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Abstract: A major problem associated with the development of medicinal plant products is the lack
of quick, easy, and inexpensive methods to assess and monitor product quality. Essential oils are
natural plant-derived volatile substances used worldwide for numerous applications. The important
uses of these valuable products often induce producers to create fraudulent or lower quality products.
As a result, consumers place a high value on authentic and certified products. Mint is valued for
essential oil used in the food, pharmaceutical, cosmetic, and health industries. This study investigated
the use of an experimental electronic nose (e-nose) for the detection of steam-distilled essential oils.
The e-nose was used to evaluate and analyze VOC emissions from essential oil (EO) and distilled
water extracts (DWEs) obtained from mint plants of different ages and for leaves dried in the shade
or in the sun prior to hydrodistillation. Principal component analysis (PCA), linear discriminant
analysis (LDA), and artificial neural networks (ANN) were performed on electrical signals generated
from electronic nose sensors for the classification of VOC emissions. More accurate discriminations
were obtained for DWEs sample VOCs than for EO VOCs. The electronic nose proved to be a reliable
and fast tool for identifying plant EO. The age of plants had no statistically significant effect on the
EO concentration extracted from mint leaves.

Keywords: mint; essential oil; quality control; olfactory apparatus

1. Introduction

Peppermint (Mentha piperita) belongs to the Lamiaceae plant family and is one of
the most important medicinal plants widely used in the pharmaceutical, food, and health
industries [1]. Mentha piperita is a sterile hybrid of species (M. aquatica × M. spicata), which
is probably the most important peppermint source for oil distillation in the world based
on the area of land cultivated [2]. Commercially grown mint leaves are fragrant, sweet,
and have an aromatic, pungent, and spicy aroma, with a flavor that is cool to the taste.
Peppermint is used medicinally to treat nausea, bronchitis, flatulence, anorexia, ulcerative
colitis, and liver problems, and as an anti-inflammatory, carminative, antiemetic, diuretic,
antispasmodic, analgesic, stimulant, and anticatarrhal agent [3]. It is also widely used in
the flavoring of chewing gum, candy, ice cream, desserts, baked goods, tobacco, alcoholic
beverages, and to flavor medicinal and oral drugs [2].

Mint is primarily cultivated for its volatile oil, although some countries use mint
leaves in salad dressings. Peppermint is considered to be the most popular mint with
the greatest medicinal value [4]. The essential oil (EO) content and composition varies
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among peppermints due to environmental variables such as air temperature, humidity, soil
moisture and fertility, planting and harvesting times, and plant age [4–6]. The chemical
structure of EO can also be affected by seasonal changes such as flowering status and
harvesting times [5,6]. The genetics of the plant also may influence the biosynthesis and
types of EOs produced [4]. The yield of peppermint EOs has been estimated to range from
0.1 to 2.5% of leaf dry weight [3,4,7].

Peppermint oil (Menthae piperitae aetheroleum) is extracted from fresh, semi-dried,
or dried mint leaves. The oils are most commonly extracted using methods including cold
pressing, solvent extraction, and hydrodistillation using a Clevenger extraction apparatus.
The major constituents of peppermint oil are menthol (30–55%) and menthone (14–32%).
Other monoterpenes present include 1,8-cineole (6–14%), isomenthone (2–10%), limonene
(1–5%), neomenthol (2.5–3.5%), menthofuran (1–9%), α-pinene (1.0–1.5%), and β-pinene
(1–2%) [7]. These mixtures of volatile organic compounds (VOCs) may also be influenced
by extraction parameters such as temperature, time, pressure, and extraction methods [3,8].
Mint volatiles are largely composed of plant VOCs from the terpenoid chemical classes
(monoterpenes, diterpenes, and sesquiterpenes).

Herbal medicines are used to support human health. Consequently, it is important
to control the quality and purity of herbal medicines, like pharmaceuticals, to assure their
potency and effectiveness. Unlike synthetic drugs, there are no strict regulatory standards
for medicinal plant products. This lack of oversight can lead to dangerous results to human
health due to intentional or unintentional fraud, counterfeiting, and dilutions with cheaper
ingredients (adulteration), leading to a lower quality of herbal products [9,10]. Quality
control procedures should be employed to ensure the quality of medicinal products. Both
qualitative and quantitative measures are taken to ensure the safety of these products. Spec-
tral methods such as UV (ultraviolet) and IR (infrared) are used for determining general
visual qualitative aspects, whereas chemical analysis methods such as high-performance
thin layer chromatography (HP-TLC), high pressure/high-performance liquid chromatog-
raphy (HP-LC), supercritical fluid chromatography (SFC), thermal analysis, inductively
coupled plasma mass spectrometry (ICP-MS), liquid chromatography-mass spectrometry
(LC-MS), and gas chromatography-mass spectrometry (GC-MS) have been used for quality
control [8]. Standardization methods are used to determine the identification, quality, and
purity of medicinal plants, as well as the certification of herbal products. Primary identifi-
cation using physical, chemical, and biological properties may contribute to product purity.
To standardize herbal medicines with current and future trends, the World Health Orga-
nization (WHO) has established guidelines for standardization methods and procedures
based on organoleptic properties, ash values, moisture content, microbial contamination,
and chromatographic and spectroscopic evaluations [8].

Several studies have investigated the quality of EOs by analyzing their chemical
composition and odor activities [11]. These analyses, including chromatographic and
spectroscopic methods, provide more accurate information on quantitative and qualitative
characteristics of EO compositions [12]. Such chemical analyses are complex, expensive,
and time consuming. Human sensory analysis, based on olfactory detection by a skilled
sensory panel, is similarly expensive and limited by small sample-size determinations
due to operational fatigue [11,12]. New trends in olfactory evaluation techniques have
emerged through the development of artificial olfactory systems, such as electronic-nose
(e-nose) devices. The artificial olfaction methods do not replace conventional qualitative
chemical analyses of VOCs, but provide an alternative, more rapid method for assessing
and discriminating precise mixtures of VOC emissions from plants.

An electronic nose consists of an array of sensors, providing a collective output from
all sensors that are used in combination with pattern recognition algorithms to detect
and differentiate simple and complex odors or aromas [10]. An e-nose recognizes aroma
patterns without identifying the individual chemical species present in the sample mixture.
The signal responses from the sensor array are then converted by a transducer into digital
output patterns (sensory response patterns). The signal responses of all sensors in the sensor
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array (to VOCs in the sample) are collectively assembled to form a sensor response pattern
(smellprint signature) that is uniquely associated with specific sample types [13]. E-nose
devices have been utilized extensively for numerous applications, particularly in plant
sciences [14]. Due to their speed, portability, and compact design, electronic noses have
been applied by the food industry for fraud detection [15], food quality assessments [16],
beverage industry [16,17], agriculture [14,18], as well as for biomedicine, healthcare, and
forensic science applications [19,20].

The objectives of this study were to test the capabilities of an experimental metal
oxide semiconducting (MOS) electronic nose to (1) detect and distinguish differences in
the overall composition of VOCs present within mixtures of headspace volatiles of EO
and distilled water extract (DWE) mint fractions derived from different hydrodistillation
methods, and (2) determine the effects of the plant age (at leaf harvest) and leaf drying
methods on extraction yields of each fraction. The aim is to improve the effectiveness
and efficiency of hydrodistillations of these valuable mint components for commercial
applications and to qualify the aroma characteristics of the extraction products.

2. Materials and Methods
2.1. Preparation of Samples

Peppermint plants, M. piperita cultivar ‘Asia’, were asexually propagated to produce
genetically identical clones that were planted in a field as a monocultural crop near Sahneh
City, Kermanshah, Iran. Mint fields were irrigated at 4-day intervals until harvest in late
June. No pesticides or fertilizers were applied prior to harvest. Stems of field-grown
peppermint plants (ages 1–5 years after initial planting) were cut 4–5 cm from the ground
and all collected at the same time for subsequent leaf sampling. Following harvests, the
leaves from plants of the five different ages were separated and dried on the stems in
two separate locations, either in full sun or in the shade, until dried to equilibrium with
ambient air, then leaves from stems of individual plants (of specific ages) were removed
and collected as raw materials for hydrodistillation. Sampling of leaves for each air-drying
treatment consisted of 15 leaf sample replicates collected from separate plants of each of
the five age classes and two drying methods, resulting in 150 total samples prepared for
extraction and testing as two separate fractions (EO and DWE) from which VOCs were
analyzed. To indicate differences in sample air-drying methods (treatments) used, the letter
A was used for samples dried in the shade, and the letter B was used for samples dried in
full sun. Moreover, the age of the plant was indicated for each sample type with numbers 1
to 5.

2.2. Extraction of EOs and DWEs by Hydrodistillation

The hydrodistillation process, used for the extraction of volatile EOs and related mint
components, utilized liquid suspensions of dried peppermint leaves and were boiled and
distilled to separate mint volatile extracts based on the differences in boiling points of
individual chemical species. Steam distillates were separated into fractions by boiling to va-
porize VOCs that were condensed as liquid condensates using a water-cooled condensation
column and collected as separate distillate fractions composed of EOs and DWEs [3].

The EOs were extracted by hydrodistillation using a specially constructed Clevenger-
type apparatus. For this study, each sample was prepared for extraction by placing 30 g of
dried mint leaves into approximately 660 mL of distilled water, then placed within the 1 L
vessel of the Clevenger apparatus. After the water was brought to a boil, each leaf sample
was extracted for 2 h in the boiling water prior to distillation. The amount of total EOs
extracted was calculated based on the percentage volume per gram weight (v/w%), based
on the volume of EO condensates obtained from each extraction treatment. Using a thin
graduate cylinder tube, the volume of the EO condensate was measured. Mint EOs make
up about one-tenth of the total condensate volume that exits from the outlet tube of the
Clevenger apparatus. After the mint EO distillate fraction emerges, the larger volume of
the DWE condensate emerges from the tube. The DWE fraction diminishes to lower levels
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(in concentration) with reduced volatiles released over time, indicating the end of plant
extraction. We stored the EO fractions in small 1.5 mL plastic containers with water-tight
lids in the freezer at −18 ◦C until the samples were analyzed and tested for purity using the
electronic nose. The larger DWE fraction (second distillate) was passed through a filtration
system (funnel with filter cloth, and paper) to remove any suspended particles above 10 µm
diameter. The DWE fraction was poured into sealed plastic bottles, labeled, and stored until
cooled to ambient temperature at 21 ◦C. Each peppermint EO and DWE sample distillate
fraction was placed into a 50 mL glass sampling container sealed with Parafilm plastic
wrap for 20 min to build headspace volatiles immediately prior to e-nose analysis.

2.3. Electronic Nose

An experimental MOS electronic nose equipped with eight metal oxide sensors was
used for all experiments. The entire VOC analysis apparatus consisted of a sample receiving
system (gas sampling chamber), the gas sensor array of the e-nose, a data collection system,
and pattern recognition algorithms used in sample discriminations. The eight metal oxide
semiconductor (MOS) sensors in the sensor array were sensitive to a specific class of
volatile chemicals. The characteristics of individual sensors in the MOS sensors array are
summarized based on gases detected and detection range in Table 1. The electronic nose
was activated and prewarmed for 1 hr to operating temperature (25 ± 1 °C) before sample
analysis to ensure a constant stable sensor surface temperature. The sensor gas path was
purged with ambient carrier-input air, then filtered with calcium carbonate crystals to
<4% relative humidity and with activated-carbon charcoal to remove exogenous, VOC
contaminants. Prefiltered air was used in the building sample headspace and to purge the
e-nose sensors before and after individual sample analysis runs.

Table 1. Sensor type, chemical class sensitivity, and detection range concentrations for the MOS
experimental electronic nose sensor array.

Sensor No. Sensor Type Common Gases Detected Detection Range (ppm)

1 MQ3 Alcohol 10–300
2 TGS822 Organic solvents 50–5000
3 MQ-136 Sulfur dioxide (SO2) 1–200
4 MQ-9 CO, combustible gases 10–10,000
5 TGS813 CH4, C3H8, C4H10 500–10,000
6 MQ135 Ammonia, benzene, sulfides 10–10,000
7 TGS2602 H2S, sulfides, ammonia, toluene 1–30
8 TGS2620 Alcohol, organic solvents 50–5000

The full e-nose sample analysis cycle consisted of the baseline correction, sample odor
injection, and sensor chamber purging between individual sample runs. The sequence
of e-nose data collection for each sample was initiated by placing each sample in a sam-
pling container to build VOC headspace volatiles for analysis. The sample container was
connected to the e-nose and fresh filtered air was passed through the sensor chamber to
cleanse the sensor array prior to introduction of the headspace sample from the sampling
chamber into the e-nose. The sample gas was pumped into the sensor array at a flow rate
of 1 L/min. The response of the sensor array to sample volatiles was recorded by a data
recorder. The sensor chamber was then cleansed again with pure air to prepare the sensor
array for the subsequent sample analyzed. During the final stage of the analysis cycle prior
to introduction of a new sample, a purge process was initiated in which filtered air was
again pumped into the sensor chamber to normalize and precondition the sensor signal.
The full run time took 100 s for a complete analysis cycle.

During exposure to the sample gas, the sensor array’s conductance change was con-
verted to voltage change, and the voltage (V) was used as the electronic nose sensor
response (one sample per treatment). The detection process involved eight voltage curves
and a 150-s measurement phase. Following the measurement, the data were automatically
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recorded for analysis. Equation (1) was used to correct the baseline to eliminate noise and
to normalize sensor responses:

Ys(t) =
Xs(t)− Xs(0)

Xs(0)
(1)

where YS (t) is the normalized response, XS (0) is the baseline, and XS (t) is the sensor re-
sponse. Using pre-processing methods and chemometrics tools, these data were statistically
analyzed as described in the following sections.

2.4. Extraction Methods and Data Analysis

The classification performance of different extraction methods was analyzed using
statistical methods including principal component analysis (PCA), linear discriminant
analysis (LDA), and artificial neural network (ANN) methods, based on analyses of in-
dividual e-nose sensor voltage-response curves. Chemometric analysis was performed
using Unscrambler vers. 10.1 (CAMO AS, Trondheim, Norway) and MATLAB vers. 7.1
(Mathworks. Inc., Natick, MA, USA) software packages.

An ANOVA factorial analysis was conducted using SPSS 16.0 software (SPSS Inc.,
Chicago, IL, USA) to determine the effect of experimental independent variable parameters,
including plant age at harvest, leaf sample drying method, and plant age x drying method
on yield of steam extracted EO content. A secondary statistic of Duncan’s multiple range
test was calculated to determine the significance between treatment means of EO yields for
plant age and drying factors.

Statistical Classifier Methods

Principal component analysis is the most widely used unsupervised method for data
reduction, preserving as much statistical information as possible [21]. PCA involves the
transformation of original data into a different form through orthogonal transformation.
The largest variance between the data occurs in the first coordinate, the first principal
component (PC1), and the second largest variance occurs in the second coordinate, the
second principal component (PC2). The first two coordinates (PC1, PC2) after transfor-
mation explain most of the variance of the data within fewer dimensions. Coordinates
in the transformed space are linear combinations of the original feature vectors. PCA
simplifies data complexity by preserving trends and patterns into smaller dimensions.
Analysis was performed on the maximum values of the response curves of the electronic
nose sensor output responses to VOCs present in samples, reflecting a stable response
of sensors to sample gas analytes recorded in the electrical signal [22]. The classification
results of each sample (treatment) group using LDA are linearly correlated. LDA differs
from PCA in that it is based on categorical information. Using PCA aims to minimize data
noise and multicollinearity between different variables, whereas LDA aims to maximize
the between-class variance and minimize the within-class variance [23,24].

Support vector machine (SVMs) methods are used for regression and classification,
and SVM algorithms are classified as pattern recognition algorithms. SVM was originally
developed for the linear classification of separable data, but it is now applied to non-linear
data using kernel functions. Essentially, SVM defines decision boundaries for different
classes of data points using hyperplanes, with edges separating classes according to the
distance between data points. It has been widely used and studied because of its useful
capabilities in regression classification and prediction [25].

ANNs are based on biological neural systems, which use a vast network of neurons
to process data. The signal path between neurons is called a synapse, and all nodes are
interconnected. These signals are usually real numbers, and the nodes calculate the outputs
based on linear or nonlinear functions. A raw data set is processed in three layers: the
input layer, the hidden layer, and the output layer [26].

Electronic-nose sensors with selective, high response sensitivities and wide responses
to specific gas analyte mixtures are used in combination with neural networks for gas
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detection and discriminations. In the current study, the normalized signals of the gas
sensor array were applied to a feedforward network developed in MATLAB (ANN) with
eight input neurons (associated with the eight sensors in the array) and 10 result output
neurons for results of sample identification and neurons of the hidden layer, which were
determined by trial and error. Based on the data obtained from the electronic nose, 60% of
the data were used for training, 20% for validation, and 20% for testing.

3. Results
3.1. Effect of Harvesting Age and Drying Method on the Extracted EO Concentration

A factorial statistical analysis using ANOVA was conducted to determine the effect of
experimental parameters, including plant age at harvest and leaf sample drying method on
extracted EO content (yield). ANOVA results for this experiment are shown in Table 2. The
independent variable factors of plant age and drying method had highly significant effects
on the EO yield (p < 0.0001). However, the plant age x drying method factor interaction
had no significant effect on the EO yield (p = 0.45).

Table 2. ANOVA results of steam-distilled, extracted mint EO.

Source Type III
Sum of Squares df Mean Square F Significance

(p Values)

Corrected Model 0.029 a 9 0.003 532.741 <0.0001
Intercept 5.457 1 5.457 9.146 × 105 <0.0001
Plant age 0.002 4 0.000 78.953 <0.0001

Drying method 0.027 1 0.027 4.475 × 103 <0.0001
Plant age × Drying method 2.3 × 10−5 4 5.75 × 10−6 0.964 0.449

Error 0.000 20 5.97 × 10−6

Total 5.486 30
Corrected Total 0.029 29

a Coefficient of determination, R2 = 0.996 (adjusted R2 = 0.994).

The results of Duncan’s multiple range tests (secondary statistic), showing differences
in EO yield means due to the drying method and plant age effects on EO extraction, are
shown in Figure 1a. In the shade-drying method, the EO extraction was 0.4563 mL/g
(v/w), while in the sun-drying method, the EO yield was significantly less at 0.3966 mL/g.
Significant differences were observed in the EO yield from plants of different ages, but no
clear trend (Figure 1b). In 1-year old plants, the maximum amount of extracted EO was
0.4385 mL by volume weight, whereas in 4-year old plants, the least amount of extracted
EO was 0.4155 mL.

3.2. E-Nose Sensor Response Smellprint Patterns

A radar chart of E-nose sensor responses was used to observe differences in smellprint
patterns resulting from sensor array responses to VOCs of mint EOs and DWEs after drying
in shade vs. sun at different plant ages. The average normalized output responses of e-nose
sensors are represented by corresponding radar plots from the analysis of distillate fractions
of EOs and DWEs (Figure 2). E-nose sensor responses to VOCs of DWEs showed very
similar smellprint patterns for samples derived from plants of different ages (Figure 2a).
However, sensor intensity responses decreased proportionally as plant age increased for
DWEs. Generally, shade air-dried samples had significantly greater sensor output responses
than sun-dried samples, indicating greater yields of DWEs from shade air-dried plants.

The responses of e-nose sensors to VOCs of EOs resulted in considerably different
smellprint patterns from leaf samples of different age plants (Figure 2b). The smellprint
pattern for 1-year-old plants was similar to the results for 2-year-old plants, but older plants
(3–5 years) had significantly different sensor response patterns. Sensor intensity responses
decreased proportionally with increasing plant age for EO samples. Again, sensor response
intensities were greater for shade air-dried leaf samples than for sun-dried samples.
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Figure 2. Radar graph sensor array responses to VOCs from DWEs and EO hydro-distillation extracts.
Radar plots are displayed for: (a) Water extract of DWE (second distillate fraction), and (b) Oil extract
of EO (first distillate fraction). Sensor response lines are color-coded by sample drying method (A &
B) and plant age (1–5) combinations, for both DWE and EO samples types, as follows: black (A1),
orange (B1), maroon (A2), yellow (B2), light green (A3), light blue (B3), purple (A4), dark green (B4),
cyan (A5), and red (B5).

Comparisons of sensor array response to VOCs from DWE and EO samples indicated
different smellprint patterns and intensities, providing evidence for significant differences
in the VOC composition of headspace volatiles from these two types of distillation fractions
(Figure 2a,b). Sensor intensity responses generally were greater for the water DWE distillate
fraction than for the oil EO fraction based on radar plot data.

The standard deviations of sensor responses to peppermint DWEs and EOs are pre-
sented in Figure 3. Sensors responded more strongly to DWEs than to EOs. Gas sensors
TGS822, MQ9, and TGS2620 generally had the highest sensor intensity response to EO
volatiles (Figure 3a). Similar results were observed for sensor intensity responses to VOC
of DWEs, but intensity responses were reduced for sensors MQ3 and MQ9 (Figure 3b).



Chemosensors 2022, 10, 486 8 of 19

Chemosensors 2022, 10, x FOR PEER REVIEW 8 of 20 
 

 

The responses of e-nose sensors to VOCs of EOs resulted in considerably different 
smellprint patterns from leaf samples of different age plants (Figure 2b). The smellprint 
pattern for 1-year-old plants was similar to the results for 2-year-old plants, but older 
plants (3–5 years) had significantly different sensor response patterns. Sensor intensity 
responses decreased proportionally with increasing plant age for EO samples. Again, sen-
sor response intensities were greater for shade air-dried leaf samples than for sun-dried 
samples. 

Comparisons of sensor array response to VOCs from DWE and EO samples indicated 
different smellprint patterns and intensities, providing evidence for significant differences 
in the VOC composition of headspace volatiles from these two types of distillation frac-
tions (Figure 2a,b). Sensor intensity responses generally were greater for the water DWE 
distillate fraction than for the oil EO fraction based on radar plot data. 

The standard deviations of sensor responses to peppermint DWEs and EOs are pre-
sented in Figure 3. Sensors responded more strongly to DWEs than to EOs. Gas sensors 
TGS822, MQ9, and TGS2620 generally had the highest sensor intensity response to EO 
volatiles (Figure 3a). Similar results were observed for sensor intensity responses to VOC 
of DWEs, but intensity responses were reduced for sensors MQ3 and MQ9 (Figure 3b). 

 
Figure 3. E-nose sensor array output responses to VOCs from DWE and EO sample extractions. Bar 
graph of individual sensor outputs (±1 SD) for: (a) Water DWE extract (second fraction), and (b) Oil 
steam-distillate EO (first fraction) between treatment means using Duncan’s multiple range test. 

3.3. Principal Component Analysis 
PCA analyses of each fractional component from hydro-distillation provided PCA 

data cluster plots indicating differences in the VOC mixtures for each treatment, as dis-
played in Figure 4. The separate principal components, indicated by the x-axis (PC-1) and 
y-axis (PC-2), provided a means for separate data points two-dimensionally. The variance 
of peppermint EO was 75% for PC-1 and 14% for PC-2, accounting for 89% of the total 
variance of the normalized data (Figure 4a). The variance of the data for DWE principal 
components was 89% for PC-1 and 6% for PC-2, respectively, with 95% of the total vari-
ance accounted for by the first two principal components (Figure 4b). PCA analysis indi-
cated that the PC-1 principal component for DWE samples explained a larger proportion 
of the total variance than for EO samples (Figure 4a,b), showing higher accuracy in de-
tecting DWE samples. 

Figure 3. E-nose sensor array output responses to VOCs from DWE and EO sample extractions. Bar
graph of individual sensor outputs (±1 SD) for: (a) Water DWE extract (second fraction), and (b) Oil
steam-distillate EO (first fraction) between treatment means using Duncan’s multiple range test.

3.3. Principal Component Analysis

PCA analyses of each fractional component from hydro-distillation provided PCA data
cluster plots indicating differences in the VOC mixtures for each treatment, as displayed
in Figure 4. The separate principal components, indicated by the x-axis (PC-1) and y-axis
(PC-2), provided a means for separate data points two-dimensionally. The variance of
peppermint EO was 75% for PC-1 and 14% for PC-2, accounting for 89% of the total variance
of the normalized data (Figure 4a). The variance of the data for DWE principal components
was 89% for PC-1 and 6% for PC-2, respectively, with 95% of the total variance accounted
for by the first two principal components (Figure 4b). PCA analysis indicated that the PC-1
principal component for DWE samples explained a larger proportion of the total variance
than for EO samples (Figure 4a,b), showing higher accuracy in detecting DWE samples.

The distribution of data clusters and distances between them within PCA plots pro-
vided indications of similarities and differences in chemical composition of VOC mixtures
between the various sample types (Figure 4a,b). Data cluster and locations of EO samples on
the PCA plot indicate that samples air-dried in the shade from 1-year- and 2-year-old plants,
located in the far-right quadrants, were most spacially separated from data clusters of the
other sample types (located predominantly in the left quadrants of the plot (Figure 4a). EO
samples from 3 to 5-year-old plants, dried in the shade, were located mainly in the upper
left quadrant, whereas EO samples (from 1 to 5 year-old plants) dried in the sun were fairly
tightly clustered in the left bottom quadrant with mostly negative values. Data clusters of
different sample types that are further apart (more distant) are chemically less related in
VOC chemical composition. Sample types with tight data clusters have a narrow range of
VOC composition compared to more widely separated data clusters, indicating samples
with a wider range of VOC composition (greater variability of VOC composition within the
sample type).

The distribution of PCA data clusters for DWE samples was considerably different
from that for EO samples (Figure 4b). All DWE samples, derived from 1 to 5 year-old
plants with leaf samples dried in the shade, were located in the right quadrants of the plots,
but once again the samples from 1-year- and 2-year-old plants were positioned furthest
to the right (relative to older, 3 to 5-year plants) which were located more to the left side



Chemosensors 2022, 10, 486 9 of 19

of the right quadrants. All DWE samples from leaves air-dried in the sun were tightly
clustered in the far-left quadrants with considerable amounts of overlap between data
clusters (Figure 4b), indicating low variability of VOC composition among DWE samples.
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The correlation loadings plot shows the relationships between all variables and the
relative role of sensors for each principal component as illustrated in Figure 5. The inner
circle represents 50% of the total variance while the outer circle represents 100% of the total
data variance. The higher the loading coefficient of a sensor, the greater its role in detection
and classification. All the sensors had high loading coefficients and played a significant
role in detecting EO and DWE hydrodistillation fractions (Figure 5a,b).

3.4. Linear Discriminant Analysis

The LDA method included data from all eight MOS e-nose sensors that had the same
weight. The accuracy of the model for the classification of mint EO was 91.33%, and
for mint DWE was 86.67%. The LDA method effectively discriminated between EO and
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DWE samples dried in the shade, but samples dried in the sun were not well classified
due to the overlap of data clusters between treatment types. Data overlaps may result in
misidentifications and incorrect classifications. LDA emphasizes the spatial distribution of
mint aroma components and their distance from one another. The greater the dispersion
between data collection points, the greater the group differentiation. There was good
separation of data clusters for samples dried in the shade, but data from samples dried
in the sun overlapped to some extent, indicating that the drying method has a significant
impact on aroma variation. Samples EA1, EA2, and DWA1-5 were completely separated
(isolated) from data clusters of other sample types, whereas some samples overlapped to
some extent (Figure 6a,b), indicating closer chemical relatedness of VOC emissions.
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hydrodistillation sample types for (a) mint EO, oil fraction, and (b) mint DWE, water fraction,
determined from sensor array output data collected using the 8-sensor MOS e-nose.

Table 3 presents data for the confusion matrix and performance parameters of the LDA
method. For the total of 150 data samples, only 13 were wrongly recognized for peppermint
EO, while only 20 were misrecognized for peppermint DWE. As shown in Table 3, the
wrong samples in the classification include one EA3 sample, two EA4 samples, three
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EA5 samples, three EB2 samples, three EB3 samples, and one EB5 sample. Some samples
were misidentified as incorrect sample types (including one DWA3 sample, five DWB1
samples, three DWB2 samples, three DWB4 samples, and six DWB5 samples). In addition,
according to the values in Table 3, the average values of accuracy, precision, recognition
value, specificity, AUC and F-score for peppermint EO were 0.98, 0.92, 0.91, 0.99, 0.95, and
0.91, respectively. The same values for peppermint DWE were 0.97, 0.87, 0.87, 0.99, 0.93
and 0.86, respectively.
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Table 3. Confusion matrix and performance parameters of LDA methods 1.

E-A E-B
Accuracy Precision Recall Specificity AUC F

1 2 3 4 5 1 2 3 4 5

EA1 15 0 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
EA2 0 15 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
EA3 0 0 14 0 0 0 0 0 0 0 0.99 1.00 0.93 1.00 1.00 0.97
EA4 0 0 1 13 3 0 0 0 0 0 0.96 0.76 0.87 0.97 0.87 0.81
EA5 0 0 0 2 12 0 0 0 0 0 0.97 0.86 0.80 0.98 0.92 0.83
EB1 0 0 0 0 0 15 1 0 0 0 0.99 0.94 1.00 0.99 0.96 0.97
EB2 0 0 0 0 0 0 12 0 0 0 0.98 1.00 0.80 1.00 1.00 0.99
EB3 0 0 0 0 0 0 2 12 0 0 0.96 0.86 0.80 0.98 0.92 0.83
EB4 0 0 0 0 0 0 0 3 15 1 0.97 0.79 1.00 0.97 0.88 0.88
EB5 0 0 0 0 0 0 0 0 0 14 0.99 1.00 0.93 1.00 1.00 0.97

Average 0.98 0.92 0.91 0.99 0.95 0.91

DW-A DW-B
Accuracy Precision Recall Specificity AUC F

1 2 3 4 5 1 2 3 4 5

DWA1 15 0 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWA2 0 15 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWA3 0 0 14 0 0 0 0 0 0 0 0.99 1.00 0.93 1.00 1.00 0.97
DWA4 0 0 1 15 0 0 0 0 0 0 0.99 0.94 1.00 0.99 0.97 0.97
DWA5 0 0 0 0 15 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWB1 0 0 0 0 0 10 2 0 0 0 0.95 0.83 0.67 0.99 0.91 0.74
DWB2 0 0 0 0 0 5 10 0 0 0 0.93 0.67 0.67 0.96 0.81 0.67
DWB3 0 0 0 0 0 0 3 15 0 0 0.98 0.83 1.00 0.98 0.91 0.91
DWB4 0 0 0 0 0 0 0 0 12 6 0.94 0.67 0.80 0.96 0.81 0.73
DWB5 0 0 0 0 0 0 0 0 3 9 0.94 0.75 0.60 0.98 0.86 0.67

Average 0.97 0.87 0.87 0.99 0.93 0.86
1 Symbols for hydrodistillation sample types: E = essential oil fraction, DW = distillate from water fraction;
A = leaf samples dried in the shade, B = leaf samples dried in the shade. Hyphens are used in column headings to
separate sample type from drying method.

The confusion matrix data for LDA indicated that the drying method had a greater
impact on DWE and EO extraction yield than plant age. Consequently, LDA was conducted
without considering the age of the plant, and classification was based on the drying method
alone (Figure 7a,b). As a result of this two-group classification method, the mint EO
samples were correctly classified with 93.33% accuracy, whereas mint DWE samples were
correctly classified with 100% accuracy (Table 4). Table 4 presents the confusion matrix
and performance parameters of the LDA statistical method. Based on the average of
150 data, only 10 data for peppermint EO were misclassified, while all data for peppermint
DWE were correctly classified. In Table 4, the misclassified samples belong to the first
group, shade drying, which overlaps with sun drying, while for peppermint DWE both
groups were correctly classified. It can also be seen from the values in Table 4 that the
average values for accuracy, precision, recognition value, specificity, AUC, and F-score for
peppermint EO were 0.93, 0.94, 0.93, 0.93, 0.94, and 0.93, respectively, while those obtained
for mint DWE were 1.00.

3.5. Artificial Neural Networks

The input layer used normalized data from eight metal oxide sensors as input and
10 EO groups and peppermint DWE as targets to build the ANN. The hidden layer was
also obtained by trial and error. Results are presented in Table 5 based on 60% of the total
data used for training, 20% for validation, and 20% for testing.
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Figure 7. LDA results for classification of two groups (a) mint EO (blue squares), and (b) mint DWE
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Table 4. Confusion matrix and performance parameters of LDA methods for classification of
two groups.

EO-A EO-B Accuracy Precision Recall Specificity AUC F

EOA 65 0 0.93 1.00 0.87 1.00 1.00 0.93
EOB 10 75 0.93 0.88 1.00 0.87 0.87 0.94

Average 0.93 0.94 0.93 0.93 0.94 0.93

DW-A DW-B Accuracy Precision Recall Specificity AUC F

DWA 75 0 1.00 1.00 1.00 1.00 1.00 1.00
DWB 0 75 1.00 1.00 1.00 1.00 1.00 1.00

Average 1.00 1.00 1.00 1.00 1.00 1.00
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Table 5. Artificial neural network results.

Topology
Training Test

CCR (%)
RMSE R2 RMSE R2

Essential Oil

8-6-10 0.555 0.901 0.657 0.849 85.6
8-7-10 0.430 0.943 0.565 0.896 90.0
8-8-10 0.409 0.949 0.597 0.883 88.8
8-9-10 0.279 0.977 0.425 0.946 95.2

8-10-10 0.007 0.999 0.359 0.962 96.7
8-11-10 0.109 0.996 0.364 0.954 96.1

Mint
Distilled Water

8-6-10 0.559 0.898 0.552 0.901 91.1
8-7-10 0.463 0.933 0.467 0.932 93.9
8-8-10 0.328 0.968 0.414 0.947 95.1
8-9-10 0.036 0.999 0.070 0.998 100.0

8-10-10 0.423 0.945 0.689 0.856 86.2
8-11-10 0.368 0.960 0.538 0.907 91.2

A characteristic pattern in the sensor array is the presence of a particular gas which is
equivalent to a signature that can be learned from sufficient training. The correct classifica-
tion rate (CCR), R-squared (R2), and root mean square error (RMSE) were used to evaluate
the obtained models. As shown in Table 5, the topology 8-10-10 obtained the best results
for 10 groups of EO, while the topology 8-9-10 presented the best results for 10 groups
of DWE. Thus, the R2 value of train and test for peppermint EO was 0.999 and 0.962,
respectively, and the RMSE for train and test was 0.007 and 0.359, respectively. In addition,
the model has an overall detection accuracy of 96.7%. By contrast, the R2 value for train and
test in peppermint DWE was 0.999 and 0.998, respectively; and RMSE for the mentioned
parameters was 0.036 and 0.070, respectively. Moreover, the model had an overall detection
accuracy of 100%.

The confusion matrix and functional parameters are also shown in Table 6. Rows in
the table correspond to the network output or predicted sample class, respectively, and
columns correspond to the target class or the actual sample. The diagonal cells represent
the number of correct classifications by ANN, while the off-diagonal cells represent the
gases that were incorrectly classified. For mint EO, 5 of 150 data were incorrectly identified
and the model has a detection accuracy of 96.7, whereas for mint DWE, all samples were
identified correctly and the accuracy was 100%. The average values for accuracy, precision,
recognition value, specificity, AUC, and F-score for peppermint EO were 0.99, 0.97, 0.97,
100, 0.98, and 0.94, respectively (Table 6), while these values for mint DWE were 100%. As
shown by the lower performance value score for the training phase compared to the test
phase, there is no evidence of under- or over-fitting.

Table 6. Confusion matrix and performance parameters of ANN methods.

EO-A EO-B
Accuracy Precision Recall Specificity AUC F

1 2 3 4 5 1 2 3 4 5

EOA1 15 0 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
EOA2 0 15 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
EOA3 0 0 15 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
EOA4 0 0 0 14 0 0 0 0 0 0 0.99 1.00 0.93 1.00 1.00 0.97
EOA5 0 0 0 1 15 0 0 0 0 0 0.99 0.94 1.00 0.99 0.97 0.97
EOB1 0 0 0 0 0 15 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
EOB2 0 0 0 0 0 0 15 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
EOB3 0 0 0 0 0 0 0 12 0 0 0.98 1.00 0.80 1.00 1.00 0.89
EOB4 0 0 0 0 0 0 0 3 15 1 0.97 0.79 1.00 0.97 0.88 0.88
EOB5 0 0 0 0 0 0 0 0 0 14 0.99 1.00 0.93 1.00 1.00 0.97

Average 0.99 0.97 0.97 1.00 0.98 0.97
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Table 6. Cont.

DW-A DW-B
Accuracy Precision Recall Specificity AUC F

1 2 3 4 5 1 2 3 4 5

DWA1 15 0 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWA2 0 15 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWA3 0 0 15 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWA4 0 0 0 15 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWA5 0 0 0 0 15 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWB1 0 0 0 0 0 15 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWB2 0 0 0 0 0 0 15 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWB3 0 0 0 0 0 0 0 15 0 0 1.00 1.00 1.00 1.00 1.00 1.00
DWB4 0 0 0 0 0 0 0 0 15 0 1.00 1.00 1.00 1.00 1.00 1.00
DWB5 0 0 0 0 0 0 0 0 0 15 1.00 1.00 1.00 1.00 1.00 1.00

Average 1.00 1.00 1.00 1.00 1.00 1.00

The 8-10-10 topology had an accuracy of 100 for the classification based on the drying
method for peppermint EO. Thus, the coefficient for determination (R2) values for train
and test were both 0.999. For mint DWE, the 8-9-10 topology had an accuracy of 100% and
the R2 values for train and test were also 0.999.

4. Discussion

We examined the capabilities of an experimental e-nose device to discriminate between
VOC emissions from EO and DWE fractions of mint hydrodistillation and evaluated
the effects of plant age at harvest and leaf drying methods (prior to extraction) on final
yields. The e-nose device was found to be effective in distinguishing headspace VOC
emissions from the two types of extracts analyzed. The analytical methods evaluated for
the classification of volatiles’ composition included PCA, LDA, and ANN, which were
performed from the analysis of electrical signals derived from electronic-nose sensors. PCA
data cluster plots and indicated differences in the composition of VOC mixtures for each
treatment. The LDA method effectively discriminated between EO and DWE samples dried
in the shade, but samples dried in the sun were not well classified due to the overlap of data
clusters between the treatment types. The ANN model had an overall detection accuracy of
96.7% for both EO and DWEs. The e-nose provided slightly more accurate discriminations
for DWEs than for peppermint EOs. We found that the age of plants when mint leaves were
harvested had no statistically significant effect on the essential oil concentration extracted.
The electronic nose proved to be a reliable and fast tool for identifying plant EOs.

Several factors have been examined in previous studies to determine what plant and
environmental parameters are important in affecting EO yields. Souza et al. [27] reported
that leaf maturation is the physiological parameter most responsible for increasing the EO
yield and VOC content of mint. Their results showed that young leaves are associated with
higher contents of VOCs, including limonene and ketone monoterpenes (intermediates
in the biosynthesis of menthol), but adult leaves contained higher contents of alcohol
and ester monoterpenes. We did not examine the effects of leaf maturation on VOC
content, but instead determined the effects of plant age on EO yield. Younger, 1-year old
plants generally produced greater quantities of EOs than older plants, but there were no
significant differences in EOs produced by plants older than 1 year of age. The effects of
other environmental factors such as ambient temperature, cultivation methods, irrigation,
and fertilization were not tested because all of these factors were held constant across
sample types (plants of different ages all harvested at the same time).

Gershenzon et al. [28] examined monoterpene VOC changes. The monoterpene content
of young leaves increased rapidly for the first 21 days of leaf development, then leveled
off and was stable for the remainder of leaf life. In mint plant taxa, monoterpene content
increases during the early stages of organ development and then remains relatively constant
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over the rest of organ life. The production of different types of monoterpenes in mint
leaves largely depends on the age of leaves (level of maturity) and is controlled by subtle
changes in the expression of monoterpene metabolic pathways that occur in a synchronous
or successive process from the apex to the base of the leaf [29]. They determined this
from studying the developmental changes in the monoterpene composition of individual
glandular trichomes.

Mokhtarikhah et al. [30] showed that the highest yield of EOs from spearmint (M. spicata)
was obtained from leaves dried in the sun. Ozdemir et al. [31] reported that they dried leaf,
flower, and branches of Origanum vulgare and Origanum onites in an oven at 60 ◦C in the
shade and in the sun and showed that the highest yield EO was obtained when dried in the
shade. Bettaieb Rebey et al. [32] studied the effect of different drying methods on EO yield
in seeds. Shade-dried samples yielded more EO than oven- and sun-dried samples. Drying
plant samples in the shade is presumably the preferred and best drying method. As shade
drying uses a lower temperature, aromatic compounds are evaporated at a slower rate and
EOs are more abundant than in samples dried in an oven or in the sun [3,4].

It is essential for quality assessment to determine how EOs are extracted and produced.
To preserve medicinal biochemical compounds, drying is the most common method [33,34].
After harvest, medicinal plants are very susceptible to fungal damage due to high humidity
and moisture content. It is therefore important to reduce the drying humidity when choos-
ing the most appropriate method. Drying moisture should be reduced to 5–12% [32,35].
The EO of fresh plants are stored on the leaf surfaces and in leaf trichomes. The integrity
of oil glands in dried products depends on the persistence of EOs in dried leaves. As
a result, maintaining trichome integrity or reducing damage to trichomes during drying
may increase the production of EOs [36]. Many other factors can affect the production of
EO in medicinal plants, such as the distance between plants (plant density), cutting height,
season, age, harvest time, and drying method. EO production and associated medicinal
properties are directly affected by these factors [37]. Several studies have demonstrated
the effects of drying methods on the amount of EO in medicinal plants [3,9,38–41]. Some
studies have focused on the age of plants at leaf harvest. Plant age should be determined
not only based on the mass of the plant to be harvested, but also on its active EO content,
without which the product would be sold at a lower price to consumers [34].

A plant’s appropriate age at harvest for optimal EO content depends on the plant
parts harvested, growth stage, and time of year. Analyzing the effects of two plant ages on
the EO content of Melissa officinalis leaves, researchers found that there was no significant
difference (<0.02%) in the EO content of leaves from plants of different ages [42]. May
et al. [43] similarly observed no variability in EO yield from leaves of Rosmarinus officinalis
plants at various ages. Rocha et al. [34] investigated the effect of plant age on EO content
and composition in Cymbopogon citratus leaves and concluded that plant age does not affect
the amount of EO extracted from lemongrass leaves.

The differences we observed in the present study between EO yields and volatiles
obtained from sun-drying and shade-drying methods may be attributed to the volatilization
of some plant VOCs during drying at higher temperatures when exposed to direct sunlight.
In addition, moisture is released by diffusion from the surface of the leaves as they dry.
Since the oil-producing glands of the plant are located on or near the leaf surface, some
EO is lost as the plant dries. There are other possible explanations for a decrease in the
amount of EO during sun drying [8]. Sun drying yielded 0.3966 mL of EO. As a result,
shade-dried plants produced more EO than sun-dried plants. Similarly, Mokhtarikhah
et al. [30] showed that the highest yield of spearmint EO was measured after drying in the
shade. Ozdemir et al. [31] reported that they dried Origanum vulgare and Origanum onites
in an oven at 60 ◦C in the shade and in the sun and showed that the highest yield EO was
obtained when dried in the shade.

Previous studies have utilized electronic-nose devices to detect the EO qualities of
medicinal flowering plants. We tested a MOS e-nose instrument in the current study to
investigate EO emissions from peppermint due to the versatility and effectiveness of these
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sensor types in plant VOC detection. Gorji-Chakespari et al. [44] utilized a similar MOS e-
nose to distinguish between the EO volatiles of Rosa damascena. Their results analyzed with
PCA and LDA showed that two principal components explained 85% and 99% of the sample
variance, respectively. They concluded that the electronic nose functioned effectively as
an accurate, fast, and inexpensive system for discriminating between Rosa damascena oil
VOC composition. Graboski et al. [45] used a carbon nanocomposite sensor based e-nose
for detection of clove EO. Based on PCA, they discovered that an e-nose could successfully
detect differences in VOC composition at a variety of concentrations. EO levels could also
be monitored using this approach. Aghoutane et al. [46] used an electronic nose along
with PCA, DFA, and HCA methods to distinguish Okoume and Aiele EO volatiles. Other
studies on EO analysis include such species as Mentha spicata [47], Cymbidium ensifolium [48],
ginseng [49], Asari radix and Rhizoma spp. [50], Z. jujuba [51], and classification of rosemary
(Rosmarinus officinalis) EO [52].

5. Conclusions

An experimental electronic nose was tested for the capabilities of detecting and dis-
criminating between VOC headspace emissions from EO and DWE fractions of mint
hydrodistillations. We evaluated PCA, LDA, and ANN algorithms for effectiveness and
accuracy in discriminating between differences in overall VOC composition based on e-
nose sensor responses. We found that the leaf extraction yield of EO obtained, regardless
of the leaf-drying method, does not depend on the age of the peppermint plants. PCA
was more effective in classifying VOCs from the DWE water fraction than from the EO
fraction. The ANN method was more accurate than LDA for discriminating VOC sample
types, but both methods indicated some overlapping data for peppermint EO. We con-
clude that peppermint DWE and EO can be effectively distinguished by analyzing VOC
emissions from both fractions using electronic-nose sensory response data. Identification
of individual VOCs by the e-nose is not necessary to discriminate between sample types.
In fact, electronic-nose sensors detect collective differences in sample VOC composition
without distinguishing individual VOCs present. The experimental e-nose VOC analysis
results here provided good discrimination between peppermint EO and DWE fractions,
distinguising between volatile emissions for quality assessments. Thus, the electronic nose
could potentially be used commercially as a rapid, non-destructive method for detecting
different types of mint hydrodistillation fractions (based on VOC emissions) for quality
control assessments prior to the sale of medicinal mint extracts. In addition, the e-nose
would be quite useful for monitoring types of EO VOC emissions at different times of the
year for various mint cultivars, and as environmental factors change, to determine the best
times to harvest leaves for EO extractions for optimum medicinal value.
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