The Effects of Exercise Training on Body Composition and Cardiometabolic Risk Factors in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Identification and Selection Criteria
2.3. Data Extraction and Synthesis
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Search Strategy
3.2. Study Characteristics
3.3. Meta-Analysis
3.3.1. Body Composition
3.3.2. Glycemic Markers
3.3.3. Lipid Profiles
3.3.4. Blood Pressure
3.3.5. VO2max/peck
3.4. Subgroup Analysis
3.4.1. Body Composition
3.4.2. Glycemic Markers
3.4.3. Lipid Profiles
3.4.4. VO2max/peak
4. Discussion
4.1. Body Composition
4.2. Glycemic Markers
4.3. Lipid Profiles
4.4. Blood Pressure
4.5. VO2max/peak
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawshani, A.; Rawshani, A.; Franzén, S.; Eliasson, B.; Svensson, A.-M.; Miftaraj, M.; McGuire, D.K.; Sattar, N.; Rosengren, A.; Gudbjörnsdottir, S. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med. 2017, 376, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Rawshani, A.; Sattar, N.; Franzén, S.; Rawshani, A.; Hattersley, A.T.; Svensson, A.-M.; Eliasson, B.; Gudbjörnsdottir, S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: A nationwide, register-based cohort study. Lancet 2018, 392, 477–486. [Google Scholar] [CrossRef]
- Maahs, D.M.; West, N.A.; Lawrence, J.M.; Mayer-Davis, E.J. Epidemiology of type 1 diabetes. Endocrinol. Metab. Clin. 2010, 39, 481–497. [Google Scholar] [CrossRef]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Fard, H.H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.; Vestberg, D.; Svensson, A.-M.; Kosiborod, M.; Clements, M.; Rawshani, A.; Pivodic, A.; Gudbjörnsdottir, S.; Lind, M. Long-term excess risk of heart failure in people with type 1 diabetes: A prospective case-control study. Lancet Diabetes Endocrinol. 2015, 3, 876–885. [Google Scholar] [CrossRef] [PubMed]
- De Ferranti, S.D.; De Boer, I.H.; Fonseca, V.; Fox, C.S.; Golden, S.H.; Lavie, C.J.; Magge, S.N.; Marx, N.; McGuire, D.K.; Orchard, T.J. Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Circulation 2014, 130, 1110–1130. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, P.; Donaghue, K.C.; Maahs, D.M. Macrovascular disease and risk factors in youth with type 1 diabetes: Time to be more attentive to treatment? Lancet Diabetes Endocrinol. 2018, 6, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.; Dikaiou, P. Cardiovascular outcomes in type 1 and type 2 diabetes. Diabetologia 2023, 66, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.; Giani, E.; Laffel, L. Challenges and opportunities in the management of cardiovascular risk factors in youth with type 1 diabetes: Lifestyle and beyond. Curr. Diabetes Rep. 2015, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Bredin, S.S.; Jamnik, V.K.; Koehle, M.S.; Guan, Y.; Shellington, E.M.; Li, Y.; Li, J.; Warburton, D.E. Association between physical activity level and cardiovascular risk factors in adolescents living with type 1 diabetes mellitus: A cross-sectional study. Cardiovasc. Diabetol. 2021, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C. Exercise management in type 1 diabetes: A consensus statement. Lancet Diabetes Endocrinol. 2017, 5, 377–390. [Google Scholar] [CrossRef]
- Riddell, M.C.; Peters, A.L. Exercise in adults with type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2023, 19, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Gómez, J.; Calatayud, J.; Chulvi-Medrano, I.; Martín-Rivera, F. Effects of a HIIT protocol on cardiovascular risk factors in a type 1 diabetes mellitus population. Int. J. Environ. Res. Public Health 2021, 18, 1262. [Google Scholar] [CrossRef]
- Alarcón-Gómez, J.; Chulvi-Medrano, I.; Martin-Rivera, F.; Calatayud, J. Effect of high-intensity interval training on quality of life, sleep quality, exercise motivation and enjoyment in sedentary people with type 1 diabetes mellitus. Int. J. Environ. Res. Public Health 2021, 18, 12612. [Google Scholar] [CrossRef]
- Boff, W.; da Silva, A.M.; Farinha, J.B.; Rodrigues-Krause, J.; Reischak-Oliveira, A.; Tschiedel, B.; Puñales, M.; Bertoluci, M.C. Superior effects of high-intensity interval vs. moderate-intensity continuous training on endothelial function and cardiorespiratory fitness in patients with type 1 diabetes: A randomized controlled trial. Front. Physiol. 2019, 10, 450. [Google Scholar] [CrossRef]
- D’hooge, R.; Hellinckx, T.; Van Laethem, C.; Stegen, S.; De Schepper, J.; Van Aken, S.; Dewolf, D.; Calders, P. Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: A randomized controlled trial. Clin. Rehabil. 2011, 25, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; Johnson, N.A.; McGill, M.J.; Overland, J.; Luo, C.; Baker, C.J.; Martinez-Huenchullan, S.; Wong, J.; Flack, J.R.; Twigg, S.M. Effect of high-intensity interval training on glycemic control in adults with type 1 diabetes and overweight or obesity: A randomized controlled trial with partial crossover. Diabetes Care 2020, 43, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.H.H.; Al-Qahtani, M.H.H.; Takken, T. Effects of 12 weeks of recreational football (soccer) with caloric control on glycemia and cardiovascular health of adolescent boys with type 1 diabetes. Pediatr. Diabetes 2021, 22, 625–637. [Google Scholar] [CrossRef]
- Mohammed, M.H.H.; Al-Qahtani, M.H.H.; Takken, T. Health-Related Fitness of Adolescent Boys with Type 1 Diabetes Mellitus After Recreational Football Exercise with Caloric Control. Rev. Diabet. Stud. RDS 2023, 19, 77. [Google Scholar]
- Wallberg-Henriksson, H.; Gunnarsson, R.; Rössner, S.; Wahren, J. Long-term physical training in female type 1 (insulin-dependent) diabetic patients: Absence of significant effect on glycaemic control and lipoprotein levels. Diabetologia 1986, 29, 53–57. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Ezzatvar, Y.; Huerta-Uribe, N.; Alonso-Martínez, A.M.; Chueca-Guindulain, M.J.; Berrade-Zubiri, S.; Izquierdo, M.; Ramírez-Vélez, R. Effects of exercise training on glycaemic control in youths with type 1 diabetes: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Sport Sci. 2023, 23, 1056–1067. [Google Scholar] [CrossRef]
- De Cock, D.; Schreurs, L.; Steenackers, N.; Pazmino, S.; Cools, W.; Eykerman, L.; Thiels, H.; Mathieu, C.; Van der Schueren, B. The effect of physical activity on glycaemic control in people with type 1 diabetes mellitus: A systematic literature review and meta-analysis. Diabet. Med. 2024, 41, e15415. [Google Scholar] [CrossRef] [PubMed]
- Lazić, A.; Stanković, D.; Trajković, N.; Cadenas-Sanchez, C. Effects of HIIT Interventions on Cardiorespiratory Fitness and Glycemic Parameters in Adults with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 2645–2661. [Google Scholar] [CrossRef]
- Ostman, C.; Jewiss, D.; King, N.; Smart, N. Clinical outcomes to exercise training in type 1 diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2018, 139, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Yardley, J.E.; Hay, J.; Abou-Setta, A.M.; Marks, S.D.; McGavock, J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res. Clin. Pract. 2014, 106, 393–400. [Google Scholar] [CrossRef]
- Wu, N.; Bredin, S.S.; Guan, Y.; Dickinson, K.; Kim, D.D.; Chua, Z.; Kaufman, K.; Warburton, D.E. Cardiovascular health benefits of exercise training in persons living with type 1 diabetes: A systematic review and meta-analysis. J. Clin. Med. 2019, 8, 253. [Google Scholar] [CrossRef]
- Tonoli, C.; Heyman, E.; Roelands, B.; Buyse, L.; Cheung, S.S.; Berthoin, S.; Meeusen, R. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: A meta-analysis. Sports Med. 2012, 42, 1059–1080. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.; Nirantharakumar, K.; Chimen, M.; Pang, T.T.; Hemming, K.; Andrews, R.C.; Narendran, P. Does exercise improve glycaemic control in type 1 diabetes? A systematic review and meta-analysis. PLoS ONE 2013, 8, e58861. [Google Scholar] [CrossRef]
- Yao, M.; Wang, Y.; Busse, J.W.; Briel, M.; Mei, F.; Li, G.; Zou, K.; Li, L.; Sun, X. Evaluating the impact of including non-randomised studies of interventions in meta-analysis of randomised controlled trials: A protocol for a meta-epidemiological study. BMJ Open 2023, 13, e073232. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- Higgins, J. Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Collaboration and John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, X.; Zhang, Q.; Shen, Z.; Tian, F.; Zhang, H.; Sun, Z.; Zhang, H.; Chen, W. Influence of consumption of probiotics on the plasma lipid profile: A meta-analysis of randomised controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, D.; Bae, H.-J.; Park, B.-E.; Kang, T.S.; Lim, S.-H.; Lee, S.Y.; Chung, Y.H.; Ryu, J.W.; Lee, M.-Y. Associations of combined polygenic risk score and glycemic status with atrial fibrillation, coronary artery disease and ischemic stroke. Cardiovasc. Diabetol. 2024, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Campaigne, B.N.; Gilliam, T.B.; Spencer, M.L.; Lampman, R.M.; Schork, M.A. Effects of a physical activity program on metabolic control and cardiovascular fitness in children with insulin-dependent diabetes mellitus. Diabetes Care 1984, 7, 57–62. [Google Scholar] [CrossRef]
- Yki-Järvinen, H.; DeFronzo, R.A.; Koivisto, V.A. Normalization of insulin sensitivity in type I diabetic subjects by physical training during insulin pump therapy. Diabetes Care 1984, 7, 520–527. [Google Scholar] [CrossRef]
- Campaigne, B.; Landt, K.; Mellies, M.; James, F.; Glueck, C.; Sperling, M. The effects of physical training on blood lipid profiles in adolescents with insulin-dependent diabetes mellitus. Physician Sportsmed. 1985, 13, 83–89. [Google Scholar] [CrossRef]
- Landt, K.W.; Campaigne, B.N.; James, F.W.; Sperling, M.A. Effects of exercise training on insulin sensitivity in adolescents with type I diabetes. Diabetes Care 1985, 8, 461–465. [Google Scholar] [CrossRef]
- Stratton, R.; Wilson, D.P.; Endres, R.K.; Goldstein, D.E. Improved glycemic control after supervised 8-wk exercise program in insulin-dependent diabetic adolescents. Diabetes Care 1987, 10, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, N.-P.; Lankela, S.-L.; Knip, M.; Lautala, P.; Kaar, M.-L.; Laasonen, K.; Puukka, R. Effect of once-a-week training program on physical fitness and metabolic control in children with IDDM. Diabetes Care 1989, 12, 737–740. [Google Scholar] [CrossRef]
- Durak, E.P.; Jovanovic-Peterson, L.; Peterson, C.M. Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type I diabetic men. Diabetes Care 1990, 13, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- LAAKSONEN, D.E.; Atalay, M.; NISKANEN, L.K.; Mustonen, J.; LAKKA, T.A.; UUSITUPA, M.I. Aerobic exercise and the lipid profile in type 1 diabetic men: A randomized controlled trial. Med. Sci. Sports Exerc. 2000, 32, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Fuchsjäger-Mayrl, G.; Pleiner, J.; Wiesinger, G.n.F.; Sieder, A.E.; Quittan, M.; Nuhr, M.J.; Francesconi, C.; Seit, H.-P.; Francesconi, M.; Schmetterer, L. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care 2002, 25, 1795–1801. [Google Scholar] [CrossRef]
- Roberts, L.; Jones, T.W.; Fournier, P.A. Exercise training and glycemic control in adolescents with poorly controlled type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2002, 15, 621–628. [Google Scholar] [CrossRef]
- Heyman, E.; Toutain, C.; Delamarche, P.; Berthon, P.; Briard, D.; Youssef, H.; DeKerdanet, M.; Gratas-Delamarche, A. Exercise training and cardiovascular risk factors in type 1 diabetic adolescent girls. Pediatr. Exerc. Sci. 2007, 19, 408–419. [Google Scholar] [CrossRef]
- Newton, K.H.; Wiltshire, E.J.; Elley, C.R. Pedometers and text messaging to increase physical activity: Randomized controlled trial of adolescents with type 1 diabetes. Diabetes Care 2009, 32, 813–815. [Google Scholar] [CrossRef]
- Salem, M.A.; AboElAsrar, M.A.; Elbarbary, N.S.; ElHilaly, R.A.; Refaat, Y.M. Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial. Diabetol. Metab. Syndr. 2010, 2, 47. [Google Scholar] [CrossRef]
- Wong, C.H.; Chiang, Y.C.; Wai, J.P.M.; Lo, F.S.; Yeh, C.H.; Chung, S.C.; Chang, C.W. Effects of a home-based aerobic exercise programme in children with type 1 diabetes mellitus. J. Clin. Nurs. 2011, 20, 681–691. [Google Scholar] [CrossRef]
- Maggio, A.; Rizzoli, R.R.; Marchand, L.M.; Ferrari, S.; Beghetti, M.; Farpour-Lambert, N.J. Physical activity increases bone mineral density in children with type 1 diabetes. Med. Sci. Sports Exerc. 2012, 44, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Tunar, M.; Ozen, S.; Goksen, D.; Asar, G.; Bediz, C.S.; Darcan, S. The effects of Pilates on metabolic control and physical performance in adolescents with type 1 diabetes mellitus. J. Diabetes Its Complicat. 2012, 26, 348–351. [Google Scholar] [CrossRef]
- Gusso, S.; Pinto, T.; Baldi, J.C.; Derraik, J.G.; Cutfield, W.S.; Hornung, T.; Hofman, P.L. Exercise training improves but does not normalize left ventricular systolic and diastolic function in adolescents with type 1 diabetes. Diabetes Care 2017, 40, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Petschnig, R.; Wagner, T.; Robubi, A.; Baron, R. Effect of strength training on glycemic control and adiponectin in diabetic children. Med. Sci. Sports Exerc. 2020, 52, 2172–2178. [Google Scholar] [CrossRef]
- Nazari, M.; Shabani, R.; Hassanzadeh-Rad, A.; Esfandiari, M.A.; Dalili, S. Effect of concurrent resistance-aerobic training on inflammatory factors and growth hormones in children with type 1 diabetes: A randomized controlled clinical trial. Trials 2023, 24, 519. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, T. The accelerator hypothesis: Weight gain as the missing link between type I and type II diabetes. Diabetologia 2001, 44, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Seidell, J.C.; Flegal, K.M. Assessing obesity: Classification and epidemiology. Br. Med. Bull. 1997, 53, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Nsamba, J.; Eroju, P.; Drenos, F.; Mathews, E. Body composition characteristics of Type 1 diabetes children and adolescents: A hospital-based case-control study in Uganda. Children 2022, 9, 1720. [Google Scholar] [CrossRef]
- Quirk, H.; Blake, H.; Tennyson, R.; Randell, T.; Glazebrook, C. Physical activity interventions in children and young people with type 1 diabetes mellitus: A systematic review with meta-analysis. Diabet. Med. 2014, 31, 1163–1173. [Google Scholar] [CrossRef]
- Zheng, Y.; Rostami Haji Abadi, M.; Gough, J.; Johnston, J.J.; Nour, M.; Kontulainen, S. Higher body fat in children and adolescents with type 1 diabetes—A systematic review and meta-analysis. Front. Pediatr. 2022, 10, 911061. [Google Scholar] [CrossRef]
- Boye, K.S.; Thieu, V.T.; Lage, M.J.; Miller, H.; Paczkowski, R. The association between sustained HbA1c control and long-term complications among individuals with type 2 diabetes: A retrospective study. Adv. Ther. 2022, 39, 2208–2221. [Google Scholar] [CrossRef]
- Mao, Y.; Zhong, W. HbA1c variability as an independent risk factor for microvascular complications in type 1 diabetes. J. Diabetes Sci. Technol. 2024, 18, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Grant, P.J.; Evans, M.; De Fine Olivarius, N.; Andreasen, A.; Fowler, P.; Good, C.; Turner, R.; Kerner, W. The UK prospective diabetes study. Lancet 1998, 352, 1932–1934. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfari, Z.; Haghdoost, A.A.; Alizadeh, S.M.; Atapour, J.; Zolala, F. A comparison of HbA1c and fasting blood sugar tests in general population. Int. J. Prev. Med. 2010, 1, 187. [Google Scholar]
- Mouri, M.; Badireddy, M. Hyperglycemia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Corpeleijn, W.E.; de Waal, W.J.; Schipper, H.S.; Wiegman, A. Dyslipidaemia as a target for atherosclerotic cardiovascular disease prevention in children with type 1 diabetes: Lessons learned from familial hypercholesterolaemia. Diabetologia 2024, 67, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Yang, Y.; Zhang, J. A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy. Sci. Rep. 2021, 11, 499. [Google Scholar] [CrossRef] [PubMed]
- Vergès, B. Dyslipidemia in type 1 diabetes: A masked danger. Trends Endocrinol. Metab. 2020, 31, 422–434. [Google Scholar] [CrossRef]
- Ganjali, S.; Dallinga-Thie, G.M.; Simental-Mendía, L.E.; Banach, M.; Pirro, M.; Sahebkar, A. HDL functionality in type 1 diabetes. Atherosclerosis 2017, 267, 99–109. [Google Scholar] [CrossRef]
- Heier, M.; Borja, M.S.; Brunborg, C.; Seljeflot, I.; Margeirsdottir, H.D.; Hanssen, K.F.; Dahl-Jørgensen, K.; Oda, M.N. Reduced HDL function in children and young adults with type 1 diabetes. Cardiovasc. Diabetol. 2017, 16, 85. [Google Scholar] [CrossRef]
- Costacou, T.; Vaisar, T.; Miller, R.G.; Davidson, W.S.; Heinecke, J.W.; Orchard, T.J.; Bornfeldt, K.E. High-Density Lipoprotein Particle Concentration and Size Predict Incident Coronary Artery Disease Events in a Cohort With Type 1 Diabetes. J. Am. Heart Assoc. 2024, 13, e034763. [Google Scholar] [CrossRef]
- Liu, C.; Dhindsa, D.; Almuwaqqat, Z.; Ko, Y.-A.; Mehta, A.; Alkhoder, A.A.; Alras, Z.; Desai, S.R.; Patel, K.J.; Hooda, A. Association between high-density lipoprotein cholesterol levels and adverse cardiovascular outcomes in high-risk populations. JAMA Cardiol. 2022, 7, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, K.; Feldt-Rasmussen, B.; Borch-Johnsen, K.; Saelan, H.; Deckert, T. Prevalence of hypertension in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1990, 33, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Lithovius, R.; Harjutsalo, V.; Mutter, S.; Gordin, D.; Forsblom, C.; Groop, P.-H. Resistant hypertension and risk of adverse events in individuals with type 1 diabetes: A nationwide prospective study. Diabetes Care 2020, 43, 1885–1892. [Google Scholar] [CrossRef]
- Jabbarzadeh Ganjeh, B.; Zeraattalab-Motlagh, S.; Jayedi, A.; Daneshvar, M.; Gohari, Z.; Norouziasl, R.; Ghaemi, S.; Selk-Ghaffari, M.; Moghadam, N.; Kordi, R. Effects of aerobic exercise on blood pressure in patients with hypertension: A systematic review and dose-response meta-analysis of randomized trials. Hypertens. Res. 2024, 47, 385–398. [Google Scholar] [CrossRef]
- Rijal, A.; Adhikari, T.B.; Dhakal, S.; Maagaard, M.; Piri, R.; Nielsen, E.E.; Neupane, D.; Jakobsen, J.C.; Olsen, M.H. Effects of adding exercise to usual care on blood pressure in patients with hypertension, type 2 diabetes, or cardiovascular disease: A systematic review with meta-analysis and trial sequential analysis. J. Hypertens. 2024, 42, 10–22. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, X.; Sun, Z.; Wu, T.; Schumann, U. Is estimated cardiorespiratory fitness an effective predictor for cardiovascular and all-cause mortality? A meta-analysis. Atherosclerosis 2021, 330, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Harber, M.P.; Myers, J.; Bonikowske, A.R.; Muntaner-Mas, A.; Molina-Garcia, P.; Arena, R.; Ortega, F.B. Assessing cardiorespiratory fitness in clinical and community settings: Lessons and advancements in the 100th year anniversary of VO2max. Prog. Cardiovasc. Dis. 2024, 83, 36–42. [Google Scholar] [CrossRef] [PubMed]
- De Visser, H.S.; Fast, I.; Brunton, N.; Arevalo, E.; Askin, N.; Rabbani, R.; Abou-Setta, A.M.; McGavock, J. Cardiorespiratory Fitness and Physical Activity in Pediatric Diabetes: A Systemic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e240235. [Google Scholar] [CrossRef]
- Sluik, D.; Buijsse, B.; Muckelbauer, R.; Kaaks, R.; Teucher, B.; Tj, A.; Overvad, K.; Amiano, P.; Ardanaz, E.; Bendinelli, B. Physical activity and mortality in individuals with diabetes mellitus: A prospective study and meta-analysis. Arch. Intern. Med. 2012, 172, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
Source, Year | Sample Size (Sex) | Intervention | Participant Characteristics | Age [Years] | BMI [kg/m2] | Ex Program Duration, Type, and Frequency | Intervention Protocol | Supervision | Outcomes |
---|---|---|---|---|---|---|---|---|---|
Campaigne et al., 1984 [36] | 19 (7 F, 12 M) | AET Con | T1D, children | AET: 9.0 ± 0.47 Con: 8.5 ± 0.57 | NG | 12 w, AET, 3 d/w | AET: 30 min of 160 bpm running, movement to music. Con: no exercise | ND | HbA1c, FBG, VO2max |
Yki-Jarvinen et al., 1984 [37] | 13 | AET Con | T1D, adolescent | AET: 26 ± 2.64 Con: 24 ± 2.44 | NG | 6 w, AET, 4 d/w | AET: cycle ergometer, 60 min, 150–160 bpm. Con: no exercise | ND | HbA1c, FBG, TCH, TG, HDL |
Campaigne et al., 1985 [38] | 14 (8 F, 6 M) | AET Con | T1D, adolescent | AET: 16 ± 1 Con: 15 ± 0.4 | NG | 12 w, AET 3 d/w | AET: 45 min aerobic movement to music at 80% HRmax. Con: routine physical activity | Supervised | LBM, VO2max, TCH, TG, HDL, LDL |
Landt et al., 1985 [39] | 15 | AET Con | T1D, adolescent | AET: 16.1 ± 0.8 Con: 15.9 ± 0.3 | NG | 12 w, AET, 3 d/w | AET: 45 min, 80–85% HRmax Con: usual routines | Supervised | LBM, VO2max |
Wallberg Henriksson et al., 1986 [21] | 13 | AET Con | T1D, adult | AET: 36 ± 2 Con: 35 ± 2 | AET: 21.7 ± 0.9 Con: 22.0 ± 0.4 | 20 w, AET, 20 min daily | AET: Bicycle, 60–90% VO2peak. Con: same treatment except for the daily 20 min training sessions | Unsupervised | HbA1c, VO2max, TCH, TG, HDL, LDL |
Stratton et al., 1987 [40] | 16 | CET Con | T1D, adolescent | CET: 15.1 ± 1.2 Con: 15.5 ± 0.9 | NG | 8 w, AET, 3 d/w | CET: 30–45 min, 2 d/w: jogging or cycling + 1 d/w: basketball, recreational swimming, or resistance exercise machines | Supervised | HbA1c, FBG, TCH, TG, HDL |
Huttunen et al., 1989 [41] | 34 (20 M, 14 F) | AET Con | T1D, children and adolescent | 8–17 | NG | 13 w, AET, 1 d/w | AET: 60 min, 72% HRmax Con: equal amount of time on activities that did not require physical effort | Supervised | HbA1c, FBG, VO2max |
Durak et al., 1990 [42] | 8 (M) | RET Con | T1D, adult | RET: 31.5 ± 2 Con: 30.5 ± 5 | NG | 10 w, RET, 3 d/w | RET: 10 upper-body exercises and 4 lower-body exercises with free weight and resistance exercise machines, rest: 3–7 sets, <12 reps, 30 s to 2 min between sets | supervised | HbA1c, FBG, BFP, Strength, TCH, TG, HDL, LDL |
Laaksonen et al., 2000 [43] | 42 | AET Con | T1D adult | AET: 31.7 ± 5.8 Con: 29.8 ± 6.4 | AET: 24.4 ± 1.9 Con: 24.4 ± 2.2 | 12–16 w, AET, 3–5 d/w | AET: 20–30 min at 50–60% VO2peak Con: routine physical activity | Unsupervised | HbA1c, FBG, BMI, BFP, VO2max, TCH, TG, HDL, LDL |
Fuchsjager-Mayri et al., 2002 [44] | 21 | AET Con | T1D, adult | AET: 42 ± 10 Con: 33 ± 11 | AET: 24.7 ± 0.9 Con: 26.7 ± 1.4 | 4 months, AET 2–3 d/w | AET: 60 min stationary cycling at 60–70% HRmax | supervised | HbA1c, BMI, VO2max, TCH, TG, HDL, LDL |
Roberts et al., 2002 [45] | 24 | AET + ANET Con | T1D, adolescent | 14.0 ± 1.2 | AET + ANET: 21.4 ± 2.5 Con: 19.4 ± 2.4 | 12 w, AET + ANET 3 d/w | AET + ANET: 45 min, AET: ANET, 7:3 HR ≥160 bpm. Con: without any training | Supervised/unsupervised | HbA1c, BMI |
Heyman et al., 2007 [46] | 16 | CET Con | T1D, adolescent | CET: 15.9 ± 1.5 Con: 16.3 ± 1.2 | CET: 24.5 ± 4.6 Con: 25.1 ± 3.9 | 6 months, CET, 3 d/w | CET: AET: intermittent workloads at 80–90% of HRR + RET, AET: RET of 2:1. Con: monitoring physical activity | Supervised/unsupervised | TCH, TG, HDL, LDL |
Newton et al., 2009 [47] | 74 | AET Con | T1D, adolescent | 14.4 ± 2.37 | NG | 12 w, AET, daily | AET: at least 10,000 steps daily. Con: received standard care | ND/ unsupervised | HbA1c, BP |
Salem et al., 2010 [48] | 196 (75 M 121 F) | CET 1, CET 2 Con | T1D, adolescent | CET 1: 14.7 ± 2.2 CET 2: 14.5 ± 2.4 Con: 15 ± 2.35 | NG | 6 months, CET 1: 1 d/w, CET 2: 3 d/w | CET: AET: 20 min at 65–85% HRmax cycling / treadmill + ANET: 1–2 min at 85–95% HRmax + RET: DeLorme technique: 3 sets at 50–70% of 10-RM, rests: 2 min between sets + free strength and endurance exercises: 10 min + neuromuscular exercises: 5 min + flexibility: 5 min. Con: usual routines | supervised | HbA1c, BMI, TCH, TG, HDL, LDL |
Dhooge et al., 2011 [17] | 16 | CET Con | T1D, adolescent | CET: 13.66 ± 5.98 Con: 12.86 ± 4.64 | CET: 21.41 ± 12.15 Con: 19.12 ± 6.70 | 20 w, 2 d/w | CET: AET: 40 min at 60–75% of HRmax + RET: 2–3 sets, 10–15 reps, 12–20 1-RM Con: routine physical activity | Supervised | HbA1c, BMI, VO2max, Strength |
Wong et al., 2011 [49] | 23 | AET Con | T1D, children and adolescent | AET: 11.62 ± 2.12 Con: 12.77 ± 1.79 | AET:17.43 ± 2.61 Con: 18.84 ± 2.67 | 12 w, AET, 3 d/w | AET: Home-based, 40–60% HRR, 10–30 min Con: no exercise or self-directed exercise | ND | HbA1c |
Maggio et al., 2012 [50] | 27 | AET Con | T1D, children | AET: 10.5 ± 2.0 Con: 10.5 ± 2.9 | AET: 18.5 ± 2.4 Con: 18.6 ± 2.3 | 9 months, weight-bearing activities 2 d/w | AET: 90 min of weight-bearing activities at 140 bpm Con: were relatively inactive | Supervised | BMI, LBM |
Tunar et al., 2012 [51] | 31 | Pilates Con | T1D, adolescent | Pilates: 14.2 ± 2.2 Con: 14.3 ± 1.8 | NG | 12 w, Pilates, 3 d/w | Pilates: 45 min. Con: usual activities | Supervised | HbA1c, TCH, TG, HDL, LDL |
Gusso et al., 2017 [52] | 50 (24 F, 26 M) | CET Con | T1D, adolescent | CET: 15.6 ± 1.3 Con: 15.5 ± 0.9 | CET: 23.53 ± 1.77 Con: 24.6 ± 2.94 | 20 w, CET, 3–4 d/w | CET: AET: 40 min at 85% HRmax + RET: weight training and core exercises. Con: did not participate in the exercise program | Supervised | HbA1c, BMI, BFP, VO2max, BP. |
Boff et al., 2019 [16] | 27 | HIIT MCT Con | T1D, adult | HIIT: 26.1 ± 7.8 MCT: 23.7 ± 5.8 Con: 20.8 ± 2.6 | HIIT: 23.2 ± 2.4 MCT: 24.1 ± 2.0 Con: 22.7 ± 2.6 | 8 w, HIIT or MCT, 3 d/w | HIIT: 50–85% HRmax MCT: 60–65% HRmax Con: general lifestyle recommendations, walk at least 3 d/w for 30 min | Supervised | HbA1c, FBG, VO2max, TCH, TG, HDL, LDL, BP |
Petschnig et al., 2020 [53] | 21 | RET Con | T1D, children | RET: 11.00 ± 0.8 Con: 11.3 ± 0.7 | RET: 19.26 ± 2.4 Con: 19.55 ± 4.2 | 32 w, RET, 2 d/w | RET: circuit, 20–40 min, each station: 25–40 s, ≥30% 1-RM, rest between cycles: 180 s, and between stations: 40–30 s. Con: No exercise | supervised | HbA1c, Strength |
Lee et al., 2020 [18] | 22 | HIIT Con | T1D, adult | HIIT: 40.5 ± 10.0 Con: 46.1 ± 10.5 | HIIT: 29.0 ± 2.1 Con: 31.6 ± 3.4 | 12 w, HIIT, 3 d/w | HIIT: 33 min, 4 × 4 min, 85–95% HRmax, 3 min recovery intervals at 50–70% HRmax | Supervised/ unsupervised | HbA1c, BMI, BFP, VO2peak, Strength, TCH, TG, HDL, LDL, BP |
Alarcon-Gomez et al., 2021 [14,15] | 19 | HIIT Con | T1D, adult | HIIT: 38 ± 5.5 Con: 35 ± 8.2 | HIIT: 25.1 ± 0.4 Con: 25.2 ± 0.8 | 6 w, HIIT, 3 d/w | HIIT: 12–20 bouts of 30 s at 85% PPO, 1 min recovery at 40% PPO Con: routine lifestyle and dietary intakes | supervised | First: BFP, LBM, VO2max, FBG Second: HbA1c, BMI |
Mohammad et al., 2021 [19], and 2023 [20] | 20 (M) | Football Con | T1D, adolescent | Football: 17.8 ± 0.42 Con: 14.4 ± 2.0 | Football: 23.71 ± 3.34 Con: 23.46 ± 1.96 | 12 w, football, 2 d/w | Football: 90 min at 80% HRmax. Con: usual activities | NG | First: HbA1c, FBG, TCH, TG, HDL, LDL, BP Second: BMI, VO2max |
Nazari et al., 2023 [54] | 40 | Concurrent Con | T1D, children and adolescent | Concurrent: 11.22 ± 1.90 Con:11.00 ± 2.67 | Concurrent: 18.96 ± 4.11 Con: 17.28 ± 1.87 | 16 w, concurrent, 3 d/w | Concurrent: AET: 50–75% HRmax + Pilates 2–3 sets of 8–12 reps, rest: 30 s between the sets. Con: no exercise | Supervised | HbA1c, FBG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalafi, M.; Dinizadeh, F.; Rosenkranz, S.K.; Symonds, M.E.; Fatolahi, S. The Effects of Exercise Training on Body Composition and Cardiometabolic Risk Factors in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Healthcare 2025, 13, 246. https://doi.org/10.3390/healthcare13030246
Khalafi M, Dinizadeh F, Rosenkranz SK, Symonds ME, Fatolahi S. The Effects of Exercise Training on Body Composition and Cardiometabolic Risk Factors in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Healthcare. 2025; 13(3):246. https://doi.org/10.3390/healthcare13030246
Chicago/Turabian StyleKhalafi, Mousa, Farnaz Dinizadeh, Sara K. Rosenkranz, Michael E. Symonds, and Saeid Fatolahi. 2025. "The Effects of Exercise Training on Body Composition and Cardiometabolic Risk Factors in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis" Healthcare 13, no. 3: 246. https://doi.org/10.3390/healthcare13030246
APA StyleKhalafi, M., Dinizadeh, F., Rosenkranz, S. K., Symonds, M. E., & Fatolahi, S. (2025). The Effects of Exercise Training on Body Composition and Cardiometabolic Risk Factors in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Healthcare, 13(3), 246. https://doi.org/10.3390/healthcare13030246