range from 4.7 nM to 29.7 mM and a LOD of 1.2 nM. However, the applicability of this work still
requires further proof in real samples.

Se NPs were proposed by Wang and collaborators through test strips analysis towards the
sensing of melamine [192]. This method shows a LOD of 1 Ag/Kg in liquid milk, which
confirms its effectiveness in melamine discrimination. Shen et al. demonstrated the assay of
melamine by dopamine conjugated methoxypoly (ethylene glycol) carboxyl acid (mPEG-COOH) and
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(2,4,6-trioxo-1,3,5-triazin-1-yl) acetic acid-functionalized Fe/Fe3O4 nanoparticles (TTAA–Fe/Fe3O4

NPs) [193]. The melamine recognition was attributed to the H-bonding interaction between functional
moieties with melamine. The probe displayed the linearity from 0 to 16 µM with a LOD of 2 µM.
This work does establish its applicability on real samples, and hence can contribute to melamine
assay process. Li and co-workers described the determination of melamine by means of C-dots
stabilized Ag NPs [194], in which the C-dots acted both as a reducer and a stabilizer. The above
work demonstrated the melamine detection via visible and fluorescence responses between 0~2 µM
and 2~20 µM, respectively, with a LOD of 30 nM. Moreover, recoveries of melamine in raw milk
samples were between 95.71~113.58% with 2.9~4.3% RSDs. Other than the detection of melamine by
functionalized NPs, melamine-stabilized NPs were also used in the assay of food contaminants [195].
Therefore, such a scheme can be further directed towards the identification of melamine in real samples
as well [10].

7. Nanorods and Nanotubes in Melamine Assay

Due to the requirement of diverse techniques for melamine assay in food products, researchers also
explored the possibility of using the nanorods and nanotubes for melamine discrimination, as discussed
in this section. In 2010, Wei’s group reported the melamine sensing through bis(8-quinolinolato)zinc(II)
complex nanorod arrays [196]. In which, nanorods with diameters of 250 to 320 nm and lengths
of ~25 µm were fabricated via liquid–liquid interfacial precipitation in the pores of porous anodic
aluminum oxide membrane. These arrays displayed the linearity to melamine from 39.6 to 238 nM, and
hence can be used as a suitable method for melamine assay. However, much work is still needed for this
type of array. Following the above work, Chen and co-workers detected the melamine using the SERS
ability of ZnO/Au nanoneedle arrays [197]. This work demonstrated the melamine determination from
10 nM to 100 µM with a LOD of 10 nM. Moreover, the authors also confirmed the melamine quantifying
ability of ZnO/Au nanoneedles in egg-white solution. Due to the complications in optimization
conditions, this method requires further modification for on-site melamine screening. In a similar
fashion, Ag-nanoparticle-modified single Ag nanowires (Ag NP/Ag NWs) were exploited in the
SERS-based quantification of melamine [198]. The Ag NWs were synthesized by solvothermal method
and then decorated with the Ag NPs. The Ag NP/Ag NW showed great SERS response to melamine
concentrations from 10 nM to 22 µM with a LOD of 10 n M. Moreover, this rapid detection approach
was validated by quantifying melamine in milk solution with the detected melamine concentration as
low as 50 n M. Even though the technique attested is one of the best tactics, complications involved in
the optimization procedures still need to be rectified.

SERS effect engaged with Ag NPs coated ZnO (Ag@ZnO) nanorod arrays for the discovery of
melamine was reported by Xu and collaborators [199]. However, much focus is still required to establish
the melamine quantification by Ag@ZnO nanorod arrays. On the other hand, carbon nanotubes-based
electrochemical assay of melamine was described by Li and Zhao research groups [200,201]. Li et al.
employed the nanocomposite of hydroxyapatite/carbon nanotubes for the determination of melamine
using Ascorbic acid (AA) as a recognition element [200]. Under the optimum condition, the decrease
in anodic peak current of AA was linearly proportional to the melamine concentrations from 10 to
350 nM with a LOD of 1.5 nM. This electrochemical method demonstrated good recoveries in infant
formula and milk samples, which were between 98.5~102.5% with 1.32~2.58% RSDs. On a similar
track, Zhao et al. presented the assay of melamine by employing the glassy carbon electrode coated
with a multi-wall carbon nanotube/chitosan composite [201]. The linear melamine concentrations
were from 9.9 to 190 nM with a LOD of 3 nM. Moreover, this work was also demonstrated in milk
samples with a recovery rate of 104.8%. These electrochemical studies also require the reduction of
the optimization complications in order to be of use in real-time screening of melamine. Notably,
in the main stream these reports displayed complications in their optimization along with the great
recoveries and linearity in melamine detection, as summarized in Table 3.
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Table 3. Summary of methods, instruments, optimization status, time, linear ranges, detection limits (LODs), recoveries and relative standard deviations (RSDs) of
Nanorods and Nanotubes-based probes in melamine detection.

Nanotube/Nanorod/
Nanowire Arrays

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

Bis(8-quinolinolato)
zinc (II) complex
nanorod arrays

Fluorescence PL spectrometer Moderate and NA 39.6 nM–238 n M NA NA NA [196]

ZnO/Au composite
nano arrays SERS Raman spectrometer Complicated and

>0.5 min 100 µM–10 nM 10 nM NA NA [197]

Ag-nanoparticle-modified
single Ag nanowire SERS Raman spectrometer Complicated and 60 min 10 nM–22 µM 10 nM NA NA [198]

hydroxyapatite/carbon
nanotubes Electrochemical Cyclic voltammeter Complicated and 9 min 10–350 nM 1.5 nM 98.5–102.5% 1.32–2.58% [200]

glassy carbon
electrode coated

with a multi-wall
carbon

nanotube/chitosan

Electrochemical Cyclic voltammeter Complicated and 20 min 9.9–190 nM 3 nM 104.8% NA [201]

Vertically aligned
monolayer of
Aunanorods

SERS Raman spectrometer Complicated and 90 min NA ~0.9 fM NA NA [202]

Single gold
nanoparticles

decorated
silver/carbon

nanowires

SERS Raman spectrometer Complicated and 60 min 0.1–220 µM 0.1 µM NA NA [203]

Au nanorods
coupled with Ag

nanoparticles
SERS Focus ion beam and

Raman spectrometer
Complicated and

>0.5 min 1 mM–1 pM 1 pM NA NA [204]

disordered silver
nanowires
membrane

SERS Raman spectrometer Moderate and >0.5 min 7.93 µM–0.79 mM NA NA NA [205]

Ag nanoparticles
surrounding

triangular
nanoarrays

SERS Raman spectrometer Complicated and NA 0.5–500 µM 10 µM NA NA [206]

ZnGa2O4 Nanorod
Arrays Decorated

with Ag
Nanoparticles

SERS Raman spectrometer Complicated and >1 min 0.1–100 µM 0.1 µM NA NA [207]
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Table 3. Cont.

Nanotube/Nanorod/
Nanowire Arrays

Method of
Detection

Instruments
Employed

Optimization Status and
Time Required Linear Range LOD Recoveries of

Spiked Samples RSDs Ref.

Au nanorod arrays
fabrication using a

focused gallium
(Ga) ion beam

SERS Focus ion beam and
Raman spectrometer Complicate & >1 min 100 µM–1 pM 1 pM NA NA [208]

[Ru
(bpy)3]2+-doped Si
NPs/multi-walled

carbon
nanotubes/Nafion

composite electrode

Electro-
chemiluminescence

Multifunction
chemiluminescence

detector
Complicate &NA 0.1 µM–0.5 pM 0.1 pM 99.7–102% 1.1–3.1% [209]

Ag nanorod
(Ag NR) array SERS Raman spectrometer Moderate & >0.5 min 15.86 µM–1.59 mM 7.1 µM 89.7–93.3% 1.08–2.02% [210]

Flexible silicon
nanowires SERS Raman spectrometer Moderate & >0.5 min 79 pM – 0.79 mM 2.5 nM NA NA [211]

CarbonNitride
Nanotubes

Molecular
Imprinted

Voltammetry
Cyclic voltammeter Moderate & 30 min 0.1–5 nM 10 pM 98.68–102.94% NA [212]

Molybdenum
Oxide-nanowires @

Au
SERS Raman spectrometer Complicate & >24 h 0.79 nM–0.79 mM 0.792 nM NA NA [213]

Zinc oxide
Nanowires

decorated with Ag
NPs

SERS Raman spectrometer Moderate & 60 min 12 µM–76 µM NA NA NA [214]

Ag nanorod from
polymeric silver

cyanide
SERS Raman spectrometer Moderate & NA 1 mM–1 pM NA NA NA [215]

Ag nanoparticles
decorated Cu(OH)2

nanoneedle
SERS Raman spectrometer Complicate & NA NA 0.792 nM NA NA [216]

Ag NPs decorated
Zinc Oxide/

Siliconhetrostructured
nanomace Arrays

SERS Raman spectrometer Complicate & >0.5 min 10 µM–0.1 nM 10 fM NA NA [217]

NA = Not available; mM = millimole; µM = micromole; nM = nanomole; pM = picomole; fM = femtomole; min = minutes; Hrs = Hours.



Chemosensors 2019, 7, 9 31 of 47

The majority of nanowires/nanorods/nanotubes-based composite arrays engaged in melamine
detection were attributed to the SERS effect of the substrate fabricated and subjected to the
analysis [197–199,202–208,210,211,213–217]. In contrast, some tactics, such as fluorescence [196],
electrochemical [200,201], electrochemiluminescence (ECL) [209], and voltammetry [212] were
also employed in the discriminative assay of melamine. From the table, one can conclude that
nanorod/nanowires/nanotubes arrays can be engaged as SERS substrates in making successful assays
for the melamine detection in milk samples. However, much focus is still required to reduce the
optimization complications and to enhance the linear range of detection and recoveries.

8. Other Nanostructures in Melamine Discrimination

Few research units have demonstrated the melamine determination through diverse
nanostructures, as illustrated next. Rajkumar and co-workers presented the diverse nanostructured
Ag NPs deposited on silicon substrates via one-step galvanic displacement method, which was further
engaged in the SERS-based detection of melamine [218]. As shown in Figure 21, the SERS peak at
685 cm−1 distinguishes the presence of melamine between 1 mM to 0.1 nM. This work showed a LOD
of melamine of ~10 nM, and hence established its affordability in real-time monitoring of melamine.
Using this SERS-based sensing approach, Zhang et al. presented the sandwich-type nanostructured
substrate consisted of a probe molecule sandwiched between silver nanoparticles (SNPs) and silver
nanoarrays for the selective assay of melamine [219]. The above sandwich nanostructure was fabricated
on porous anodic aluminum oxide (AAO) by means of electrodepositing technique. The probe showed
linearity to melamine between 1 mM to 1 nM and displayed a sensitivity up to 1 nM. However,
the authors did not provide any clear information of the probe molecules. Hence, extensive melamine
detection using the probe in dairy products is still questionable.

Figure 21. SERS Spectra of Melamine with different concentrations for 5 min Ag deposited samples
(reproduced with permission from Reference [218]).

For the determination of melamine using electrochemical sensing, Cadmium doped antimony
oxide nanostructures (CAO-NSs) were employed to modify the glassy carbon electrode [220].
The CAO-NSs/GCE demonstrated the linearity in melamine assay from 0.05 nM–0.5 mM with a LOD
of 14 ± 0.05 pM. Recoveries by this method in milk samples were established between 97.3~103.5%
with 1.9~3.5% RSDs. This electrochemical method appears to be one of the best techniques, and hence
can be employed for the discrimination of melamine in dairy stuffs. Ibupoto’s research utilized the
succinic acid-functionalized copper oxide nanostructures to modify the GCE and then applied in
the electrochemical discovery of melamine [221]. The GCE/CuO-NSs/nafion detected the melamine
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linearly between 100 pM to 5.6 nM with a LOD of 10 pM. Recoveries by this nanostructure were
98~99% with 0.31~0.83% RSDs. Due to the excellent selectivity to melamine, the modified electrode
can be validated as a great innovation in the melamine sensing.

Guo et al. presented a SERS-based melamine quantification in milk samples by employing
the hollow gold nanospheres (HGNs) on glass wafers via electrostatic interaction as illustrated in
Figure 22 [222]. Here, the HGNs displayed a strong SERS enhancement to melamine due to its ability
to confine the electromagnetic fields around the pinholes in hollow shells. The hollow gold chip
discovered the melamine linearly between 0 to 793 µM with a LOD of 7.93 µM. This method was
validated in milk samples, but it can only be considered as an addition to those SERS-mediated
detection tactics. Similar to the SERS methods, Jean and collaborators proposed the optical sensing of
melamine by means of Ag decorated silica nanoparticles (SiO2@Ag nanospheres) [223]. The optical
sensor can sense the melamine at nM level with great sensitivity between 793 nM to 7.93 mM. Silver
nanoparticles coated amino modified polystyrene microspheres (PS-NH2/Ag NPs) were demonstrated
in the assay of melamine by Zhao and collaborators [224]. The melamine detection displayed linear
regression from 1 mM to 10 nM at 698 cm−1 and have a LOD of 19 nM. Moreover, this work was
demonstrated in milk powder samples without any sample pretreatment steps. Hence, it can be
engaged in real-time inspection of melamine contamination.

Figure 22. Procedures of hollow gold (HG) chip fabrication and detection procedures of melamine
from real milk sample by HG chip (reproduced with permission from Reference [222]).

The SERS-based determination of melamine was further established using Ag@SiO2 nanocubes
by Su and Hwang’s research groups [225]. The above nanocube materials displayed the linearity to
melamine from 0.5 to 7.93 µM at 684 cm−1 with a LOD of 0.48 µM. Moreover, Ag@SiO2 nanocubes also
showed the linear melamine detection in milk samples, which was between 2.46 to 39.6 µM with a LOD
of 1.35 µM. Recoveries in spiked milk samples were found as 94.86 to 99.87% with 11.11~17.11% RSDs.
This method can be categorized as a suitable SERS method. In a similar fashion, Qin et al. reported the
hollow nanocubes made of Ag–Au alloys for SERS-based recognition of melamine [226], in which the
sensitivity to melamine was established at 701 cm−1 at a concentration as low as 10 nM. Even though
this work is elaborated, still much focus is required to verify its potentiality in milk products. Chen
et al. demonstrated the applicability of urchin-like LaVO4/Au composite microspheres towards the
melamine discovery via SERS responses at 682 cm−1 with linearity between 10 µM to 1 nM [227]. LOD
of melamine recognition by this tactic was estimated to be 1 nM, and hence can be categorized as one
of the SERS methods. However, the applicability of this probe is still in need of verification.
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A portable multi-channel sensing device comprised of Au nano-urchins was described by Huang
and Chen collaborators via localized surface plasmon resonance (LSPR) at 680 nm [228]. In the presence
of melamine the LSPR peak at 680 nm was enhanced and exhibited linear regression between 0.1 to
1 µM with a LOD of 18 nM. Potentiality of the above research needs to be validated in real samples
for future applications. As shown in Figure 23, Nguyen et al. presented the use of sharp-edged gold
nanostar (Au NSs) substrates via SERS response at 714 cm−1 for on-site determination of melamine in
infant formula and chocolate [229]. They compared the potentiality of Au NSs with the spherical Au
NPs. In the infant formula, the Au NSs and Au NPs showed the linear regressions of 0.79–793 nM
and 79.3 nM–39.6 µM with LODs of 79.3 nM and 0.79 µM, respectively. Similarly, Au NSs and Au
NPs showed the linear regressions of 7.93 nM–19.8 µM and 7.93–79.3 µM in chocolate mixture with
LODs of 0.79 µM and 79.3 µM, correspondingly. Due to the authenticated real-time application,
this nanostructured probe can be used for efficient monitoring of melamine in dairy products.

Figure 23. Experimental schemes for detecting melamine in powdered infant formula and chocolate.
On-site detection of sub-mg/kg melamine could be achieved using Raman spectroscopy within a few
minutes (reproduced with permission from Reference [229]).

As a different nanostructured material, gold coated zinc oxide nanonecklaces (ZnO NN) arrays
were utilized towards melamine sensing by He and co-workers [230]. These ZnO NN arrays detected
the melamine via SERS signal at 683 cm−1 with a LOD of 10 µM. Between 10 mM to 1 µM, the probe
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displayed the linearity, but the sensitivity towards melamine still needed to be improved for real-time
application. In this track, gold-sputtered Blu-ray discs (BD-R) were employed to discover melamine by
Nieuwoudt et al. via SERS signal at 683 cm−1 [231]. From concentrations of melamine of 0.79 nM to
7.93 mM the SERS signals were observed with a LOD of 555 nM. However, although the above method
shows the lowest detection range, the reliability is not well demonstrated. Using the SERS-based
tactics, Cao and co-workers demonstrated the trace level melamine sensing by self-assembly of
silver nanostructures on carbon-coated copper grids [232]. By means of surfactant-free and ultrafast
self-assembly over carbon-coated copper TEM grids, well defined silver structures comprised of
nano-flowers (NFs), planar nanospheres (NSs), and nano-dendrites (NDs) were fabricated and applied
in the SERS-based melamine recognition studies. At 688 cm−1, the SERS signal of melamine displayed
linearity between 10 pM to 1 µM with a LOD of 10 pM. The grids used in this method can be re-used
after exposure to air for six months and can still achieve the same performance. Therefore, this
method is authenticated as one of best SERS-based techniques for real-time inspection of melamine in
food stuffs.

Similar to the self-assembly of nanostructures, melamine and its derivatives can produce
nanostructures via H-bonding with suitable candidates or by self-assembly [233–239]. Functional
materials can form during these process, which may find their use in melamine detection in near
future. For example, the H-bonded hydrogel formed by melamine with a molecule Nap-FFYGK-CA
was reported as a good tactic for the assay by Yang and Chen collaborators [234]. The above work was
demonstrated in milk and urine samples, and can thus be employed as a valid scheme for melamine
discrimination in future.

9. Advantages and Limitations

The nanomaterial-based melamine assays have several advantages as well as limitations as
stated below.

(1) Many novel designs from nanomaterials have been proved their effectiveness towards
melamine quantifications in milk and food stuffs via dissimilar detection methodologies, which
allow the modern world to remain healthy and safe.

(2) The majority of nanomaterial-based melamine sensors have the lowest detection limits
(femtomolar to nanomolar) with excellent linearities, and hence can determine the melamine at
low concentrations in dairy products.

(3) Diverse tactics in melamine detection have been employed by nanomaterials, which allow them
to be utilized towards the inspection of dissimilar contaminated samples. For example, fluorescence
and colorimetric tactics of NPs and NCs can help to identify the melamine in solution by the naked eye.
On the other hand, SERS and electrochemical techniques may recognize melamine through specific
signals from solution and powders.

(4) The metal ion-mediated detection probes for melamine can act as dual-mode sensors to metal
ions and melamine in environmental water samples and dairy products, respectively.

(5) The cost-effectiveness of the majority of nanomaterial-based assay tactics in melamine detection
appears to be low, and hence can be used in real-time monitoring of melamine.

(6) Design of nanoparticles for melamine determination is limited by the electrostatic forces and
functional units presented over their surface, which must show the tendency to form H-bond with
melamine or to coordinate/complex with melamine. However, to identify such functional units,
extended research work is required.

(7) For metal nanocluster-based assay of melamine, the quantum yield should be improved by
modifications with suitable groups [240], otherwise the LODs on melamine quantification will not
be improved.

(8) Nanocomposite-based discrimination of melamine is restricted by the compositions of the
mixtures which require essential property. Moreover, the development of nanocomposite with essential
properties are still time consuming. Therefore much effort is needed in their optimization.
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(9) The nanorods/nanowires/nanotubes-based melamine sensing approaches are limited by
their melamine-capture ability. It means that not all of the NWs/NRs/NTs can detect the melamine.
Moreover, the main stream of these arrays-based assays is complicated in terms of optimizations.
Hence much focus is needed to overcome the difficulties and to enhance the reliability.

(10) To identify the mechanisms behind the melamine sensing processes with nanomaterials,
sophisticated instruments, such as TEM, Raman spectroscopy, and cyclic voltammetry are essential,
which will affect the cost and time in developing melamine sensing techniques. Therefore, much
anticipation is expected for these tactics.

10. Conclusions and Perspectives

In this review, we have summarized the nanomaterial-based sensors for illegal food contaminant
melamine. Note that this review covers the melamine assays using nanomaterials, such as carbon
dots, quantum dots, nanocomposites, nanocrystals, nanoclusters, nanoparticles, nanorods, nanowires,
and nanotubes. Moreover, diverse mechanisms, including fluorescence resonance energy transfer
(FRET), aggregation, inner filter effect, surface-enhanced Raman scattering (SERS), and self-assembly
in melamine determination are discussed in detail. Wherein, Au NPs- and Ag NPs-based colorimetric
sensing via aggregation or H-bonding appears to be a promising strategy among the majority of the
reports. On the other hand, many scientists have developed diverse nanomaterials, which address the
melamine contamination through SERS tactics. Apart from the above methods, a few reports have also
covered FRET, CRET, Sonoluminescence, and Chemiluminescence, etc.

However, the following nanomaterial-based melamine assays and mechanisms are still missing,
which need to be established in the future.

(1) The C-dots-based assay of melamine is not totally innovative, and hence much attention
is required.

(2) Reports on Pt and bi-metallic nanoclusters towards melamine sensing are insufficient. More
researchers must devote themselves to this research area.

(3) The mechanisms of a few nanocomposite-based melamine recognitions are not entirely clear,
and hence should be further investigated in the future.

(4) Studies on band-gap properties of the nanorods/nanowires/nanotubes-based sensors may
help to interpret the mechanisms involved, which should be evaluated in the near future.

(5) Researchers should be encouraged to investigate other nanostructures, such as nanocubes,
nanostars, nanoflowers, and nanocrystals towards melamine assays.

Even though developing nanomaterial-based melamine assays requires sophisticated optimization
procedures and delicate instruments, they provide a breakthrough in food contamination assay and
allow the world to sustain a safe and healthy environment. Moreover, researchers are devoted to the
development of nanomaterials, which may revolutionize the current health and food industries
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