Gait Disturbance in Patients with Schizophrenia in Relation to Walking Speed, Ankle Joint Range of Motion, Body Composition, and Extrapyramidal Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.4. Variables and Measurements
2.4.1. Gait
2.4.2. ROM—Ankle Joints
2.4.3. Extrapyramidal Symptoms
2.4.4. Psychotropic Drugs
2.4.5. Functioning
2.5. Body Composition Assessment
2.6. Study Size Estimation
2.7. Statistical Methods
3. Results
3.1. Descriptive Data
3.2. Main Results
- (1)
- When all variables with p < 0.01 were included in the univariate analysis, the intercept was significant (t = −2.23, p = 0.03) and the significant variables were right and left stride lengths (both p < 0.001) and DIEPSS 2 bradykinesia (p < 0.05).
- (2)
- When the right and left stride lengths were removed from 1), the intercept was significant (t = 6.4, p < 0.001); however, no significant variables were found.
- (3)
- When the right stride length, ankle plantar flexion, DIEPSS 1 gait, and DIEPSS 2 bradykinesia were entered, the intercept was not significant (t = −0.35, p = 0.73). Similarly, when the left stride length, ankle plantar flexion, DIEPSS 1 gait, and DIEPSS 2 bradykinesia were entered, the intercept was also not significant (t = −0.73, p = 0.47).
- (4)
- When the right and left stride lengths were removed, the intercepts were significant for the right (t = 6.67, p < 0.001) and left (t = 6.85, p < 0.001), and ankle plantar flexion was significant for the right (t = 3.13, p < 0.001) and left (t = 3.45, p < 0.001).
4. Discussion
4.1. Interpretation and Generalizability/Implications
4.2. Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMD | Bone mineral density |
BMI | Body mass index |
DIEPSS | Drug-induced extrapyramidal symptoms scale |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders 5 |
EPSs | Extrapyramidal symptoms |
GAF | Global assessment of functioning |
ROM | Range of motion |
SMI | Skeletal muscle mass index |
References
- Hirjak, D.; Kubera, K.M.; Thomann, P.A.; Wolf, R.C. Motor dysfunction as an intermediate phenotype across schizophrenia and other psychotic disorders: Progress and perspectives. Schizophr. Res. 2018, 200, 26–34. [Google Scholar] [CrossRef]
- Harris, M.S.; Reilly, J.L.; Thase, M.E.; Keshavan, M.S.; Sweeney, J.A. Response suppression deficits in treatment-naïve first-episode patients with schizophrenia, psychotic bipolar disorder and psychotic major depression. Psychiatry Res. 2009, 170, 150–156. [Google Scholar] [CrossRef]
- Moussa-Tooks, A.B.; Rogers, B.P.; Huang, A.S.; Sheffield, J.M.; Heckers, S.; Woodward, N.D. Cerebellar structure and cognitive ability in psychosis. Biol. Psychiatry 2022, 92, 385–395. [Google Scholar] [CrossRef]
- Nuoffer, M.G.; Lefebvre, S.; Nadesalingam, N.; Alexaki, D.; Gama, D.B.; Wüthrich, F.; Kyrou, A.; Kerkeni, H.; Kalla, R.; Walther, S. Psychomotor slowing alters gait velocity, cadence, and stride length and indicates negative symptom severity in psychosis. Schizophrenia 2022, 8, 116. [Google Scholar] [CrossRef]
- Martin, L.; Stein, K.; Kubera, K.; Troje, N.F.; Fuchs, T. Movement markers of schizophrenia: A detailed analysis of patients’ gait patterns. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 1347–1364. [Google Scholar] [CrossRef]
- Putzhammer, A.; Heindl, B.; Broll, K.; Pfeiff, L.; Perfahl, M.; Hajak, G. Spatial and temporal parameters of gait disturbances in schizophrenic patients. Schizophr. Res. 2004, 69, 159–166. [Google Scholar] [CrossRef]
- Putzhammer, A.; Perfahl, M.; Pfeiff, L.; Hajak, G. Gait disturbances in patients with schizophrenia and adaptation to treadmill walking. Psychiatry Clin. Neurosci. 2005, 59, 303–310. [Google Scholar] [CrossRef]
- Peralta, V.; Cuesta, M.J. The effect of antipsychotic medication on neuromotor abnormalities in neuroleptic-naive nonaffective psychotic patients: A naturalistic study with haloperidol, risperidone, or olanzapine. Prim. Care Companion J. Clin. Psychiatry 2010, 12, 26286. [Google Scholar] [CrossRef]
- Waddington, J.L. Psychosis in Parkinson’s disease and parkinsonism in antipsychotic-naive schizophrenia spectrum psychosis: Clinical, nosological and pathobiological challenges. Acta Pharmacol. Sin. 2020, 41, 464–470. [Google Scholar] [CrossRef]
- Crossley, N.A.; Constante, M.; McGuire, P.; Power, P. Efficacy of atypical v. typical antipsychotics in the treatment of early psychosis: Meta-analysis. Br. J. Psychiatry 2010, 196, 434–439. [Google Scholar] [CrossRef]
- Raccagni, C.; Nonnekes, J.; Bloem, B.R.; Peball, M.; Boehme, C.; Seppi, K.; Wenning, G.K. Gait and postural disorders in parkinsonism: A clinical approach. J. Neurol. 2020, 267, 3169–3176. [Google Scholar] [CrossRef]
- Cristiano, V.B.; Vieira Szortyka, M.F.; Lobato, M.I.; Ceresér, K.M.; Belmonte-de-Abreu, P. Postural changes in different stages of schizophrenia is associated with inflammation and pain: A cross-sectional observational study. Int. J. Psychiatry Clin. Pract. 2017, 21, 104–111. [Google Scholar] [CrossRef]
- Lorbergs, A.L.; Allaire, B.T.; Yang, L.; Kiel, D.P.; Cupples, L.A.; Jarraya, M.; Guermazi, A.; Travison, T.G.; Bouxsein, M.L.; Anderson, D.E.; et al. A Longitudinal Study of Trunk Muscle Properties and Severity of Thoracic Kyphosis in Women and Men: The Framingham Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 420–427. [Google Scholar] [CrossRef]
- Brunner, R.; Frigo, C.A. Control of tibial advancement by the plantar flexors during the stance phase of gait Depends on knee flexion with respect to the ground reaction force. Bioengineering 2023, 11, 41. [Google Scholar] [CrossRef]
- Cattagni, T.; Scaglioni, G.; Laroche, D.; Van Hoecke, J.; Gremeaux, V.; Martin, A. Ankle muscle strength discriminates fallers from non-fallers. Front. Aging Neurosci. 2014, 6, 336. [Google Scholar] [CrossRef]
- Paillard, T. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults. Front. Physiol. 2017, 8, 585. [Google Scholar] [CrossRef]
- Sinaki, M.; Brey, R.H.; Hughes, C.A.; Larson, D.R.; Kaufman, K.R. Balance disorder and increased risk of falls in osteoporosis and kyphosis: Significance of kyphotic posture and muscle strength. Osteoporos. Int. 2005, 16, 1004–1010. [Google Scholar] [CrossRef]
- Müller, J.; Müller, S.; Engel, T.; Reschke, A.; Baur, H.; Mayer, F. Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk—A pilot study. J. Biomech. 2016, 49, 933–938. [Google Scholar] [CrossRef]
- Tanioka, R.; Osaka, K.; Ito, H.; Zhao, Y.; Tomotake, M.; Takase, K.; Tanioka, T. Examining factors associated with dynapenia/sarcopenia in patients with schizophrenia: A pilot case-control study. Healthcare 2023, 11, 684. [Google Scholar] [CrossRef]
- Kamoi, R.; Mifune, Y.; Soriano, K.; Tanioka, R.; Yamanaka, R.; Ito, H.; Osaka, K.; Umehara, H.; Shimomoto, R.; Bollos, L.A.; et al. Association Between Dynapenia/Sarcopenia, Extrapyramidal Symptoms, Negative Symptoms, Body Composition, and Nutritional Status in Patients with Chronic Schizophrenia. Healthcare 2025, 13, 48. [Google Scholar] [CrossRef]
- Saarni, S.E.; Saarni, S.I.; Fogelholm, M.; Heliövaara, M.; Perälä, J.; Suvisaari, J.; Lönnqvist, J. Body composition in psychotic disorders: A general population survey. Psychol. Med. 2009, 39, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.Y.; Lee, C.C.; Chou, Y.M.; Shen, S.P.; Su, C.Y.; Wu, H.C.; Huang, M.W.; Shie, J.P.; Chou, F.H. The risks of major osteoporotic fractures in patients with schizophrenia: A population-based 10-year follow-up study. Schizophr. Res. 2014, 159, 322–328. [Google Scholar] [CrossRef]
- Stubbs, B.; Soundy, A.; Probst, M.; Parker, A.; Skjaerven, L.; Gyllensten, A.; Vancampfort, D. Meeting the drastic physical health disparity in people with schizophrenia: A leading role for all physiotherapists. Physiotherapy 2014, 100, 185–186. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Lyons, J.G.; Heeren, T.; Stuver, S.O.; Fredman, L. Assessing the agreement between 3-meter and 6-meter walk tests in 136 community-dwelling older adults. J. Aging Health 2015, 27, 594–605. [Google Scholar] [CrossRef]
- Gait Analysis System, NEC Solution Innovators, Ltd. Available online: https://www.nec-solutioninnovators.co.jp/sl/walkingform/index.html (accessed on 1 June 2024). (In Japanese).
- Brockett, C.L.; Chapman, G.J. Biomechanics of the ankle. Orthop. Trauma 2016, 30, 232–238. [Google Scholar] [CrossRef]
- Inada, T. Evaluation and Diagnosis of Drug-induced Extrapyramidal Symptoms: Commentary on the DIEPSS and Guide to Its Usage; Seiwa Shoten Publishers Inc.: Tokyo, Japan, 1996. (In Japanese) [Google Scholar]
- Inada, T. A Second-Generation Rating Scale for Antipsychotic-induced Extrapyramidal Symptoms: Drug-induced Extrapyramidal Symptoms Scale; Seiwa Shoten Publishers Inc.: Tokyo, Japan, 2009; p. 17. (In Japanese) [Google Scholar]
- Woods, S.W. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J. Clin. Psychiatry 2003, 64, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.; Burgess, A.; Bottomley, C.; Riccio, M. Chlorpromazine equivalents: A consensus of opinion for both clinical and research applications. Psychiatr. Bull. 1997, 21, 224–226. [Google Scholar] [CrossRef]
- Gardner, D.M.; Murphy, A.L.; O’Donnell, H.; Centorrino, F.; Baldessarini, R.J. International consensus study of antipsychotic dosing. Am. J. Psychiatry 2010, 167, 686–693. [Google Scholar] [CrossRef]
- Aas, I.H. Global Assessment of Functioning (GAF): Properties and frontier of current knowledge. Ann. Gen. Psychiatry 2010, 9, 20. [Google Scholar] [CrossRef]
- Jones, S.H.; Thornicroft, G.; Coffey, M.; Dunn, G. A brief mental health outcome scale-reliability and validity of the Global Assessment of Functioning (GAF). Br. J. Psychiatry 1995, 166, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Tanita Understanding Your Measurements. Available online: https://tanita.eu/understanding-your-measurements (accessed on 15 September 2024).
- Tanita. Basal Metabolic Rate: What Is It and How to Measure It? Available online: https://tanita.eu/understanding-your-measurements/basal-metabolic-rate (accessed on 15 September 2024).
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- The Jamovi Project. Available online: https://www.jamovi.org (accessed on 15 September 2024).
- Kanayama, A.; Minami, M.; Yamamoto, S.; Ohmine, T.; Fujiwara, M.; Murakami, T.; Okuno, S.; Ueba, R.; Iwata, A. Examination of the impact of strength and velocity of the knee and ankle on gait speed in community–dwelling older adults. Healthcare 2022, 10, 2093. [Google Scholar] [CrossRef] [PubMed]
- Peiffer, M.; Duquesne, K.; Delanghe, M.; Van Oevelen, A.; De Mits, S.; Audenaert, E.; Burssens, A. Quantifying walking speeds in relation to ankle biomechanics on a real–time interactive gait platform: A musculoskeletal modeling approach in healthy adults. Front. Bioeng. Biotechnol. 2024, 12, 1348977. [Google Scholar] [CrossRef]
- Notice of Revision of Joint Range of Motion Indication and Measurement Method. Available online: https://www.jarm.or.jp/member/kadou03.html (accessed on 20 September 2024).
- Hainline, G.; Hainline, R.; Handlery, R.; Fritz, S. A scoping review of the predictive qualities of walking speed in older adults. J. Geriatr. Phys. Ther. 2024, 47, 183–191. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Nguyen, H.T.; Nguyen, H.T.; Nguyen, T.X.; Nguyen, T.N.; Nguyen, T.T.; Nguyen, A.L.; Pham, T.; Vu, H. Walking speed assessed by 4–meter walk test in the community–dwelling oldest old population in Vietnam. Int. J. Environ. Res. Public Health 2022, 19, 9788. [Google Scholar] [CrossRef]
- Seino, S.; Shinkai, S.; Fujiwara, Y.; Obuchi, S.; Yoshida, H.; Hirano, H.; Kim, H.; Ishizaki, T.; Takahashi, R. Reference values and age and sex differences in physical performance measures for community–dwelling older Japanese: A pooled analysis of six cohort studies. PLoS ONE 2014, 9, e99487. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Ferrigno, C.; Moazen, M.; Wimmer, M.A. From normal to fast walking: Impact of cadence and stride length on lower extremity joint moments. Gait Posture 2016, 46, 118–125. [Google Scholar] [CrossRef]
- Danivas, V.; Venkatasubramanian, G. Current perspectives on chlorpromazine equivalents: Comparing apples and oranges! Indian J. Psychiatry 2013, 55, 207–208. [Google Scholar]
- Tabara, Y.; Setoh, K.; Kawaguchi, T.; Matsuda, F. Skeletal muscle mass index is independently associated with all–cause mortality in men: The Nagahama study. Geriatr. Gerontol. Int. 2022, 22, 956–960. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare, Reiwa 2nd year Overview of Patient Surveys (Confirmed Numbers). Available online: https://www.mhlw.go.jp/toukei/saikin/hw/kanja/20/dl/kanjya.pdf (accessed on 20 October 2024). (In Japanese).
- Keller-Varady, K.; Hasan, A.; Schneider-Axmann, T.; Hillmer-Vogel, U.; Adomssent, B.; Wobrock, T.; Schmitt, A.; Niklas, A.; Falkai, P.; Malchow, B. Endurance training in patients with schizophrenia and healthy controls: Differences and similarities. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 266, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Feng, Y. The volume of brisk walking is the key determinant of BMD improvement in premenopausal women. PLoS ONE 2022, 17, e0265250. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M. Osteoporosis: Clinical Evaluation [Updated 2 November 2024]. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279049/ (accessed on 1 June 2024).
- Kishimoto, T.; Hert, M.; Carlson, H.; Manu, P.; Correll, C. Osteoporosis and fracture risk in people with schizophrenia. Curr. Opin. Psychiatry 2012, 25, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Zanker, J.; Duque, G. Osteosarcopenia: Epidemiology, diagnosis, and treatment–facts and numbers. J. Cachexia Sarcopenia Muscle 2020, 11, 609–618. [Google Scholar] [CrossRef]
- Vancampfort, D.; Probst, M.; De Herdt, A.; Corredeira, R.M.; Carraro, A.; De Wachter, D.; De Hert, M. An impaired health related muscular fitness contributes to a reduced walking capacity in patients with schizophrenia: A cross-sectional study. BMC Psychiatry 2013, 13, 5. [Google Scholar] [CrossRef]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS ONE 2014, 9, e111810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Creaby, M.; Cole, M. Gait characteristics and falls in Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2018, 57, 1–8. [Google Scholar] [CrossRef]
- Stubbs, B.; Mueller, C.; Gaughran, F.; Lally, J.; Vancampfort, D.; Lamb, S.; Koyanagi, A.; Sharma, S.; Stewart, R.; Perera, G. Predictors of falls and fractures leading to hospitalization in people with schizophrenia spectrum disorder: A large representative cohort study. Schizophr. Res. 2018, 201, 70–78. [Google Scholar] [CrossRef]
- Gefen, A. Simulations of foot stability during gait characteristic of ankle dorsiflexor weakness in the elderly. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 333–337. [Google Scholar] [CrossRef]
- Nilsson, M.; Jonasson, S.; Zijlstra, G. Predictive Factors of Fall-Related Activity Avoidance in People with Parkinson Disease—A Longitudinal Study with a 3-Year Follow-up. J. Neurol. Phys. Ther. 2020, 44, 188–194. [Google Scholar] [CrossRef]
- Hu, Z.; Ren, L.; Hu, D.; Gao, Y.; Wei, G.; Qian, Z.; Wang, K. Speed–related energy flow and joint function change during human walking. Front. Bioeng. Biotechnol. 2021, 9, 666428. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli Oskouei, S.; Malliaras, P.; Jansons, P.; Hill, K.; Soh, S.E.; Jaberzadeh, S.; Perraton, L. Is Ankle Plantar Flexor Strength Associated with Balance and Walking Speed in Healthy People? A Systematic Review and Meta-Analysis. Phys. Ther. 2021, 101, pzab018. [Google Scholar] [CrossRef] [PubMed]
- Zunko, H.; Vauhnik, R. Reliability of the weight–bearing ankle dorsiflexion range of motion measurement using a smartphone goniometer application. PeerJ 2021, 9, e11977. [Google Scholar] [CrossRef] [PubMed]
- Konor, M.M.; Morton, S.; Eckerson, J.M.; Grindstaff, T.L. Reliability of three measures of ankle dorsiflexion range of motion. Int. J. Sports Phys. Ther. 2012, 7, 279–287. [Google Scholar]
- Hausdorff, J.M.; Edelberg, H.K.; Mitchell, S.L.; Goldberger, A.L.; Wei, J.Y. Increased gait unsteadiness in community-dwelling elderly fallers. Arch. Phys. Med. Rehabil. 1997, 78, 278–283. [Google Scholar] [CrossRef]
Variable | Median (Range) |
---|---|
Age, years | 64 (28 to 86) |
Disease duration, years | 38 (1 to 70) |
Global assessment of functioning (GAF), points | 25 (5 to 35) |
Body mass index, kg/m2 | 22.35 (13.4 to 34.1) |
Height, cm | 160 (139 to 177) |
Weight, kg | 56.5 (31.0 to 94.9) |
Bone mineral content, kg | 2.2 (1.4 to 3.1) |
Skeletal muscle index, kg/m2 | 6.52 (4.83 to 8.83) |
Trunk muscle mass, kg | 20.05 (14.5 to 31.8) |
Walking speed, m/s | 0.683 (0.0167 to 1.28) |
Right stride, cm | 40 (0 to 71) |
Left stride, cm | 43 (2 to 70) |
Chlorpromazine-equivalent dose, mg/day | 629 (12.6 to 2382) |
Right ankle plantar flexion, degree | 30 (0 to 75) |
Left ankle plantar flexion, degree | 32.5 (−10 to 75) |
Right ankle dorsiflexion, degree | 17.5 (−10 to 45) |
Left ankle dorsiflexion, degree | 15 (−15 to 45) |
Percentage (%), Walking speed, median (min–max) | |
Drug-induced extrapyramidal symptoms scale 9, overall severity | |
0 = None, normal | 21 (30.9), 0.83 (0.017–1.28) |
1 = Very mild, uncertain | 18 (26.5), 0.64 (0.033–1.15) |
2 = Mild | 26 (38.2), 0.63 (0.07–1.28) |
3 = Moderate | 3 (4.4), 0.37 (0.33–0.63) |
Sex | |
Male | 34 (50.0) |
Female | 34 (50.0) |
Stride (Right) | Stride (Left) | DIEPSS 9, Overall Severity | Chlorpromazine-Equivalent Dose | Ankle Plantar Flexion (Right) | Ankle Plantar Flexion (Left) | Ankle Dorsiflexion (Right) | Ankle Dorsiflexion (Left) | Age (Years) | BMI (kg/m2) | Bone Mineral Content (kg) | Muscle Mass Trunk (kg) | SMI (kg/m2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Walking speed (m/s) | 0.83 *** | 0.88 *** | −0.28 | 0.26 * | 0.37 ** | 0.41 *** | −0.1 | −0.13 | −0.61 *** | 0.23 * | 0.36 ** | 0.27 * | 0.25 * |
DIEPSS 1 Gait | DIEPSS 2 Bradykinesia | DIEPSS 3 Sialorrhea | DIEPSS 4 Muscle Rigidity | DIEPSS 5 Tremor | DIEPSS 6 Akathisia | DIEPSS 7 Dystonia | DIEPSS 8 Dyskinesia | DIEPSS 9 Overall Severity | |
---|---|---|---|---|---|---|---|---|---|
Walking speed (m/s) | −0.51 *** | −0.42 *** | −0.17 | −0.12 | −0.29 * | −0.09 | −0.13 | −0.15 | −0.28 * |
95% CI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | Lower | Upper | t | p | Stand. Estimate | R | R2 | Adjusted R2 |
Intercept a | 0.626 | 0.079 | 0.468 | 0.784 | 7.92 | <0.001 | 0.551 | 0.303 | 0.259 | |
Ankle plantar flexion (Right) | 0.007 | 0.002 | 0.003 | 0.01 | 3.49 | <0.001 | 0.396 | |||
DIEPSS 2 bradykinesia: | ||||||||||
1—0 | −0.157 | 0.079 | −0.315 | 0.002 | −1.98 | 0.052 | −0.496 | |||
2—0 | −0.214 | 0.095 | −0.403 | −0.025 | −2.26 | 0.027 | −0.676 | |||
3—0 | −0.41 | 0.125 | −0.66 | −0.16 | −3.27 | 0.002 | −1.297 | |||
Intercept a | 0.627 | 0.08 | 0.44 | 0.76 | 7.33 | <0.001 | 0.563 | 0.317 | 0.273 | |
Ankle plantar flexion (Left) | 0.006 | 0.002 | 0.003 | 0.009 | 3.69 | <0.001 | 0.379 | |||
DIEPSS 2 bradykinesia: | ||||||||||
1—0 | −0.152 | 0.078 | −0.322 | −0.006 | −1.94 | 0.057 | −0.57 | |||
2—0 | −0.199 | 0.094 | −0.405 | −0.027 | −2.11 | 0.039 | −0.684 | |||
3—0 | −0.343 | 0.121 | −0.596 | −0.104 | −2.83 | 0.006 | −1.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanioka, R.; Kamoi, R.; Mifune, Y.; Nakagawa, K.; Onishi, K.; Soriano, K.; Umehara, H.; Ito, H.; Bollos, L.; Kwan, R.Y.C.; et al. Gait Disturbance in Patients with Schizophrenia in Relation to Walking Speed, Ankle Joint Range of Motion, Body Composition, and Extrapyramidal Symptoms. Healthcare 2025, 13, 604. https://doi.org/10.3390/healthcare13060604
Tanioka R, Kamoi R, Mifune Y, Nakagawa K, Onishi K, Soriano K, Umehara H, Ito H, Bollos L, Kwan RYC, et al. Gait Disturbance in Patients with Schizophrenia in Relation to Walking Speed, Ankle Joint Range of Motion, Body Composition, and Extrapyramidal Symptoms. Healthcare. 2025; 13(6):604. https://doi.org/10.3390/healthcare13060604
Chicago/Turabian StyleTanioka, Ryuichi, Reiko Kamoi, Yoshihiro Mifune, Keita Nakagawa, Kaito Onishi, Krishan Soriano, Hidehiro Umehara, Hirokazu Ito, Leah Bollos, Rick Yiu Cho Kwan, and et al. 2025. "Gait Disturbance in Patients with Schizophrenia in Relation to Walking Speed, Ankle Joint Range of Motion, Body Composition, and Extrapyramidal Symptoms" Healthcare 13, no. 6: 604. https://doi.org/10.3390/healthcare13060604
APA StyleTanioka, R., Kamoi, R., Mifune, Y., Nakagawa, K., Onishi, K., Soriano, K., Umehara, H., Ito, H., Bollos, L., Kwan, R. Y. C., Osaka, K., Sato, M., Takigawa, E., Goda, K., Kamoi, H., Ishii, T., Edo, S., Mifune, K., & Tanioka, T. (2025). Gait Disturbance in Patients with Schizophrenia in Relation to Walking Speed, Ankle Joint Range of Motion, Body Composition, and Extrapyramidal Symptoms. Healthcare, 13(6), 604. https://doi.org/10.3390/healthcare13060604