Next Article in Journal
Parental Life-Limiting Illness: What Do We Tell the Children?
Next Article in Special Issue
Risk Factors of Lyme Disease: An Intersection of Environmental Ecology and Systems Science
Previous Article in Journal
Adverse Event Circumstances and the Case of Drug Interactions
Previous Article in Special Issue
Extensive Distribution of the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, in Multiple Tick Species Parasitizing Avian and Mammalian Hosts across Canada
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle

Presence of Babesia odocoilei and Borrelia burgdorferi Sensu Stricto in a Tick and Dual Parasitism of Amblyomma inornatum and Ixodes scapularis on a Bird in Canada

1
International Lyme and Associated Diseases Society, 2 Wisconsin Circle, Suite 700, Chevy Chase, MD 20185-7007, USA
2
Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA
3
Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
*
Author to whom correspondence should be addressed.
Healthcare 2019, 7(1), 46; https://doi.org/10.3390/healthcare7010046
Received: 11 February 2019 / Revised: 12 March 2019 / Accepted: 13 March 2019 / Published: 20 March 2019
(This article belongs to the Special Issue Lyme Disease and Related Tickborne Infections)
  |  
PDF [518 KB, uploaded 27 March 2019]
  |  

Abstract

Wild birds transport ticks into Canada that harbor a diversity of zoonotic pathogens. However, medical practitioners often question how these zoonotic pathogens are present in their locality. In this study, we provide the first report of an Amblyomma inornatum tick cofeeding with a blacklegged tick, Ixodes scapularis, which parasitized a Veery, Catharus fuscescens—a neotropical songbird. Using the flagellin (flaB) gene of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, and the 18S rRNA gene of the Babesia piroplasm, a malaria-like microorganism, we detected Borrelia burgdorferi sensu stricto and Babesia odocoilei, respectively, in an I. scapularis nymph. After the molt, these ticks can bite humans. Furthermore, this is the first documentation of B. odocoilei in a tick parasitizing a bird. Our findings substantiate the fact that migratory songbirds transport neotropical ticks long distances, and import them into Canada during northward spring migration. Health care practitioners need to be aware that migratory songbirds transport pathogen-laden ticks into Canada annually, and pose an unforeseen health risk to Canadians. View Full-Text
Keywords: Borrelia burgdorferi sensu stricto; Lyme disease; Babesia; babesiosis; 18S rRNA gene; ticks; birds; ectoparasite; tick-borne pathogens Borrelia burgdorferi sensu stricto; Lyme disease; Babesia; babesiosis; 18S rRNA gene; ticks; birds; ectoparasite; tick-borne pathogens
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Scott, J.D.; Clark, K.L.; Durden, L.A. Presence of Babesia odocoilei and Borrelia burgdorferi Sensu Stricto in a Tick and Dual Parasitism of Amblyomma inornatum and Ixodes scapularis on a Bird in Canada. Healthcare 2019, 7, 46.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Healthcare EISSN 2227-9032 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top